University of Botswana
Mathematics Department
MAT111 Introductory Mathematics I
Tutorial 9
Solutions compiled by: S. Lekoko, T. Yane, K.Tiro
————————————————————————————————–
Question 1
Explain how to use the graph of the first function to produce the graph of
the second function.
(a) f (x) = 6x , F (x) = 6x+5 .
Description:
F (x) = f (x + 5): Shift f 5 units to the left
(b) g(x) = ex , G(x) = −ex−1 + 3.
Description:
G(x) = −g(x − 1) + 3: reflect f about the x -axis then shift 1
unit to the right and then shift 3 units up
(c) h(x) = log6 x, H(x) = log6 (x + 3).
Description:
H(x) = h(x + 3): Shift f 3 units to the left
(d) k(x) = log 7 x, K(x) = log 7 (x − 3) − 1.
3 3
Description:
K(x) = k(x − 3) − 1: Shift f 3 units to the right and then shift
1 unit down
Question 2
(a) Write each equation in its exponential form
(i) 3 = log4 64
Solution:
43 = 64
1
1 x+1
(ii) = ln
3 x2
Solution:
1 x+1
e3 =
x2
(b) Write each equation in its logarithmic form
(i) 53 = 125
Solution:
3 = log5 125
(ii) e2 = x + 5
Solution:
2 = ln (x + 5)
Question 3
Evaluate each logarithm. Do not use a calculator.
(a) log10 (106 )
Solution:
log10 (106 ) = 6 log10 (10)
=6 ∵ log10 (10) = 1
√
7
(b) 2 log7 343
Solution:
√ 1
2 log7 343 = 2 log7 (73 ) 7
7
1
=2 (3) log7 (7)
7
6
= ∵ log7 (7) = 1
7
Question 4
Find the domain of the function
(a) k(x) = log4 (x − 5)
Domain:
Dk : x − 5 > 0
x >5
Dk = [5, ∞)
2
x2
(b) h(x) = ln
x−4
Domain:
x2
Dh :>0
x−4
Important values x = {0, 4}
Interval (−∞, 0) (0, 4) (4, ∞)
Test Value x = −100 x = 0 x = 100
x2 + + +
x−4 − − +
x2
− − +
x−4
∴ Dh = (4, ∞)
Question 5
(a) Write each expression as a single logarithm with a coefficient of 1.
1
(i) 3 log2 t − log2 u + 4 log2 v
3
Solution:
1 1
3 log2 t − log2 u + 4 log2 v = log2 t3 − log2 (u) 3 + log2 v 4
3 3 4
tv
= log2 1
u3
√ y
(ii) ln(xz) − ln(x y) + 2 ln
z
Solution:
√ y xz y 2
ln(xz) − ln (x y) + 2 ln = ln √ + ln
z x y z
2
z y
= ln √ + ln
y z2
2
z y
= ln √
!y z2
3
y2
= ln
z
3
(b) Expand the given logarithm expression. When possible, evaluate loga-
rithmic expression. Do not use a calculator..
3
z
(i) ln √
xy
Solution:
3
z 1
ln √ = ln z 3 − ln (xy) 2
xy
1
= 3 ln z − (ln x + ln y)
2
1 1
= 3 ln z − ln x − ln y
√ 2 2
3
z
(ii) log4
16y 3
Solution:
√
√
3
z
log4 3
= log4 3 z − log4 16y 3
16y
1
= log4 z 2 − log4 16 + log4 y 3
1
= log4 z − log4 42 − log4 y 3
2
1
= log4 z − 2 − 3 log4 y
2
1
= −2 + log4 z − 3 log4 y
2
Question 6
Use the change-of-base formula to approximate the logarithm accurate to the
nearest ten-thousand.
(a) logπ e
Solution:
ln e
logπ e =
ln π
1
=
ln π
≈ 0.8735685
(b) log5 37
Solution:
ln 37
log5 37 =
ln 5
≈ 2.2435894
4
Question 7
Use the algebraic procedures to find the exact solution or solution of the
equation,
(a) 3x = 243
Solution:
3x = 243
⇒ 3x = 35
⇒x =5
1
(b) 25x+3 =
8
Solution:
1
25x+3 =
8
1
⇒ 25x+3 = 3
2
⇒ 25x+3 = 2−3
⇒ 5x + 3 = −3
6
⇒x =−
5
(c) 3x−2 = 42x+1
Solution:
3x−2 = 42x+1
log3 3x−2 = log3 42x+1 NB: Take log of any base
⇒ x − 2 = (2x + 1) log3 4
⇒ x − 2 = 2x log3 4 + log3 4
⇒ x − 2x log3 4 = 2 + log3 4
⇒ x (1 − 2 log3 4) = 2 + log3 4
2 + log3 4
⇒x =
1 − 2 log3 4
5
(d) log(x2 + 19) = 2
Solution:
log(x2 + 19) = 2
⇒ x2 + 19 = 102
⇒ x2 = 100 − 19
√
⇒ x = ± 81
⇒ x = ±9Both are solutions
NB: Always check your solutions
(e) log3 x + log3 (x + 6) = 3
Solution:
log3 x + log3 (x + 6) = 3
log3 x(x + 6) = 3
⇒ x(x + 6) = 33
⇒ x2 + 6x − 27 = 0
⇒ (x − 3)(x + 9) = 0
⇒ x = {−9, 3}
AS domain of log3 x is x > 0 we discard x = −9.
So the only solution is x = 3
6
1 5 1
(f) ln x = ln 2x + + ln 2
2 2 2
Solution:
1 5 1
ln x = ln 2x + + ln 2
2 2 2
1
ln x = ln (4x + 5)
2
2 ln x = ln (4x + 5)
ln x2 = ln (4x + 5)
⇒ x2 = 4x + 5
⇒ x2 − 4x − 5 = 0
⇒ (x − 5)(x + 1) = 0
⇒ x = {−1, 5}
Solution Check: x = 5
LHS = ln 5
and
RHS = 21 ln 2(5) + 5
+ 21 ln 2
2
√
= ln 25
= ln 5
= LHS
Then x = 5 is a solution
Solution Check: x = −1
LHS = ln −1 is undefined
Then x = −1 is not a solution
7
(g) 10x − 10−x − 16 = 0
Solution:
10x − 10−x − 16 = 0
a − a−1 − 16 = 0 where a = 10x
a2 − 1 − 16a = 0 after multiplying by a
a2 − 16a − 1 = 0 √
−b ± b2 − 4ac
a =
2a p
−(−16) ± (−16)2 − 4(1)(−1)
=
√ 2(1)
16 ± 260
=
2√
16 ± 4 × 65
=
2√
16 ± 2 65
=
√2
= 8 ± 65
√ √
a = 8 + 65, 8 − 65
√
10x = a = 8 + 65, −0.06225775
√
10x = 8 + 65, 10x ̸= −0.06225775 as 10x > 0
√
x = log(8 + 65)
(h) 32x − 6(3x ) + 8 = 0
Solution:
32x − 6(3x ) + 8 = 0
(3x )2 − 6(3x ) + 8 = 0
b2 − 6b + 8 = 0 where b = 3x
(b − 4)(b − 2) = 0
b = {2, 4}
∴ 3x = {2, 4}
x = log3 (2) or x = log3 (4)