Page # 126 TANGENT & NORMAL
TANGENT & NORMAL
Answer Ex–I SINGLE CORRECT (OBJECTIVE QUESTIONS)
1. B 2. A 3. B 4. D 5. C 6. B 7. A 8. A
9. A 10. B 11. B 12. D 13. B 14. D 15. B 16. B
17. B 18. B 19. A 20. B 21. A 22. B 23. B 24. B
25. B 26. B 27. B 28. A 29. B 30. A
Answer Ex–II MULTIPLE CORRECT (OBJECTIVE QUESTIONS)
1. AC 2. AB 3. AD 4. ABD 5. AB 6. AC 7. ABC 8. AB
9. AC 10. AC 11. AD 12. AB 13. BC 14. ACD 15. AC
Answer Ex–III SUBJECTIVE QUESTIONS
1. (0, 0) ; (3, 27) 2. 2x + y = 2 3. Tangent : x + y = 6, Normal x – y = 0
4. y = x 5. (a) y – 2x – 3 = 0 (b) 2x + y – 7 = 0
8. (4, 11) & (–4, –31/3) 9. (0, 0), (1, 2), (–1, –2) 10. (9/4, 3/8) 11.
3
2
12. 3 2 – 1 13. (–6, 3) 15. (i) –2 cm/min (ii) 2 cm /min
c
16. zero 17. –1 18. –1500 ft/sec 19. ±
2
13 8b
20. p (0, 1/e) 21. 8 22. a ,3 23.
4 27
Answer Ex–IV ADVANCED SUBJECTIVE QUESTIONS
1. (0, 1) 2. x = 1 when t = 1, m ; 5x – 4y = 1 if t 1, m = 1/3
m m
3. T : x – 2y = 0 ; N : 2x + y = 0 4. x + 2y = /2 & x + 2y = –3 /2 10.
2
1
11. (a) n = –2 12. ± 13. (i) 6 km/h (ii) 2 km/hr 14. 1 + 36 cu. cm/sec
2 2
66 1
15. 1/48 cm/s 16. 0.05 cm/sec 17. 18. cm/sec.
7 4
1 5 1/4
19. (a) – m/min., (b) – m/min. 20. (a) r = (1 + t) , (b) t = 80
24 288
Answer Ex–V JEE PROBLEMS
1. 2 x + y – 2 2 = 0 or 2x–y–2 2 =0 2. D 3. D 4. D 5. A
394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053 www.motioniitjee.com, email-hr.motioniitjee@gmail.com
MONOTONOCITY Page # 127
MONOTONOCITY
Answer Ex–I SINGLE CORRECT (OBJECTIVE QUESTIONS)
1. C 2. C 3. A 4. B 5. D 6. B 7. D 8. C
9. D 10. A 11. C 12. D 13. B 14. C 15. D 16. C
17. B 18. C 19. A 20. B 21. B 22. B 23. D 24. B
25. A 26. B 27. D 28. D 29. C 30. B 31. A 32. B
33. B 34. B 35. C 36. D 37. D 38. A
Answer Ex–II MULTIPLE CORRECT (OBJECTIVE QUESTIONS)
1. AB 2. BC 3. AD 4. BC 5. BC 6. ABC 7. ACD
8. AD 9. AB 10. AD 11. AB 12. AD 13. AC 14. ABCD
15. AB 16. CD 17. AB 18. AC
Answer Ex–III SUBJECTIVE QUESTIONS
+
1. a R 3. [1 6 , 1 6 ]
4. (i) M.D. in (–, –3] [0, 2] M.. in (–3, 0] [2, )
2 2 2 2
(ii) M.. in , , n Z M.D. in 4n 1, 4n 1 , n Z
4n 3 4n 1
1 1
(iii) M.D. in 0, M.. in ,
3 3
5. (– , –3] 6. (/6) + (1/2). n 3, (/3) – (1/2) n 3 10. 2 sin x + tan x > 3x, limit = 0
11. [ 5 , 10 ] 12. f(x) is injective x [0, )
14. increasig when x , decreasin when x 0, .
