0% found this document useful (0 votes)
200 views6 pages

Duis Latest

This document discusses differentiation under the integral sign and evaluates several definite integrals using this technique. It evaluates integrals of logarithmic, trigonometric, and exponential functions between specified limits.

Uploaded by

ommayekar19
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
200 views6 pages

Duis Latest

This document discusses differentiation under the integral sign and evaluates several definite integrals using this technique. It evaluates integrals of logarithmic, trigonometric, and exponential functions between specified limits.

Uploaded by

ommayekar19
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 6

DUIS

Differentiation under integral sign.

Weightage : 08 marks (optional)

𝜋 (1+𝑎 cos 𝑥)
Q. ST ∫0 log 𝑑𝑥 = 𝜋 sin−1 𝑎
cos 𝑥

𝜋 (1+cos 𝑥)
Hence evaluate ∫0 log 𝑑𝑥
cos 𝑥

Solution :-

𝜋 (1+𝑎 cos 𝑥)
I = ∫0 log 𝑑𝑥
cos 𝑥

Diff BS wrt a

𝑑𝐼 𝜋 1 1
= ∫0 cos 𝑥 𝑑𝑥
𝑑𝑎 cos 𝑥 1+𝑎 𝑐𝑜𝑠𝑥

𝑑𝐼 𝜋 𝑑𝑥
= ∫0
𝑑𝑎 1+𝑎 𝑐𝑜𝑠𝑥

𝑥
Subs t = tan 2

2𝑑𝑡 1−𝑡 2
𝑑𝑥 = 1+𝑡 2
cos 𝑥 = 1+𝑡 2

𝑑𝐼 ∞ 1 2𝑑𝑡
∴ = ∫0 1−𝑡2
𝑑𝑎 1+𝑎( ) 1+𝑡 2
1+𝑡2

𝑑𝐼 ∞ 2𝑑𝑡
𝑑𝑎
= ∫0 ( 1+𝑡 2 )+𝑎 (( 1−𝑡 2 )

𝑑𝐼 ∞ 2𝑑𝑡
𝑑𝑎
= ∫0 ( 1+𝑎 )+ (1−𝑎)𝑡 2

𝑑𝐼 1 ∞ 2𝑑𝑡
𝑑𝑎
= 1−𝑎
∫0 1+𝑎
( )+𝑡 2
1−𝑎

LMR NOTES BY RUCHI TAWANI-9870094748 Page 1


2 1−𝑎 1−𝑎
= √ 𝑡𝑎𝑛−1 √ 𝑡 !∞
1−𝑎 1+𝑎 1+𝑎

2 𝜋
= 2
√1−𝑎 2

𝑑𝐼 𝜋
∴ = 2
𝑑𝑎 √1−𝑎

Int BS

I = 𝜋 𝑠𝑖𝑛−1 𝑎 + 𝑐

Subs a = 0

I (0) = 𝑠𝑖𝑛−1 (0) + 𝑐

∴ c = 0

∴ I = 𝜋 𝑠𝑖𝑛−1 𝑎

𝜋 ( 1 + 𝑎 𝑐𝑜𝑠𝑥 )
∴ ∫0 log 𝑑𝑥 = 𝜋 𝑠𝑖𝑛−1 𝑎
cos 𝑥

Subs a = 1

𝜋 ( 1 + 𝑎 𝑐𝑜𝑠𝑥 ) 𝜋2
∫0 log 𝑑𝑥 = 𝜋 𝑠𝑖𝑛−1 (1) = .
cos 𝑥 2

∞ 1−cos 𝑚𝑥 1
Q.2 PT ∫0 𝑒 −𝑥 𝑑𝑥 = log (𝑚2 + 1)
𝑥 2

∞ 1−cos 𝑥
Hence deduce that ∫0 𝑒 −𝑥 𝑑𝑥 = log √2
𝑥

Solution :-

∞ 1−cos 𝑚𝑥
𝐼 = ∫0 𝑒 −𝑥 𝑑𝑥
𝑥

diff BS wrt m

LMR NOTES BY RUCHI TAWANI-9870094748 Page 2


𝑑𝐼 ∞ 𝑒 −𝑥
= ∫0 (𝑥 sin 𝑚𝑥)𝑑𝑥
𝑑𝑚 𝑥

𝑑𝐼 ∞
= ∫0 𝑒 −𝑥 sin 𝑚𝑥 𝑑𝑥
𝑑𝑚

𝑑𝐼 𝑒 −𝑥
= (− sin 𝑥 − 𝑚𝑐𝑜𝑠 𝑚𝑥) |∞
0
𝑑𝑚 𝑚2 + 1

𝑑𝐼 1 𝑚
= (+𝑚 ) =
𝑑𝑚 𝑚2 + 1 𝑚2 + 1

𝑏𝑢𝑡 𝐵𝑆

1
𝐼 = log (𝑚2 + 1) + 𝑐
2

Subs m = 0

𝐼 (0) = 𝐶

∴ 𝐶 = 0

∞ 1−cos 𝑚𝑥 𝑑𝑥 = 1
∴ ∫0 𝑒− 𝑥 log (𝑚2 + 1)
𝑥 2

𝑠𝑢𝑏𝑠 𝑚 = 1 𝑤𝑒 𝑔𝑒𝑡

∞ 1−cos 𝑥 1
∫0 ( ) 𝑒 −𝑥 𝑑𝑥 = log 2 = log √2
𝑥 2

∞ 2 +𝑎2 /𝑥 2 ) √𝜋
Q.3 ST ∫0 𝑒 −(𝑥 𝑑𝑥 = 2
𝑒 −2𝑎

∞ 2 √𝜋
𝑔𝑖𝑣𝑒𝑛 ∫0 𝑒 −𝑥 𝑑𝑥 = 2

∞ 2 +1 /𝑥 2 )
𝐻𝑒𝑛𝑐𝑒 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑒 ∫0 𝑒 −(𝑥 𝑑𝑥

