Image PHP
Image PHP
Michael N. Fardis
University of Patras, Greece
Vice-Chairman, CEN/TC250: ”Structural Eurocodes”
Organization of the presentation
2
Publication of ENVs
Conversion of ENV to EN
De-facto development:
• Updating of content according to State-of-the-Art.
New elements in the 2nd generation of Eurocodes
Structural
5
Robustness of structures
Actions
EN1991 (loadings) on
structures
1. General
2. Performance Requirements and Compliance Criteria
3. Ground Conditions and Seismic Action
4. Design of Buildings
5. Specific Rules for Concrete Buildings
6. Specific Rules for Steel Buildings
7. Specific Rules for Steel-Concrete Composite Buildings
8. Specific Rules for Timber Buildings
9. Specific Rules for Masonry Buildings
10.Base Isolation
Annex A (Informative): Elastic Displacement Response Spectrum
Annex B (Informative): Determination of Target Displacement for
Nonlinear Static (Pushover) Analysis
Annex C (Normative): Design of the Slab of Steel-Concrete Composite
Beams at Beam-Column Joints in Moment Resisting Frames
prEN1998-1-1:2022 General rules, seismic action
Annex A (I) European Hazard Maps 8
Operational Continued use; any damage Only slight damage to structure and
(OP) SLS may be repaired later infills/partitions
Damage Safe, but normal use Light structural damage (localised bar yielding,
Limitation temporarily interrupted; concrete cracking or spalling). Insignificant
(DL) SLS permanent drift. Structure retains full
resistance with minor decrease in stiffness;
infills/partitions have distributed cracks
Significant No threat to life during event; Significant structural damage or moderate
Damage emergency / temporary use permanent drifts; sufficient capacity for gravity
(SD) ULS only; repair feasible, but loads; infills or partitions damaged but not
maybe uneconomic collapsed
Near Unsafe for emergency use; Heavy structural damage, or large permanent
Collapse life safety during earthquake drifts, or infills/partitions collapsed; strength
(NC) ULS almost ensured, not (barely) sufficient for gravity loads
guaranteed (falling debris)
Performance-based design of new buildings in EN1998-
1:2004 and EN1998-1-1:2022, EN1998-1-2:202X 12
The performance factor γLS,CC multiplies 475yr seismic action of CC2, like the
importance factor
“Reference Seismic Action” and “Reference Return
Period” in EN1998-1:2004 and prEN1998-1-1:2022 14
H800 (m)
very shallow H800 ≤ 5m A A E
shallow 5m < H800 ≤ 30m B E E
intermediate 30m < H800 ≤ 100m B C D
deep H800 > 100m B F F
Representation of the seismic action by the Elastic
Response Spectrum for 5% damping. 17
Se/ag
Se/ag
C 4 C
3
B
B
Type 2 - Ms 5,5
3
A A
2
2
1
1
0 0
0 1 2 3 0 1 2 3 4
T (s) 4 T (s)
prEN1998-1-1:2022 -Annex A (I)
475yr short-period 5%-damped 19
T A T T B:
T B T TC
TC T TD:
T TD:
FA=2.5
, )] s
EN1998-1-1:2022 Nonlinear amplification of spectral values
22
Ground Fα Fβ
type
H800, vs,H
H800, vs,H available Default value Default value
available
A 1,0 1,0 1,0 1,0
B , ) , )
C , ) , )
D , ) , )
E , ) , )
1,25
F 0,9 ,
, ) , , )
, ,
, Sα,RP, Sβ,RP in m/s2, vs,H in m/s
Elastic design w/ force reduction and ductility
• 5%-damped elastic spectrum reduced by (prescriptive) 23
TC T1
Buildings of any material in EN1998-1:2004 or
EN1998-1-2:202X
Three Ductility Classes (DC): (except in masonry buildings):
24
q = qsqRqD
Normally:
αu & α1 from base shear-top displacement
curve of a pushover analysis.
• αu: seismic action at development of global mechanism;
• α1 : seismic action at 1st flexural yielding anywhere.
