Bluecore csr8640 Bga
Bluecore csr8640 Bga
■ 80MHz RISC MCU and 80MIPS Kalimba DSP Stereo Headset Solution
■ Internal ROM, serial flash memory and EEPROM
interfaces
■ Stereo codec with 2 microphone inputs Low-power Solution for
■ Radio includes integrated balun
■ 5-band fully configurable EQ
DSP Intensive Audio Applications
■ CSR's latest CVC technology for narrow-band
and wideband voice connections including wind 2-mic CVC Audio Enhancement
noise reduction
■ HFP v1.6 includes wideband speech and mSBC
codec Fully Qualified Single-chip
■ Voice recognition support for answering a call,
enables true hands-free use Bluetooth® v3.0 System
■ Multipoint HFP connection to 2 phones for voice Advance Information
■ Multipoint A2DP connection enables a headset CSR8640A03
(A2DP) connection to 2 A2DP source devices for Issue 1
music playback
■ Secure simple pairing, CSR's proximity pairing
2
I C/SPI LED PWM
SPI Serial Flash UART USB v2.0
Master Control and Clock
(Debug) Interface 4Mbps Full-speed AUX ADC
/Slave Output Generation
3.3V
PIO Port
TX
DMA ports
Bluetooth Bluetooth Radio
BT_RF
Baseband and Balun
RX
MIC_AN
High-quality ADC
MIC_AP
Memory MIC_BN
High-quality ADC
Management MIC_BP
Unit
SPKR_LN
High-quality DAC
SPKR_LP
DMA ports
Audio SPKR_RN
High-quality DAC
Interface SPKR_RP
VDD_AUDIO
ROM
VDD_AUDIO_DRV
Switch
PIO Port
VBAT
PM 0.85V to SENSE VBAT_SENSE
80MHz MCU PMU 1.35V 1.35V
Digital 1.2V 1.8V 1.35V
Interface Low-voltage Low-voltage
Microphone 2 Low-voltage Switch- Switch- Bypass Li-ion
DM1 80MHz DSP PCM1 / I S and VDD_ANA VDD_AUX
Inputs VDD_DIG mode mode LDO Charger CHG_EXT
BIST Linear Linear
VM Accelerator (MEMS) Linear Regulator Regulator
Engine Regulator Regulator
DM2 (MPU) Regulator VCHG
SENSE SENSE SENSE SENSE SENSE
2 x Digital MICs
Digital Audio
VREGIN_DIG
VDD_DIG_MEM
VDD_ANA_RADIO
VDD_AUX_1V8
VDD_AUX
LXL_1V8
SMPS_1V8_SENSE
LX_1V35
SMPS_1V35_SENSE
3V3_USB
G-TW-0007440.4.3
Advance Information Page 4 of 110
This material is subject to CSR's non-disclosure agreement CS-209182-DSP1
© Cambridge Silicon Radio Limited 2011 www.csr.com
Document History
Revision Date Change Reason
List of Figures
Figure 1.1 Device Pinout .................................................................................................................................. 13
Figure 1.1 Pin Configuration, Orientation from Top of Device .......................................................................... 14
Figure 2.1 Simplified Circuit BT_RF ................................................................................................................. 23
Figure 3.1 Clock Architecture ........................................................................................................................... 25
Figure 5.1 Kalimba DSP Interface to Internal Functions .................................................................................. 28
Figure 6.1 Serial Flash Interface ...................................................................................................................... 29
Figure 7.1 Universal Asynchronous Receiver .................................................................................................. 30
Figure 7.2 Example I²C EEPROM Connection ................................................................................................. 33
Figure 8.1 LED Equivalent Circuit .................................................................................................................... 35
Figure 9.1 Audio Interface ................................................................................................................................ 36
Figure 9.2 Audio Codec Input and Output Stages ............................................................................................ 38
Figure 9.3 Audio Input Gain ............................................................................................................................. 39
Figure 9.4 Microphone Biasing ......................................................................................................................... 42
Figure 9.5 Differential Input .............................................................................................................................. 43
Figure 9.6 Single-ended Input .......................................................................................................................... 44
List of Tables
Table 3.1 Crystal Specification ......................................................................................................................... 26
Table 7.1 Possible UART Settings ................................................................................................................... 31
