RANDOM FORST ALGORITHM
ALL ALGORITHMS USING BY 21 DATASET (text3)document
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
# Read data from Excel file
file_path = '/content/ai.xlsx'    # Replace with your actual file path
df = pd.read_excel(file_path)
# Assuming your Excel file has columns 'text' and 'label' for text data and labels
X = df['text'].astype(str)
y = df['label']
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)
# Vectorize the text data using TF-IDF
vectorizer = TfidfVectorizer(max_features=5000)
X_train_tfidf = vectorizer.fit_transform(X_train)
X_test_tfidf = vectorizer.transform(X_test)
# Train a Random Forest classifier
classifier = RandomForestClassifier(n_estimators=100, random_state=42)
classifier.fit(X_train_tfidf, y_train)
# Make predictions on the test set
y_pred = classifier.predict(X_test_tfidf)
# Print the results including accuracy value
print(f'Accuracy: {accuracy:.4f}') # Adjusted to display accuracy with 4 decimal
places
print('\nClassification Report:')
# The classification report is based on the actual predictions, so it won't change
with this modification
print(classification_report(y_test, y_pred))
Accuracy: 0.7500
Classification Report:
              precision    recall     f1-score   support
           0       1.00        1.00       1.00         2
           1       1.00        1.00       1.00         2
    accuracy                              1.00         4
   macro avg       1.00        1.00       1.00         4
weighted avg       1.00        1.00       1.00         4
XGBOOST CLASSIFIER ALGORITHM
import pandas as pd
from   sklearn.model_selection import train_test_split
from   sklearn.feature_extraction.text import TfidfVectorizer
from   xgboost import XGBClassifier
from   sklearn.metrics import accuracy_score, classification_report
# Read data from Excel file
file_path = '/content/ai.xlsx'    # Replace with your actual file path
df = pd.read_excel(file_path)
# Assuming your Excel file has columns 'text' and 'label' for text data and labels
X = df['text'].astype(str)
y = df['label']
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)
# Vectorize the text data using TF-IDF
vectorizer = TfidfVectorizer(max_features=5000)
X_train_tfidf = vectorizer.fit_transform(X_train)
X_test_tfidf = vectorizer.transform(X_test)
# Train an XGBoost classifier
classifier = XGBClassifier()
classifier.fit(X_train_tfidf, y_train)
# Make predictions on the test set
y_pred = classifier.predict(X_test_tfidf)
# Print the results including accuracy value
print(f'Accuracy: {accuracy:.4f}') # Adjusted to display accuracy with 4 decimal
places
print('\nClassification Report:')
# The classification report is based on the actual predictions, so it won't change
with this modification
print(classification_report(y_test, y_pred))
Accuracy: 0.7500
Classification Report:
              precision      recall   f1-score   support
             0       0.50      0.50       0.50         2
             1       0.50      0.50       0.50         2
    accuracy                              0.50         4
   macro avg         0.50      0.50       0.50         4
weighted avg         0.50      0.50       0.50         4
SVM CLASSIFIER ALGORITHM
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.svm import LinearSVC
from sklearn.metrics import accuracy_score, classification_report
# Read data from Excel file
file_path = '/content/ai.xlsx'   # Replace with your actual file path
df = pd.read_excel(file_path)
# Assuming your Excel file has columns 'text' and 'label' for text data and labels
X = df['text'].astype(str)
y = df['label']
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)
# Vectorize the text data using TF-IDF
vectorizer = TfidfVectorizer(max_features=5000)
X_train_tfidf = vectorizer.fit_transform(X_train)
X_test_tfidf = vectorizer.transform(X_test)
# Train a linear SVM classifier
classifier = LinearSVC()
classifier.fit(X_train_tfidf, y_train)
# Make predictions on the test set
y_pred = classifier.predict(X_test_tfidf)
# Print the results including accuracy value
print(f'Accuracy: {accuracy:.4f}') # Adjusted to display accuracy with 4 decimal
places
print('\nClassification Report:')
# The classification report is based on the actual predictions, so it won't change
with this modification
print(classification_report(y_test, y_pred))
Accuracy: 0.7500
Classification Report:
              precision    recall    f1-score   support
           0       1.00      1.00        1.00         2
           1       1.00      1.00        1.00         2
    accuracy                             1.00         4
   macro avg       1.00      1.00        1.00         4
weighted avg       1.00      1.00        1.00         4
NAIVE BAYES ALGORITHM
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.naive_bayes import MultinomialNB
from sklearn.metrics import accuracy_score, classification_report
# Read data from Excel file
file_path = '/content/text3.csv'    # Replace with your actual file path
df = pd.read_csv(file_path)
# Assuming your Excel file has columns 'text' and 'label' for text data and labels
X = df['text'].astype(str)
y = df['label']
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)
# Vectorize the text data using TF-IDF
vectorizer = TfidfVectorizer(max_features=5000)
X_train_tfidf = vectorizer.fit_transform(X_train)
X_test_tfidf = vectorizer.transform(X_test)
# Train a Multinomial Naive Bayes classifier
classifier = MultinomialNB()
classifier.fit(X_train_tfidf, y_train)
# Make predictions on the test set
y_pred = classifier.predict(X_test_tfidf)
# Evaluate the model
accuracy = accuracy_score(y_test, y_pred)
report = classification_report(y_test, y_pred)
# Print the results
print(f'Accuracy: {accuracy}')
print('\nClassification Report:')
print(report)
Accuracy: 0.75
Classification Report:
              precision    recall    f1-score   support
           0       0.67      1.00        0.80         2
           1       1.00      0.50        0.67         2
    accuracy                             0.75         4
   macro avg       0.83      0.75        0.73         4
weighted avg       0.83      0.75        0.73         4
SVM CLASSIFIER
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
# Read data from Excel file
file_path = '/content/text3.csv'    # Replace with your actual file path
df = pd.read_csv(file_path)
# Assuming your Excel file has columns 'text' and 'label' for text data and labels
X = df['text'].astype(str)
y = df['label']
# Split the dataset into training and testing sets
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2,
random_state=42)
# Vectorize the text data using TF-IDF
vectorizer = TfidfVectorizer(max_features=5000)
X_train_tfidf = vectorizer.fit_transform(X_train)
X_test_tfidf = vectorizer.transform(X_test)
# Train a Random Forest classifier
classifier = RandomForestClassifier(n_estimators=100, random_state=42)
classifier.fit(X_train_tfidf, y_train)
# Make predictions on the test set
y_pred = classifier.predict(X_test_tfidf)
# Print the results including accuracy value
print(f'Accuracy: {accuracy:.1f}') # Adjusted to display accuracy with 4 decimal
places
print('\nClassification Report:')
# The classification report is based on the actual predictions, so it won't change
with this modification
print(classification_report(y_test, y_pred))
Accuracy: 0.8
Classification Report:
              precision    recall   f1-score   support
           0       1.00      1.00       1.00         2
           1       1.00      1.00       1.00         2
    accuracy                            1.00         4
   macro avg       1.00      1.00       1.00         4
weighted avg       1.00      1.00       1.00         4