Solution :-

LMR NOTES BY RUCHI TAWANI-9870094748 Page 3


𝑎2
∞ −(𝑥 2 + 2 )
𝐼 = ∫0 𝑒 𝑥 𝑑𝑥

𝑑𝑖𝑓𝑓 𝐵𝑆 𝑤𝑟𝑡 𝑎

𝑎2
𝑑𝐼 ∞ −(𝑥 2 + 2 ) 2𝑎
= ∫0 𝑒 𝑥 (− 𝑥 2 ) 𝑑𝑥
𝑑𝑎

𝑎 −𝑎
𝑠𝑢𝑏𝑠 = 𝑦 𝑑𝑥 = 𝑑𝑦
𝑥 𝑥2

𝑎2
𝑑𝐼 0 −(𝑦 2 + 2 )
∴ = ∫∞ 𝑒 𝑦 2𝑑𝑦
𝑑𝑎

𝑎2
𝑑𝐼 ∞ −(𝑦 2 + 2 )
= −2 ∫0 𝑒 𝑦 𝑑𝑦
𝑑𝑎

𝑑𝐼
= −2I
𝑑𝑎

𝑑𝐼
= −2 𝑑𝑎
𝐼

𝐼𝑛𝑡 𝐵𝑆

𝑑𝐼
∫ = ∫ −2 𝑑𝑎
𝐼

log 𝐼 = −2𝑎 + log 𝑐

𝐼
log (𝑐) = −2𝑎

𝐼
= 𝑒 −2𝑎
𝑐

∴ 𝐼 = 𝑐𝑒 −2𝑎

𝑠𝑢𝑏𝑠 𝑎 = 0

∴ 𝐼 (0) = 𝑐

LMR NOTES BY RUCHI TAWANI-9870094748 Page 4


∞ 2 𝜋
∴ 𝐼 (0) = ∫0 𝑒 −𝑥 𝑑𝑥 = √ 2

𝜋
∴ 𝐼 = √2 𝑒 −2𝑎

Subs a = 1

∞ 2 +1 /𝑥 2 ) √𝜋 √𝜋
∴ 𝐼 = ∫0 𝑒 −(𝑥 𝑑𝑥 = 𝑒 −2 =
2 2𝑒 2

𝜋
Q. Evaluate ∫02 log (𝑎2 𝑐𝑜𝑠 2 𝜃 + 𝑏 2 𝑠𝑖𝑛2 𝜃) 𝑑𝜃

𝜋
𝐼 = ∫02 log (𝑎2 𝑐𝑜𝑠 2 𝜃 + 𝑏 2 𝑠𝑖𝑛2 𝜃) 𝑑𝜃

𝑑𝑖𝑓𝑓 𝐵𝑆 𝑤𝑟𝑡 𝑎

𝜋
𝑑𝐼 1 [2𝑎 𝑐𝑜𝑠2 𝜃] 𝑑𝜃
= ∫0 2
𝑑𝑎 𝑎2 𝑐𝑜𝑠2 𝜃 +𝑏2 𝑠𝑖𝑛2 𝜃

𝜋
𝑑𝐼 2𝑎 𝑑𝜃
= ∫02 [𝐷𝑖𝑣 𝑁 & 𝐷 𝑏𝑦 𝑐𝑜𝑠 2 𝜃]
𝑑𝑎 𝑎2 +𝑏2 𝑡𝑎𝑛2 𝜃

𝑆𝑢𝑏𝑠 𝑡 = 𝑡𝑎𝑛 𝜃

𝑑𝐼 ∞ 2𝑎 𝑑𝑡
= ∫0
𝑑𝑎 (𝑎2 +𝑏 2 𝑡 2 ) 1+𝑡 2

𝑑𝑡
𝑑𝐼 2𝑎 ∞ 1 𝑏2
= ∫0 (1+𝑡 2 − 𝑎2 + 𝑏2 𝑡 2 )
𝑑𝑎 𝑎2 − 𝑏2

( perform PF )

𝑑𝐼 2𝑎 𝑏 𝑏
= [𝑡𝑎𝑛−1 𝑡 − 𝑡𝑎𝑛−1 𝑡 𝑎]
𝑑𝑎 𝑎2 − 𝑏2 𝑎

𝑑𝐼 2𝑎 𝜋 𝑏 𝜋 𝜋
𝑑𝑎
= 𝑎2 − 𝑏2
(2−𝑎 2
) = 𝑎+𝑏

LMR NOTES BY RUCHI TAWANI-9870094748 Page 5


𝑑𝐼 𝜋
=
𝑑𝑎 𝑎+𝑏

𝑖𝑛𝑡 𝐵𝑆 𝑤𝑟𝑡 𝑎

𝐼 = 𝜋 log(𝑎 + 𝑏) + 𝑐

Subs a = b

𝜋
𝜋
𝐼 (𝑏) = ∫02 log 𝑏 2 𝑑𝜃 = log 𝑏 2 ( 2 − 0)

= 𝜋 log 𝑏 𝐼𝐼

𝐼 (𝑏) = 𝜋 log 2 𝑏 + 𝑐

∴ 𝜋 log 𝑏 = 𝜋 log 2 𝑏 + 𝑐

C = 𝜋 log(1⁄2)

1
∴ 𝐼 = 𝜋 log(𝑎 + 𝑏) + 𝜋 log (2)

𝑎+𝑏
𝐼 = 𝜋 log ( )
2

LMR NOTES BY RUCHI TAWANI-9870094748 Page 6

You might also like