Table 7.2 Standard Baud Rates ....................................................................................................................... 31
Table 8.1 Alternative PIO Functions ................................................................................................................. 34
Table 9.1 Alternative Functions of the Digital Audio Bus Interface on the PCM1 Interface ............................. 36
Table 9.2 ADC Audio Input Gain Rate ............................................................................................................. 40
Table 9.3 DAC Digital Gain Rate Selection ...................................................................................................... 41
Table 9.4 DAC Analogue Gain Rate Selection ................................................................................................. 41
Table 9.5 Sidetone Gain ................................................................................................................................... 46
Table 9.6 PCM Master Timing .......................................................................................................................... 52
Table 9.7 PCM Slave Timing ............................................................................................................................ 54
Table 9.8 Alternative Functions of the Digital Audio Bus Interface on the PCM Interface ............................... 56
Table 9.9 Digital Audio Interface Slave Timing ................................................................................................ 57
List of Equations
Equation 3.1 Crystal Calibration Using PSKEY_ANA_FTRIM_OFFSET .............................................................. 26
Equation 3.2 Example of PSKEY_ANA_FTRIM_OFFSET Value for 2402.0168MHz .......................................... 26
Equation 3.3 Example of PSKEY_ANA_FTRIM_OFFSET Value for 2401.9832MHz .......................................... 26
Equation 7.1 Baud Rate ....................................................................................................................................... 31
Equation 8.1 LED Current .................................................................................................................................... 35
Equation 8.2 LED PAD Voltage ............................................................................................................................ 35
Equation 9.1 IIR Filter Transfer Function, H(z) ..................................................................................................... 47
1 2 3 4 5 6 7 8 9 10
A A1 A2 A3 A4 A5 A6 A7 A8 A9 A10
B B1 B2 B3 B4 B5 B6 B7 B8 B9 B10
C C1 C2 C9 C10
E E1 E2 E5 E6 E9 E10
F F1 F2 F5 F6 F9 F10
G G1 G2 G9 G10
H H1 H2 H9 H10
J J1 J2 J3 J4 J5 J6 J7 J8 J9 J10
G-TW-0007438.1.1
K K1 K2 K3 K4 K5 K6 K7 K8 K9 K10
A VDD_AUX_1V8 VSS_BT_LO_AUX BT_RF SPKR_LP VSS_AUDIO SPKR _RP VDD_AUDIO AU_REF MIC_AP MIC_AN A
B XTAL_OUT VDD_AUX VSS_BT_RF SPKR _LN VDD_AUDIO_DRV SPKR _RN MIC_BP MIC_BN MIC_BIAS LED[2] B
G-TW-0008090.2.3
H PIO [2] PIO[17] SMPS_1V8_SENSE USB_P H
J PIO [5] LED [0] RST# SPI_PCM# PIO[3] CHG_EXT VBAT_SENSE VSS_SMPS_1V8 3V3_USB USB_N J
K LED [1] VDD_DIG_MEM VREGIN _DIG VREGENABLE VCHG LX_1V8 VBAT LX_1V35 VSS_SMPS_1V35 SMPS_1V35_SENSE K
1 2 3 4 5 6 7 8 9 10
Note:
SPI and PCM1 interfaces are mapped as alternative functions on the PIO port.
LED driver.
Alternative function: programmable
LED driver.
Alternative function: programmable
output PIO[30].
LED[1] K1 Bidirectional VDD_PADS_1 Note:
As output is open-drain, an external
pull-up is required when PIO[30] is
configured as a programmable
output.
LED driver.
Alternative function: programmable
output PIO[29].
LED[0] J2 Note:
As output is open-drain, an external
pull-up is required when PIO[29] is
configured as a programmable
output.
Charger input
VCHG K5
Typically connected to VBUS (USB supply) as Section 12 shows
Auxiliary supply
VDD_AUX B2
Connect to 1.35V supply, see Section 12 for connections
A3 - 0.45 - h - 0.15 -
E
a - 0.05 - j - 0.08 -
b 0.27 - 0.37 n - 68 -
a C
3 D 5.45 5.5 5.55 SD - 0.25 -
A1 Corner f C
2X C
Index Area
g C Seating D1 - 4.5 - SE - 0.25 -
Plane
2
SE
C
Notes 1. Dimension b is measured at the maximum solder ball diameter,
parallel to datum plane C.
D
E
E1
F 2. Datum C (seating plane) is defined by the spherical crowns of
G
the solder ball.
e
H 3. Parallelism measurement shall exclude any effect of mark on
J top surface of package.
K
g
Description 68-ball Very Thin, Fine Pitch Ball Grid Array (VFBGA) Package
G-TW-0007437.4.2
SD
h e j nX Øb 1
D1 Øh M C A B Size 5.5 x 5.5 x 1mm JEDEC MO-225
Øj M C
VDD
_ On-chip Balun
PA BT_RF
+
VSS_BT_RF
2.2 RF Receiver
The receiver features a near-zero IF architecture that enables the channel filters to be integrated onto the die.