• αu / α1 ≤ 1.5;
• default values for buildings regular in plan:
= 1.0 for wall systems w/ just 2 uncoupled walls per horiz. direction;
= 1.1 for: one-story frame or frame-equivalent dual systems, or
wall systems w/ > 2 uncoupled walls per direction;
= 1.2 for: (one-bay multi-story frame or frame-equivalent dual systems),
wall-equivalent dual systems or coupled wall systems;
= 1.3 for: multi-story multi-bay frame or frame-equivalent dual systems.
qR qD
DC2 DC3 DC2 DC3
Frame or multi-story, multi-bay frames or
1,3 2,5 3,9
frame- frame-equivalent dual structures
1,3 2,0
equivalent dual multi-story, one-bay frames 1,2 2,3 3,6
structures one-story frames 1,1 2,1 3,3
Wall- or wall- wall-equivalent dual structures 1,2 1,3 2,3 3,6
equivalent dual coupled walls structures 1,2 1,4 2,0 2,5 3,6
structures uncoupled walls structures 1,0 1,3 2,0 3,0
large walls structures -- -- 3,0
Flat slab structures 1,1 1,2 -- 2,0 --
Inverted pendulum system 1.0 1.5 1.5 1.5 1.5
Buildings irregular in elevation or torsionally flexible systems:
behaviour factor q = 0.8qo;
Restrictions in the use of DCs and structural systems
depending on seismicity 30
• EN 1998-1:2004
• Other than for low seismicity (475yr PGA at the ground surface >1
m/sec2, i.e., 475yr constant spectral acceleration of elastic spectrum
at surface >2.5m/sec2) DCL not recommended.
• EN 1998-1-2:202X
• If 475yr constant spectral acceleration of elastic spectrum at ground
surface (times 0.6, 1.25 or 1.6 for CC1, CC3a, CC3b, respectively) is:
• >2.5 m/sec2:
• frame or dual structures should be designed for DC 2 or 3;
• >5 m/sec2:
• flat slab frames should not be used,
• frame structures should be designed for DC3,
• wall structures for DC2.
Capacity-design shear, beams or columns -weak or strong
31
EN1998-1:2004
EN1998-1-2:202X
DCM γRd=1.0,
DC2 or 3: γRd=1.1
DCH γRd=1.2
EN 1998-1:2004
in DC M γRd=1.1 EN1998-1-2:202X
in DC H γRd=1.3 DC2 or 3: γRd=1.1
EN 1998-1:2004
Ductility of plastic hinges by detailing them for a target 32
Ratio of:
• Chord rotation at SD LS
(average of:
plastic ultimate chord-
rotation, θupl, &
chord-rotation at
yielding, θy,
divided by safety factor of
~1.6) to
• chord-rotation at yielding, θy
,
Ls/h <2:
prEN1992-1-1:202X –
Shear resistance of members with shear reinforcement 39
, + ,
: (elastic) longitudinal strain at (cracked) section mid-depth
𝒄𝒄 𝒄
• Outside plastic hinges (outside “critical region(s)”):
From moment and behavior factor q from linear analysis with design
spectrum (elastic divided by q), without multiplying by q.
min =As,min/bd at the tension side 0.5fctm/fyk (1) 0.26fctm/fyk (1), 0.13% (2)
max =As,max/bd in critical regions (2) '+0.0018fcd/(ydfyd) (3) 0.04
As,min, top and bottom bars 214 (308mm2) -
As,min, top bars in the span 0.25As,top-supports -
As,min, bottom bars in critical regions 0.5As,top (4) -
As,min, bottom bars at supports 0.25As,bottom-span (2)
anchorage length for diameter dbL (5) lbd =atr[1-0.15(cd/dbL-1)](dbL/4)fyd/(2.25fctdapoor) (6),(7),(8),(9)
(1) fctm (MPa)=0.3(fck(MPa))2/3: mean tensile strength of concrete; fyk (MPa): nominal yield stress of
longitudinal bars
(2) NDP (Nationally Determined Parameter) per EC2; value recommended in EC2 is given here
(3) ': steel ratio at the opposite side of the section; : curvature ductility factor corresponding to
basic value of behavior factor, qo, applicable to the design; yd = fyd/Εs.
(4) This As,min is additional to the compression steel from the ULS verification of the end section in
flexure under the extreme hogging moment from the analysis for the seismic design situation.
(5) Anchorage length in tension reduced by 30% if bar end extends by ≥5dbL beyond a bend≥ 90o.