4 2 4
16. a < – (2 + 5 ) or a > 5 17. (–, – 2) (0, ) 18. ln (1 + x)
20. Neither increasing nor decreasing at x = –1, increasing at x = 0, 1.
21. [1, ) 24. [–7, –1] [2, 3]
394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053 www.motioniitjee.com, email-hr.motioniitjee@gmail.com
Page # 128 MONOTONOCITY
26. (a) in (2, ) & D in (–, 2) (b) in (1, ) & D in (–, 0) (0, 1)
1 1 1 1
(c) in (0, 2) & D in (–, 2) (2, ) (d) for x > or – < x < 0 & D for x < – or 0 < x<
2 2 2 2
27. (–2, 0) (2, )
28. (a) in [0, 3/4) (7/4, 2] & D in (3/4, 7/4)
(b) in [0, /6) (/2, 5/6) (3/2, 2] & D in (/6, /2) (5/6, 3/2)
(c) in [0, /2) (3/2, 2) & D in (/2, 3/2)
29. continuous but not diff. at x = 1
30. (a) Maximum at x = 1 and f(–1) =18; Minimum at x = 1/8 and f(1/8) = –9/4
(b) 2 & –10
3
31. a (–, –3] [1, ) 32. 0a 33. in (3, ) and in (1, 3)
2
34. a0
5 5 5
35. (a) (–, 0] (b) in 1, and in (–, 1) , – {–3} (c) x =
3 3 3
(d) removable discont. at x = –3 (missing point ) and non removable discont. at x = 1 (infinite type)
(e) –2
3
38. (–1, 0) (0, ) 39. (b –a) /4
Answer Ex–IV ADVANCED SUBJECTIVE QUESTIONS
mb na
11. c= which lies between n & b 16. a = 3, b = 4 and m = 1
mn
17. y = –5x – 9 and y = 5x + 11.
Answer Ex–V JEE PROBLEMS
1
1. (a) B ; (b) D ; (c) C 2. (a) A, (b) cos cos 1 p 3. A 5. (a) D; (b) C
3
7. D 8. (a) B; (b) (i) B, (ii) A, (iii) A; (c) (A)–P, Q, R ; (B)–P, S ; (C)–R, S ; (D)–P, Q
9. (a) C, (b) A, B, C, D 10. B, C, D 11. B,C 12. B 13. C
394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053 www.motioniitjee.com, email-hr.motioniitjee@gmail.com
MAXIMA & MINIMA Page # 129
MAXIMA & MINIMA
Answer Ex–I SINGLE CORRECT (OBJECTIVE QUESTIONS)
1. C 2. D 3. C 4. D 5. A 6. C 7. B 8. A
9. D 10. D 11. C 12. A 13. A 14. B 15. D 16. C
17. A 18. B 19. C 20. C 21. B 22. A 23. B 24. D
25. D 26. D 27. A 28. B 29. C 30. B 31. C 32. C
33. A 34. D 35. A 36. B 37. D 38. A 39. B 40. C
41. A 42. C 43. A 44. B 45. A 46. B 47. D 48. C
49. A 50. D 51. C 52. B 53. D
Answer Ex–II MULTIPLE CORRECT (OBJECTIVE QUESTIONS)
1. D 2. ACD 3. B 4. ACD 5. AC 6. BD 7. AC 8. BD
9. AC 10. AD 11. AC 12. AC 13. AC 14. ABD 15. BC 16. ACD
17. BC 18. AC 19. ACD
Answer Ex–III SUBJECTIVE QUESTIONS
1. (i) maxima (ii) minima (iii) neither maxima nor minima (iv) neither maxima nor minima
(v) neither maxima nor minima (vi) maxima 2. a=b=3
3. (i) local max at x = 1, local min at x = 6(ii) local max. at x = – 1/5, local min. at x = –1
1
(iii) local minima at x = , No local maxima 4. minima at x = 0
e
3
5. (i) 3 points, x = 0, –3, –5 (ii) points, x [–1, 2] (iii) 2 points, x = ,
4 4
6. local max. at x = 1, local min. at x = 2
7. (i) max. = 8, min. = –8 (ii) max. = 2 , min. = –1 (iii) max. = 8, min. = –10