Sufficient out-of-band blocking specification at the LNA input enables the receiver to operate in close proximity to
GSM and W‑CDMA cellular phone transmitters without being desensitised. A digital FSK discriminator means that
no discriminator tank is needed and its excellent performance in the presence of noise enables CSR8640 BGA to
exceed the Bluetooth requirements for co‑channel and adjacent channel rejection.
For EDR, the demodulator contains an ADC which digitises the IF received signal. This information is then passed
to the EDR modem.
2.5 Baseband
2.5.1 Burst Mode Controller
Bluetooth
Reference Clock
Radio
G-TW-0000189.3.3
Auxiliary Digital
PLL Circuitry
Frequency 16 26 32 MHz
Pullability 10 15 30 ppm/pF
Transconductance 2 - - mS
4.1 VM Accelerator
CSR8640 BGA contains a VM accelerator alongside the MCU. This hardware accelerator improves the performance
of VM applications.
Registers
Instruction Decode ALU
DSP, MCU and Memory Window Control
Program Flow DEBUG
Flash Window
DM2 DSP Data Memory 2 Interface (DM2)
G-TW-0005522.2.2
PM DSP Program Memory Interface (PM)
1.8V
Serial Quad I/O Flash
MCU Program VDD
MCU RESET#/HOLD#/IO3
WP#/IO2
MCU Data QSPI_FLASH_CLK
CLK
Memory
Serial Flash
QSPI_FLASH_CS#
Interface
Management CS#
Unit QSPI_IO[0]
DI/IO0
Kalimba DSP Program QSPI_IO[1]
G-TW-0008502.1.2
DO/IO1
Kalimba DSP
PIO[15]/UART_TX
PIO[14]/UART_RX
PIO[16]/UART_RTS
G-TW-0008555.1.1
PIO[17]/UART_CTS
To communicate with the UART at its maximum data rate using a standard PC, the PC requires an accelerated
serial port adapter card.
Table 7.1 shows the possible UART settings.
Load the DFU boot loader into the internal ROM before using the UART or USB interface. Use the SPI for this
initial flash programming.
Table 7.2 lists common baud rates and their associated values for the PSKEY_UART_BAUDRATE. There is no
requirement to use these standard values. Any baud rate within the supported range is set in the PS Key according
to the formula in Equation 7.1.
PSKEY_UART_BAUDRATE
Baud Rate =
0.004096
Equation 7.1: Baud Rate
R1 R2 R3 10nF
2.2kΩ 2.2kΩ 2.2kΩ U1
8 1
VCC A0
PIO[12]/QSPI_FLASH_CS#/I2C_WP 7 2
WP A1
G-TW-0008557.1.1
PIO[10]/QSPI_FLASH_CLK/I2C_SCL 6 3
SCL A2
PIO[11]/QSPI_IO[0]/I2C_SDA 5 4
SDA VSS
24AAxxx
The I²C EEPROM requires external pull-up resistors, see Figure 7.2.
CSR recommends 400kHz capable I²C EEPROMs.
Function
PIO
Debug SPI SPI Flash UART PCM EEPROM
(See Section 7.3) (See Section 6.5) (See Section 7.2) (See Section 9.3) (See Section 7.4)
PIO[13] - QSPI_IO[1] - - -
PIO[14] - - UART_RX - -
PIO[15] - - UART_TX - -
PIO[16] - - UART_RTS - -
PIO[17] - - UART_CTS - -
See the relevant software release note for the implementation of these PIO lines, as they are firmware build-
specific.
ILED
RLED Resistor Voltage Drop, VR
LED[2, 1 or 0]
G-TW-0005534.2.2
Pad Voltage, VPAD; RON = 20Ω
VDD = VF + VR + VPAD
The LED current adds to the overall current. Conservative LED selection extends battery life.
Digital
MMU Voice Port Voice Port Audio
Memory
G-TW-0007451.4.3
2 x Differential
Stereo DAC Outputs
Audio
Codec 2 x Differential
Register Interface Registers Driver ADC Inputs
The term PCM in Section 9.3 and its subsections refers to the PCM1 interface.
PCM_OUT SD_OUT
PCM_IN SD_IN
PCM_SYNC WS
PCM_CLK SCK
Table 9.1: Alternative Functions of the Digital Audio Bus Interface on the PCM1 Interface
To avoid any confusion regarding stereo operation this data sheet explicitly states which is the left and right
channel for audio output. With respect to audio input, software and any registers, channel 0 or channel A
represents the left channel and channel 1 or channel B represents the right channel.