(6) cd: concrete cover of anchored bar, or one-half the clear spacing to nearest parallel anchored
bar if it is smaller
(continued next slide)
EN1998-1:2004 - Beam longitudinal reinforcement (cont’d)
(continued from previous slide)
(7) atr = 1-k(nwAsw-As,t,min)/As ≥ 0.7, with Asw: cross-sectional area of tie-leg within the cover of the 43
anchored bar; nw: number of such tie legs over the length lbd; k = 0.1 if the bar is at a corner of
a hoop or tie, k = 0.05 otherwise; As = πdbL2/4 and As,t,min is specified in EC2 as equal to
0.25As.
(8) fctd=fctk,0.05/gc = 0.7fctm/gc = 0.21fck2/3/gc : design value of 5%-fractile tensile strength of concrete.
(9) apoor = 1.0 if the bar is in the bottom 0.25 m of the beam depth, or (in beams deeper than 0.6
m) ≥ 0.3 m from the beam top; otherwise, apoor = 0.7.
(1) NDP (Nationally Determined Parameter) per EC2; value recommended in EC2 is given here
(2) Anchorage length in tension reduced by 30% if bar end extends by ≥ 5dbL past a bend ≥ 90o.
(3) cd: minimum of: concrete cover of lapped bar and 50% of clear spacing to adjacent lap splice.
(4) atr =1-k(2nwAsw-As,t,min)/As, with k = 0.1 for bars at a corner of a hoop or tie, k = 0.05 otherwise;
Asw: cross-sectional area of a column tie; nw: number of ties in the cover of the lapped bar over
the outer third of the length l0; As = πdbL2/4 and As,t,min is specified in EC2 as equal to As.
(5) fctd=fctk,0.05/gc = 0.7fctm/gc = 0.21fck2/3/gc : design value of 5%-fractile of concrete tensile strength.
EN1998-1:2004 - Column transverse reinforcement
DC H DC M DC L
critical region length(1) 1.5hc, 1.5bc, 0.6m, Hcl/5 hc, bc, 0.45m, Hcl/6 hc , b c , 46
In the critical region at the base of the column (at the connection to the foundation)
mechanical ratio wd 0.12 0.08 -
effective mechanical ratio
30dydbc/bo -0.035 -
awd (4), (5), (6), (8), (9)
(1) hc, bc, Hcl: column sides and clear length.
(2) For DC M: Ιf a value of q ≤ 2 is used in design, transverse reinforcement in critical regions of
columns with axial load ratio d ≤ 0.2 may follow rules for DCL columns.
(continued next slide)
EN1998-1:2004 - Column transverse reinforcement (cont’d)
(continued from previous slide) 47
(3) For DC H: In the two lower stories of the building, the requirements on dbw, sw apply over a
distance from the end section not less than 1.5 times the critical region length.
(4) Index c denotes full concrete section; index o the confined core to centreline of perimeter
hoop; bo is the smaller side of this core.
(5) wd: volume ratio of confining hoops to confined core (to centerline of perimeter hoop) times
fywd/fcd.
(6) a = (1-s/2bo)(1-s/2ho)(1-{bo/[(nh-1)ho]+ho/[(nb-1)bo]}/3): confinement effectiveness factor of
rectangular hoops at spacing s, with nb legs parallel to the side of the core with length bo and
nh legs parallel to the side of length ho.
(7) For DCH: at column ends protected from plastic hinging through the capacity design check at
beam-column joints, * is the value of the curvature ductility factor that corresponds to 2/3 of
the basic value, qo, of the behavior factor applicable to the design; at the ends of columns
where plastic hinging is not prevented, because of the exemptions from the application of the
strong column-weak beam rule, * is taken equal to defined in Note (8) (see also Note (9));
yd= fyd/Εs.
(8) : curvature ductility factor corresponding to basic value, qo, of behavior factor
(9) For DCH: The requirement applies also in the critical regions at the ends of columns where
plastic hinging is not prevented, because of the exemptions from the application of the strong
column-weak beam rule.
prEN1998-1-2:202X - Column longitudinal reinforcement
DC 3 DC 2 DC 1
min = As,min/Ac 1% 0.1Nd/Acfyd, 0.2%
48
here
(2) lw: long side of rectangular wall section or rectangular part thereof; Hw: total height of wall;
hstory: story height.
(3) (In DC M only) The DCL rules apply to the confining reinforcement of boundary elements, if:
under the maximum axial force in the wall from the analysis for the seismic design situation,
the wall axial load ratio d= NEd/Acfcd is 0.15; or, if d 0.2 but the q-value used in the design
is 85% of the q-value allowed when the DC M confining reinforcement is used in boundary
elements.