(iv) max. = 25, min. = –39 (v) max. at x = /6, max. value = 3/4; min. at x = 0 & /2, min. value = 1/2
9. Greatest and least values are not defined 10. b (0, e]
11. (i) local max. at x = –1, Maxima of f(x) = –2, local min. at x = 1, Minima of f(x) = 2
(ii) Local Minima at x = + 2n, n , Minima of f(x) = 1,
2
Local Maxima at x = – + 2n, n , Maxima of f(x) = –1
2
80 20
12. It is a global maxima. 14. , 17. 12cm, 6 cm 18. 40 mph
4 4
1 5
19. 27 3 sq. cms. 20. width 2 3 m, length 3 3 m 22. ,
2 4
12 5 2 6 4r 2
23. f(x) = 2 x –
4
x x 24. 25. Rs. 400 26. 5 km. from B towards A
5 3 3 3
4 3
27. cos A = 0.8 28. 29. 2/3 30. side 10’, height 10’
9
1 1 3 3 2
31. Global maximum n 3 , Global minima n 3 32. a
6 4 3 4 8
394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053 www.motioniitjee.com, email-hr.motioniitjee@gmail.com
Page # 130 MAXIMA & MINIMA
Answer Ex–IV ADVANCED SUBJECTIVE QUESTIONS
3 2
1. f(x) = x + x – x + 2 2. (a) Max. at x = 2, Max. value = 2, Min. at x = 0, Min. value of = 0
(b) Max. at x= /6 & also at x = 5 /6 and Max. value = 3/2, Min. at x = /2, Min. value = –3
2 6 12 5
Pmax. = a 1 cos ec
4
3. f(x) =
3
x –
5
x + 2x 4.
2
5. 75 3 sq. units.
2A 2A
6. r= ,s= 8. 3x + 4y – 9 = 0 ; 3x – 4y + 9 = 0 9. 4 2 m
4 4
10. 1/ cu m 11. 110, 70 12. side 10, height 10 13. 32 sq. units 14. = 60º
15. a = 1, b = 0 17. width 2 3 m, length 3 3 m 18. |a – b|
2
19. (a) (–1, 0), (0, 5/6) (b) F(x) = (x – x), F(x) = 2x – 1
(c) increasing (–, 0) (1, ) decreasing (0, 1); (d) (0, 5/6); (1, 2/3); (e) x = 1/2
d d 2
20. (a) x = y =
2
(b) x =
3
,y=
3
d 21. 6’ × 18’ 22. r= A , = 2 radians
3
23. (a) 0, 3 (c) , t = n 4 24. cos A = 0.8 26. (0, 0)
4
32p 3 32p 3
28. p<a<
27
+ p if p > 0;
27
+ p < a < p if p < 0 30. 4 when a = 2
2
31. (a) f is continuous at x = 0 (b) – (c) does not exist, does not exist; (d) point of inflection x = 1
e
3
32. (a) x = –2 (b) no inflection point (c) maxima at x = and – and no minima,
2 2
3 1 1
(d) x = and x = – , (e) – n 2 33. 4 34. m , 35.
2 2 32 16 4
1/ 3
4V
36. 320 37. H = x = 38. L/4 39.
3 3
40. (a) increasing in (0, 2) and decreasing in (– , 0) (2, ), local min. value = 0 local max. value = 2
(b) concave up for (– , 2 – 2 ) (2 + 2 , ) and concave down in (2 – 2, 2+ 2)
1 2.x 2
(e) f(x) = e .x
2
Answer Ex–V JEE PROBLEMS
1. A 2. 2ab 3. (a) D; (b) A 4. A 5. (a) (2, 1) ; (b) 5 6. (a) D 7. 4 65
8. (a) B, C ; (b) A (c) 6 solutions 9. (a) C ; (b) (i) A, (ii) A, (iii) B 10. (a) 0 ; (b) 7
11. (a) D, (b) 1 12. 2 13. 9 14. 5 15. A,B,C,D
394 - Rajeev Gandhi Nagar Kota, Ph. No. 0744-2209671, 93141-87482, 93527-21564
IVRS No. 0744-2439051, 0744-2439052, 0744-2439053, www.motioniitjee.com, email-info@motioniitjee.com