PIO[EVEN] Clock
Digital MIC Interface Digital Mic Digital Codec 16 Input C
PIO[ODD] Data
MIC_BP
High-quality ADC Digital Codec 16 Input B
MIC_BN
MIC_AP
High-quality ADC
MIC_AN
Mux
Digital Codec 16 Input A
PIO[EVEN] Clock
Digital MIC Interface Digital Mic
PIO[ODD] Data
G-TW-0007452.3.2
SPKR_LN
High-quality DAC 16
SPKR_LP
Low-pass Filter
SPKR_RN
High-quality DAC 16
SPKR_RP
Low-pass Filter
9.2.2 ADC
Figure 9.2 shows the CSR8640 BGA consists of 2 high-quality ADCs:
■ Each ADC has a second-order Sigma-Delta converter.
■ Each ADC is a separate channel with identical functionality.
■ There are 2 gain stages for each channel, 1 of which is an analogue gain stage and the other is a digital
gain stage, see Section 9.2.4.
G-TW-0005535.4.3
System Gain = ADC Pre-amplifier + ADC Analogue Gain + ADC Digital Gain
CSR8640 BGA has an analogue gain stage based on an ADC pre-amplifier and ADC analogue amplifier:
■ The ADC pre-amplifier has 4 gain settings: 0dB, 9dB, 21dB and 30dB
■ The ADC analogue amplifier gain is -3dB to 12dB in 3dB steps
■ The overall analogue gain for the pre-amplifier and analogue amplifier is -3dB to 42dB in 3dB steps, see
Figure 9.3
■ At mid to high gain levels it acts as a microphone pre-amplifier, see Section 9.2.13
■ At low gain levels it acts as an audio line level amplifier
0 0 8 -24
1 3.5 9 -20.5
2 6 10 -18
3 9.5 11 -14.5
4 12 12 -12
5 15.5 13 -8.5
6 18 14 -6
7 21.5 15 -2.5
9.2.8 DAC
The DAC consists of:
■ 2 fourth-order Sigma-Delta converters enabling 2 separate channels that are identical in functionality, as
Figure 9.2 shows.
■ 2 gain stages for each channel, 1 of which is an analogue gain stage and the other is a digital gain stage.
Digital Gain Selection DAC Digital Gain Setting Digital Gain Selection DAC Digital Gain Setting
Value (dB) Value (dB)
0 0 8 -24
1 3.5 9 -20.5
2 6 10 -18
3 9.5 11 -14.5
4 12 12 -12
5 15.5 13 -8.5
6 18 14 -6
Analogue Gain Selection DAC Analogue Gain Analogue Gain Selection DAC Analogue Gain
Value Setting (dB) Value Setting (dB)
7 3 3 -9
6 0 2 -12
5 -3 1 -15
4 -6 0 -18
Microphone Bias
(MIC_BIAS)
C1
Input
R1
C2 Amplifier
MIC_AN
+ MIC1
Microphone Bias
(MIC_BIAS)
C3 MIC_BP
G-TW-0008073.2.2
Input
R2
C4 Amplifier
MIC_BN
+ MIC2
For the digital microphone interface to work in this configuration ensure the microphone uses a tristate
between edges.
■ The left and right selection for the digital microphones are appropriately pulled up or down for selection on
the PCB.
C2
MIC_AP
C3
MIC_BN
G-TW-0008474.1.2
C4
MIC_BP
C2
MIC_AN
C3
MIC_AP
G-TW-0008476.1.1
C4
MIC_AN
SPKR_LP
SPKR_LN
SPKR_RP
G-TW-0005537.1.1
SPKR_RN
DAC
DAC Interface
Side Tone
G-TW-0005375.1.1
Digital Output Digital Gain Analogue Input
ADC Interface
ADC
0 -32.6dB 8 -8.5dB
1 -30.1dB 9 -6.0dB
2 -26.6dB 10 -2.5dB
3 -24.1dB 11 0dB
4 -20.6dB 12 3.5dB
5 -18.1dB 13 6.0dB
6 -14.5dB 14 9.5dB
7 -12.0dB 15 12.0dB
The values of side tone are shown for information only. During standard operation, the application software
controls the sidetone gain.