(4) Notes (4), (5), (6) of Table for EN1998-1:2004 columns apply to the confined core of boundary
elements.
(5) : value of the curvature ductility factor corresponding to the product of the basic value qo of
the behavior factor times the ratio MEdo/MRdo of the moment at the wall base from the analysis
for the design seismic action to the design value of moment resistance at the wall base for the
axial force from the same analysis; yd= fyd/Εs; vd: mechanical ratio of vertical web
reinforcement.
EN1998-1:2004 - Walls (cont’d)
DC H DC M DC L
Web 51
(6) NEd: minimum axial load from the analysis for the seismic design situation (positive for
compression); fctd=fctk,0.05/gc = 0.7fctm/gc = 0.21fck2/3/gc : design value of 5%-fractile tensile
strength of concrete.
prEN1998-1-2:202X - Walls
DC 3 DC 2 DC 1
critical region height, hcr lw, Hw/6, 2lw, hstory if wall 6 stories, 2hstory if >6 stories - 52
Boundary elements
a) in critical height region:
- length lc from wall edge 0.15lw, 1.5bw -
- thickness bw over lc 0.2m; hst/15 if lc2bw, lw/5; hst/10 otherwise -
- vertical reinforcement:
diameter, dbL 12 mm
number of bars per side 3 – every other one engaged by hoop or cross-tie -
min over Ac = lcbw 1% 0.2%, 0.5fctm/fyk (1)
max over Ac 4% (1)
spacing (along perimeter) of bars
200mm 250mm -
restrained by tie corner or X-tie
- confining hoops (index w): wd 0.08 0.05 -
b) over the rest of the wall height: As in the web (see below)
Web
thickness, bwo 150mm, hstory/20, lw/40 -
vertical bars (index: v):
v =Asv/bwosv 0.25%; 0.5% wherever in the section c>0.002 0.2%, 0.5fctm/fyk (1)
v =Asv/bwosv 4%
spacing in critical region, sv 250mm 300mm 3bwo, 400mm(1)
horizontal bars (index: h):
h,min 0.25% 0.5fctm/fyk, v/4 (1)
spacing in critical region, sh 250mm 300mm 400mm(1)
53
V’Edw(z): from the combination of shears in all modes from the analysis;
V’Edw,1(z): shear in mode with largest participating mass in direction of VEd
DC 2 walls:
DC 3 walls:
To account for increase in the upper story shears due to higher mode
inelastic response (after plastic hinging at the base)
Ductile walls: Overdesign in bending
• Strong column/weak beam capacity design not required in wall or wall- 58
equivalent dual systems (ie, if walls resist >50% of seismic base shear)
• But: ductile walls over-designed in flexure for linear envelope of moments
from the analysis, to ensure that plastic hinge develops only at the base:
M Edw
h cr
M 'E d w
M 'E d w ,b a s e
boundary elements:
• EN1998-1:2004: effective mechanical volumetric ratio of confining
reinforcement:
αωwd=30μφ(νd+ω)εydbc/bo-0.035
over at least length of compression zone: xu=(νd+ωv)lwεydbc/bo
where strain is between: ε*cu=0.0035+0.1αωw & εcu=0.0035
lc
b0 b = bw
lw
Examples of large walls
60
Large lightly reinforced concrete walls
• Wall system classified as one of large lightly reinforced walls if, in horizontal 61
direction of interest:
– At least 2 walls with lw>4 m, supporting together >20% of gravity load above
(: sufficient no. of walls / floor area & significant uplift of masses); if one wall: q=2
– Fund. period T1<0.5s for fixity at the base against rotation (: low wall aspect ratio)
• Systems of large lightly reinforced walls:
– q=3;
– special (less demanding) dimensioning & detailing.
• Rationale: For large walls, minimum reinforcement of ductile walls implies:
– very high cost;
– flexural overstrength that cannot be transmitted to ground.
On the other hand, large lightly reinforced walls:
– preclude (collapse due to) story mechanism,
– minimize nonstructural damage,
– have shown satisfactory performance in strong EQs.
• If structural system does not qualify as one of large lightly reinforced walls,
all its walls designed & detailed as ductile walls.
Design/detailing of large lightly reinforced walls -EC8
• Vertical steel tailored to demands due to M & N from 62
analysis
– Little excess (minimum) reinforcement, in order to
minimize flexural overstrength.