The following PS Keys configure the side tone hardware:
■ PSKEY_SIDE_TONE_ENABLE
■ PSKEY_SIDE_TONE_GAIN
■ PSKEY_SIDE_TONE_AFTER_ADC
■ PSKEY_SIDE_TONE_AFTER_DAC
Note:
The position of the binary point is between bit[10] and bit[9], where bit[11] is the most significant bit.
Equation 9.1 shows the equation for the IIR filter. Equation 9.2 shows the equation for when the DC blocking is
enabled.
The filter is configured, enabled and disabled from the VM via the CodecSetIIRFilterA and
CodecSetIIRFilterB traps. This requires firmware support. The configuration function takes 10 variables in the
following order:
0 : Gain
1 : b01
2 : b02
(1 +b −1 −2 ) (1 +b −1 −2 )
01 z + b02 z 11 z + b12 z
Filter, H(z) = Gain × ×
(1 +a −1 −2 ) (1 +a −1 −2 )
z +a z z +a z
01 02 11 12
PCM_OUT
PCM_IN
PCM_CLK 128/256/512/1536/2400kHz
G-TW-0000217.3.4
PCM_SYNC 8/48kHz
PCM_OUT
PCM_IN
PCM_CLK Up to 2400kHz
G-TW-0000218.3.3
PCM_SYNC 8/48kHz
PCM_SYNC
PCM_CLK
G-TW-0000219.2.2
PCM_OUT 1 2 3 4 5 6 7 8
PCM_SYNC
PCM_CLK
G-TW-0000220.2.3
PCM_OUT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Or
SHORT_PCM_SYNC
PCM_CLK
G-TW-0000221.3.2
PCM_OUT 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
Figure 9.13: Multi-slot Operation with 2 Slots and 8-bit Companded Samples
PCM_SYNC
PCM_CLK
PCM_OUT 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8
G-TW-0000222.2.3
Do Not Do Not
PCM_IN Care 1 2 3 4 5 6 7 8 1 2 3 4 5 6 7 8 Care
B1 Channel B2 Channel
8-bit
Sample
PCM_OUT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Zeros
Padding
A 16-bit slot with 8-bit companded sample and zeros padding selected.
Sign
Extension
PCM_OUT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
13-bit
G-TW-0000223.2.3
Sample
PCM_OUT 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
Audio
Gain
A 16-bit slot with 13-bit linear sample and audio gain selected.
128
4MHz DDS generation.
Selection of frequency
- 256 - kHz
is programmable. See
Section 9.3.10.
512
fmclk PCM_CLK frequency
48MHz DDS
generation. Selection
of frequency is 2.9 - - kHz
programmable. See
Section 9.3.10.
48MHz DDS
- PCM_CLK jitter - - 21 ns pk-pk
generation
t dmclksynch t dmclkhsyncl
PCM_SYNC
f mlk
t mclkh t mclkl
PCM_CLK
t dmclklpoutz
t dmclkpout tr ,t f t dmclkhpoutz
G-TW-0000224.2.3
t dmclksynch t dmclkhsyncl
PCM_SYNC
f mlk
t mclkh t mclkl
PCM_CLK
t dmclklpoutz
t dmclkpout tr ,t f t dmclkhpoutz
t supinclkl t hpinclkl
t sclkh t tsclkl
PCM_CLK
t hsclksynch t susclksynch
PCM_SYNC
t dpoutz
G-TW-0000226.3.2
t supinsclkl t hpinsclkl
f sclk
t sclkh t tsclkl
PCM_CLK
t susclksynch t hsclksynch
PCM_SYNC
t dpoutz
t dpoutz
t dsclkhpout tr ,t f
t supinsclkl t hpinsclkl
Equation 9.3: PCM_CLK Frequency Generated Using the Internal 48MHz Clock
Set the frequency of PCM_SYNC relative to PCM_CLK using Equation 9.4:
PCM_CLK
f =
SYNC_LIMIT × 8
PCM_OUT SD_OUT
PCM_IN SD_IN
PCM_SYNC WS
PCM_CLK SCK
Table 9.8: Alternative Functions of the Digital Audio Bus Interface on the PCM Interface
Configure the digital audio interface using PSKEY_DIGITAL_AUDIO_CONFIG, see the PS Key file.