• Shear verification for V from analysis times (1+q)/2 ~2:
– If so-amplified shear demand is less than (design) shear
resistance without shear reinforcement:
No (minimum) horizontal reinforcement. Reason:
• Inclined cracking prevented (horizontal cracking &
yielding due to flexure mainly at construction joints);
• If inclined cracking occurs, crack width limited by
deformation-controlled nature of response (vs. force-
controlled non-seismic actions covered in EC2), even
without min horizontal steel.
Non-rectangular walls in Eurocode 8
• Modelling, dimensioning and detailing only as vertical prismatic 63
members.
• “Composite wall sections consisting of connected or intersecting
rectangular segments (T-, L-, U-, I- or similar sections) should be
taken as integral units, consisting of a web or webs parallel, or
approximately parallel, to the direction of the acting seismic shear
force and a flange or flanges normal, or approximately normal, to it.”
• In the calculation of moment resistance and in analysis (for the
properties of the cracked cross-section), the effective flange width
on each side of a web ….”.
• Modelling with “shell” FE and dimensioning/detailing for ductility as
planar members:
• Not covered.
• Adopt DCL (DC1) with q=1.5?
• Strain limits given in prEN1998-1-1:2022 apply only for the
calculation of the ultimate curvature of prismatic members.
prEN1998-1-1:2022: Ultimate strains in members in cyclic flexure
• Before spalling:
Concrete: 0.0035 cu 18.5 / h ( mm ) 0.01
2
• Steel: εsu=0.4εu,k , 64
• After spalling:
• Steel: εsu=(4/15)εu,k1 3db / sh 1 0.75exp(0.4Nbars,compression
• Concrete: , , ,
• for rect. compression zone: cu ,c cu 0.04 a w f yw / f c
Shear
failures
Shear
failures
71
Shear failures
72
73
Sliding shear at
construction joint
74
Flexural
& shear
failure
A special case:
The thin, tall, high-axial-load walls in 75
76
77
Typical L-, C- and T- walls
78
Typical walls
79
Walls in a basement
80
80
81
82
83
84
85
86
86
87
88
89
90
Basement walls
Horizontal failure strip in basement walls
91
Horizontal failure strip in basement walls
92
93
Edge of
basement walls
Edge of basement walls at horizontal failure strip
94
EUROCODE 8
Application of 1st Generation Eurocodes to design of
95
1 2 3 4 5 6
SLAB
X
D
Framing plan of basements
1 2 3 4 5 6 98
SLAB
D
Foundation plan view
99
1 2 3 4 5 6
FOUNDATION
Design specifications
100
• Concrete: C25/30
• Steel class: S500
• Finishings: 2 kN/m2
• Live loads: 2 kN/m2
• No masonry infills.
• Importance Class ΙΙ (γΙ=1)
• Type 1 Spectrum on Ground Category B
• Design PGA (on rock) ag = 0.25g
• Ductility Class M (Medium)
Behaviour factor(s)
• Regular in plan and in elevation, no matter the two basements 101
0.2
0.0
0 1 2 3 4
Period (sec)
Periods from Rayleigh quotient
- T1x = 0.85 sec, 102
Not
1 0.86 53.3 0.0
torsionally
flexible 2 0.68 0.0 53.5
3 0.49 0.1 0.0
20 direction X
direction Y
15
10
Height (m)
0
0.0 0.1 0.2 0.3 0.4
-5
-10
Drif t ratio (%)
Seismic shears (left) and moments (right) due to EX+0.3EY. Frame A
106
1 2 3 4 5 6
C
Seismic shears (left) and moments (right) due to EX+0.3EY. Frame B
107
1 2 3 4 5 6
C
Seismic shears (left) and moments (right) due to EX+0.3EY. Frame C
108
1 2 3 4 5 6
C
Seismic shears (top) and moments (bottom) in basement wall D
109
1 2 3 4 5 6
D
Seismic shears (left) and moments (right) due to EY+0.3EX. Frame 1
1 2 3 4 5 6
110
D
Seismic shears (left) and moments (right) due to EY+0.3EX. Frame 2
1 2 3 4 5 6
111
D
Seismic shears (left) and moments (right) due to EY+0.3EX. Frame 3
1 2 3 4 5 6
112
D
Seismic shears (left) and moments (right) due to EY+0.3EX. Wall W3
113
1 2 3 4 5 6
D
Seismic shears (left) & moments (right) in X (left) or Y (right) of Wall W5
1 2 3 4 5 6
A 114
D
Gravity loads shears (top) and moments (bottom) in basement wall 1
115
1 2 3 4 5 6
D
116
1 2 3 4 5 6
D
117
left end (C7), top 24 0.30 185.0 1065 2Ø14 2Ø16 1120 † 193.3
left end, bottom 24 1.14 23.8 533 2Ø14 - 616 §, ‡ 117.7
midspan, bottom - 2.68 100.3 519 2Ø14 2Ø14 616 ‡ 118.8
†
right end (C12) top 14 0.30 183.4 1055 2Ø14 3Ø14 1050 182.6
‡
right end, bottom 14 0.72 6.5 528 2Ø14 - 616 116.6
†: Provided top reinforcement includes 250 mm2 from the slab per m of an effective tension flange width which
extends beyond each side of a supporting column by 4hf at interior joints or 2hf at exterior ones.