SCK
SCK
SCK
G-TW-0000230.3.2
SD_IN/OUT MSB LSB MSB LSB
I2 S Mode
- WS Frequency - - 96 kHz
t ssu t sh
t ch t cl
SCK(Input)
topd
SD_OUT
t isu t ih G-TW-0000231.2.2
SD_IN
- WS Frequency - - 96 kHz
Table 9.12: I²S Master Mode Timing Parameters, WS and SCK as Outputs
WS(Output)
t spd
SCK(Output)
t opd
SD_OUT
G-TW-0000232.2.2
t isu t ih
SD_IN
Regulators
Supply Rail
Supply
Switch-mode VDD_AUX VDD_ANA
Configuration
Linear Linear
1.8V 1.35V Regulator Regulator 1.8V 1.35V
Dual-supply
ON ON OFF OFF SMPS SMPS
SMPS
Single-supply
ON OFF ON ON SMPS LDO
SMPS
Parallel-
ON ON ON ON SMPS LDO
supply SMPS
EN
VBAT_SENSE Charger Charge Bypass Linear
OUT
50 to 200mA Reference Regulator 3V3_USB
SENSE
VBAT
IN 1.35V OUT
Switch-mode LX_1V35
Regulator
EN SENSE
SMPS_1V35_SENSE
Reference
IN 1.8V OUT
Switch-mode LX_1V8
Regulator
EN SENSE
SMPS_1V8_SENSE
Auxiliary Circuits
IN
VDD_ANA OUT
Regulator VDD_ANA_RADIO
EN SENSE
Bluetooth
VDD_BT_LO
VDD_PADS_1
I/O
VDD_PADS_2
VDD_PADS_3
Audio Circuits
Mic Bias
MIC_BIAS
Audio Driver
VDD_AUDIO_DRV
Audio Core
VDD_AUDIO
VDD_DIG VREGIN_DIG
OUT
Regulator VDD_DIG_MEM
SENSE
EN
VBAT_SENSE Charger Charge Bypass Linear
50 to 200mA Reference Regulator OUT
3V3_USB
SENSE
VBAT
IN SENSE
1.35V SMPS_1V35_SENSE
Switch-mode
EN
Regulator OUT
LX_1V35
Reference
IN 1.8V OUT
Switch-mode LX_1V8
Regulator
EN SENSE
SMPS_1V8_SENSE
Auxiliary Circuits
IN
VDD_ANA
OUT
Regulator VDD_ANA_RADIO
EN SENSE
Bluetooth
VDD_BT_LO
VDD_PADS_1
I/O
VDD_PADS_2
VDD_PADS_3
Audio Circuits
Mic Bias
MIC_BIAS
Audio Driver
VDD_AUDIO_DRV
Audio Core
VDD_AUDIO
VDD_DIG VREGIN_DIG
OUT
Regulator VDD_DIG_MEM
SENSE
L1
4.7µH
VBAT LX_1V8 1.8V Supply Rail
LX
G-TW-0008945.1.2
1.8V Switch-mode
3V3_USB Regulator SMPS_1V8_SENSE C3
SENSE 2.2µF
C1 C2 VSS_SMPS_1V8
2.2µF 2.2µF
To 1.35V Switch-mode
Regulator Input
G-TW-0008946.1.2
1.35V Switch-
3V3_USB mode Regulator SMPS_1V35_SENSE C3
SENSE 4.7µF
C1 C2 VSS_SMPS_1V35
2.2µF 2.2µF
To 1.8V Switch-mode
Regulator Input
L1
4.7µH
LX
LX_1V8 1.8V Supply Rail
1.8V Switch-mode
G-TW-0008947.1.2
Regulator SMPS_1V8_SENSE C3
SENSE 2.2µF
VSS_SMPS_1V8
Figure 10.5: 1.8V and 1.35V Switch-mode Regulators Outputs Parallel Configuration
The integrated bypass LDO linear regulator can operates down to 3.0V with a reduced performance.
The internal regulators described in Section 10.1 to Section 10.7 are not recommended for external circuitry
other than that shown in Section 12.
For information about power sequencing of external regulators to supply the CSR8640 BGA contact CSR.
Disabled No X
Table 11.1: Battery Charger Operating Modes Determined by Battery Voltage and Current
(a) Iterm is 10% of Ifast for a given Ifast setting
Standby Mode
G-TW-0005583.3.2
Trickle Charge Mode Iterm
Itrickle Vhyst
Battery Voltage
Vfast
Vfloat
The Vfast threshold detection has hysteresis to prevent the charger from oscillating between modes.
CHG_EXT TR 1
External Pass Device
VBAT_SENSE
Rsense
VBAT
R1
G-TW-0005585.2.3
BAT 1
220mΩ Li+ Cell
C1
4.7µF
V BAT_SENSE
CHG_EXT
S1
MFB
C1 C2 C3 L1 C4 C5 C6 L2 C7 C8 C9 C10 C11
2u2 2u2 2u2 4u7 2u2 10n 10n 4u7 4u7 15p 2u2 470n 100n
K 10
K4
K5
K7
K6
H9
A1
A7
K8
K3
K2
B5
B2
C2
E5
E6
J6
J7
J9
LX_1V35
VREGENA BLE
VCHG
VBAT_SENSE
LX_1V8
SM PS_1V8_SENSE
V DD_AUX_1V8
VDD_A UDIO
SMPS_1V35_SENSE
VDD_ANA _RADIO
V REGIN_DIG
VDD_PADS_1
VDD_PADS_2
3V3_USB
CHG_EXT
VBAT
VDD_DIG_MEM
VDD_AUDIO_DRV
VDD_A UX
XT1
26MHz
C1
XTAL_IN
1V35 F9 PIO_0
PIO[0]
F10 PIO_1
PIO[1]
E9 PIO_6
U2 PIO[6]
G10 PIO_7
PIO[7]
ANT 2 4 BT_RF A3 E10 PIO_8
OUT IN BT_RF PIO[8]
G9 PIO_9 PIO
CSR8640 BGA
PIO[21]
2.45GHz
LX_1V35 to Inductor
D2 AIO_0
MIC BIAS AIO[0] Analogue Input / Output
L1 to C4 Track
V SS_BT_LO_AUX
V SS_SMPS_1V35
H10 USB_P
V SS_SMPS_1V8
L2 to C7 Track USB_P
J10 USB_N USB (12Mbps)
USB_N
V SS_AUDIO
V SS_BT_RF
MIC_BIA S
SPK R_RN
SPK R_LN
SPK R_RP
SPK R_L P
VSS_DIG
A U_REF
MIC_AN
C4 to GND
MIC_AP
MIC_BN
MIC_BP
C7 to GND J3 RSTB
RST# Reset
A2
B3
F6
A5
J8
K9
A8
MIC_1N A10
MIC_1P A9
MIC_BIA S B9
B7
MIC_2N B8
B4
A4
B6
A6
VBAT to Battery and C2 should be <1Ω from battery SP100
MIC_2P
C12
SPK R_RN
SPK R_LN
SPK R_RP
SPK R_LP
2u2
9k1
3
BLUE
GND
G-TW-0007441.6.2
R104 R108 10k HOLD/SIO3
1V8_SMPS 4
1% VSS
220mR
LED_2
LED_1
LED_0
7
PIO_n
PIO_n
PIO_n
PIO_n
PIO_n
Supply Voltage
Supply Voltage
Normal Operation
Current available for external use, stereo audio with 16Ω load(a) - - 25 mA
Combined 1.8V and 1.35V Switch-mode Regulator Min Typ Max Unit
Normal Operation
Current available for external use, stereo audio with 16Ω load(a) - - 25 mA
(a) Minimum input voltage of 4.75V is required for full specification, regulator operates at reduced load current from 3.1V.
Normal Operation
Current available for external use, stereo audio with 16Ω load - - 0 mA
Load current - - 60 mA
I-CTRL = 0x1f,
194 200 206 mA
headroom > 0.55V
Charge current during constant
current mode, Ifast
I-CTRL = 0x00,
43 45 47 mA
headroom > 0.55V
(a) In the external mode, the battery charger meets all the previous charger electrical characteristics and the additional or superseded electrical
characteristics are listed in this table.
13.3.5 USB
Input Threshold
13.3.6 Clocks
Frequency 16 26 32 MHz
Pullability 10 15 30 ppm/pF
Transconductance 2 - - mS
Resolution - - - 16 Bits
Fsample
B/W = 20Hz→Fsample/2
THD+N 8kHz - 0.0036 - %
(20kHz max)
1.6Vpk-pk input
48kHz - 0.0052 - %
Resolution - - - 16 Bits
Output Sample
- 8 - 96 kHz
Rate, Fsample
Fsample Load
fin = 1kHz
B/W = 20Hz→20kHz 48kHz 100kΩ - 92 - dB
SNR A-Weighted
THD+N < 0.1% 48kHz 32Ω - 93 - dB
0dBFS input
48kHz 16Ω - 93 - dB
Fsample Load
Input Voltage
Tr/Tf - - 25 ns
Output Voltage
Tr/Tf - - 5 ns
Resolution - - 10 Bits
INL -1 - 1 LSB
Accuracy
(Guaranteed monotonic)
DNL 0 - 1 LSB
Offset -1 - 1 LSB
Resolution - - 10 Bits
Human Body Model Contact Discharge per TBDV (all pins except RF),
TBD
JEDEC EIA/JESD22‑A114 TBDV (for RF pins)
Machine Model Contact Discharge per TBDV (all pins except for RF and USB),
TBDV TBDV (for RF pins), TBDkV (for USB_DP
JEDEC EIA/JESD22‑A115 and USB_DN)
Charged Device Model Contact Discharge per TBDV (all pins except RF), TBDV (for RF
TBD
JEDEC EIA/JESD22‑C101 pins)
Benzene 1000ppm
1,1,1-trichloroethane Banned
Tributyl tin (TBT) / Triphenyl tin (TPT) / Tributyl Tin Oxide (TBTO) Banned as intentionally introduced
Dibutyl Tin (DBT) and Dioctyl Tin Compounds (DOT)
Patches
CSR8640 SPI
G-TW-0007447.2.2
Programmable
Audio Prompts
EEPROM
PS Keys
Patches
CSR8640 I2C
G-TW-0007448.1.1
Programmable
Audio Prompts
When using the SPI flash interface for programmable audio prompts, an EEPROM device is not required in the
CSR8640 stereo headset.
NDVC
Bluetooth Radio
Side
Tone
G-TW-0007444.2.2
Auxiliary Stream
Mix
16.2.6 Equalisation
The equalisation filters:
■ Have independent equalisation modules provided in the send and receive signal paths:
■ Each module comprises of 5 bands of equalisation using cascaded 2nd order IIR filters
■ Are fully configurable using a graphical tuning tool
■ Provide static compensation for the frequency response of transducers in the system
16.2.11 Clipper
The clipper block intentionally limits the amplitude of the receive signal prior to the reference input of the AEC to
more accurately model the behaviour of the post reference input blocks such as the DAC, power amplifier, and the
loudspeaker. This processing block can significantly improve the echo performance in cost-optimised loudspeakers.
The CSR8640 Stereo Headset audio development kit is subject to change and updates, for up-to-date
information see www.csrsupport.com.
Note:
Until CSR8640A03 reaches Production status, engineering samples order number applies. This is
ES‑CSR8640A02‑IBBC, with no minimum order quantity.
CSR8640 BGA is a ROM-based device where the product code has the form CSR8640Axx. Axx is the specific
ROM-variant, A03 is the ROM-variant for CSR8640 Stereo Headset.
At Production status minimum order quantity is 2kpcs taped and reeled.
Your attention is drawn to Cambridge Silicon Radio Limited’s ("Seller"’s ) standard terms of supply which govern
Circular Holes
Pin A1 Marker
A≥B
G-TW-0002434.3.2
B
Ø 1.5 +0.1/-0.0
8.00 MIN
2.00 ±0.10 SEE NOTE 3 Ø 1.50 MIN
4.00 SEE NOTE 1 1.75 ±0.10
0.30 ±0.05
A
16.0 ±0.3
A
G-TW-0007442.1.1
K0 R 0.5 TYP
0.66
A0
4.48
SECTION A - A
W3
Package Tape A W2
B C D Min N Min W1 Units
Type Width Max Max
Min Max
5.5 x 5.5 x
13.0 16.4
1mm 16 332 1.5 20.2 50 19.1 16.4 19.1 mm
(0.5/-0.2) (3.0/-0.2)
VFBGA
Bluetooth Specification Version 3.0 + HS Version 3.0 + HS [Vol 0 to Vol 5], 21 April 2009
AC Alternating Current
AG Audio Gateway
BlueCore® Group term for CSR’s range of Bluetooth wireless technology ICs
Bluetooth® Set of technologies providing audio and data transfer over short-range radio connections
DC Direct Current
EQ EQualiser
G.722 An ITU-T standard wideband speech codec operating at 48, 56 and 64 kbps
I/O Input/Output
IC Integrated Circuit
IF Intermediate Frequency
JEDEC Joint Electron Device Engineering Council (now the JEDEC Solid State Technology
Association)
Kalimba An open platform DSP co-processor, enabling support of enhanced audio applications, such
as echo and noise suppression, and file compression / decompression
Kb Kilobit
LM Link Manager
Mb Megabit
PA Power Amplifier
PC Personal Computer
RF Radio Frequency
RX Receive or Receiver
S/PDIF Sony/Philips Digital InterFace (also IEC 958 type II, part of IEC-60958). An interface designed
to transfer stereo digital audio signals between various devices and stereo components with
minimal loss.
TX Transmit or Transmitter
UI User Interface
VM Virtual Machine