‡: Additional bottom mid-span bars extended: 1Ø14 to the left end; 2Ø14 to the right end
§: Additional bottom mid-span bars of beam B28 extended across C7 to the left end of beam B27: 1Ø14.
Frame 2, Story 5, Beams B27, B28: SLS checks per EC2: Stress
limits; crack width <wmax=0.3 mm; steel area for crack control
Beam B28 119
Location for characteristic loads G+Q for quasi-permanent loads G+ψ2Q steel area/crack control
moment steel concrete moment concrete crack spacing crack width minimum provided
(kNm) stress/fyk stress/fck (kNm) stress/fck (mm) (mm) (mm2) (mm2)
left end top 125.8 0.628 0.348 107.4 0.297 324.8 0.26 214 923
midspan bottom 79.0 0.605 0.084 67.4 0.071 283.2 0.22 75 615
right end top 70.4 0.441 0.220 59.9 0.188 498.3 0.28 380 709
Beam B27
Location for characteristic loads G+Q for quasi-permanent loads G+ψ2Q steel area/crack control
moment steel concrete moment concrete crack spacing crack width minimum provided
(kNm) stress/fyk stress/fck (kNm) stress/fck (mm) (mm) (mm2) (mm2)
left end, top 94.8 0.527 0.271 80.6 0.231 423 0.24 386 709
midspan bottom 77.9 0.596 0.083 66.4 0.070 283 0.22 75 615
right end, top 103.6 0.542 0.291 88.5 0.248 358 0.25 239 769
Frame 2, Story 5, Beams B27, B28: - Capacity design of beams in
shear - ULS dimensioning of transverse reinforcement
Sums of beam/column design moment resistances around joint, ∑MRd,b / ∑MRd,c for maxN (kNm) 120
121
1 2 3 4 5 6
Roof
Beam framing plan –Level 5 (longitudinal bars: left-hand-side, ties: right-hand-
side)
1 2 3 4 5 122 6
Level 5
Beam framing plan –Level 4(longitudinal bars: left-hand-side, ties: right-hand-
side)
1 2 3 4 5 6123
Level 4
Beam framing plan –Level 3(longitudinal bars: left-hand-side, ties: right-hand-
side)
1 2 3 4 5 6
124
Level 3
Beam framing plan –Level 2(longitudinal bars: left-hand-side, ties: right-hand-
side)
1 2 3 4 5 125
6
Level 2
Beam framing plan –Level 1(longitudinal bars: left-hand-side, ties: right-hand-
side)
1 2 3 4 5 6
126
Level 1
Beam framing plan –Level 0(longitudinal bars: left-hand-side, ties: right-hand-
side) 1 2 3 4 5 6
127
Level 0
Beam framing plan –Level -1(longitudinal bars: left-hand-side, ties: right-hand-
1 2 3 4 5 6
side)
128
A
Level -1
129
(%) - superstructure base - Level 1 column base - Level 1 critical height level (m)
C1, C6 4Ø18+6Ø14 1.08 0.6 m Ø8/90 mm Ø6/110 mm Ø6/170 mm 0.60
C2, C5 4Ø18+8Ø14 1.07 0.7 m Ø8/90 mm Ø6/110 mm Ø6/170 mm 0.60
C3, C4 4Ø18+8Ø14 1.07 0.7 m Ø8/95 mm Ø6/110 mm Ø6/170 mm 0.60
C7, C10 4Ø18+8Ø14 1.0 0.7 m Ø8/90 mm Ø6/110 mm Ø6/170 mm 0.60
C8, C9 4Ø18+8Ø14 1.0 0.7 m Ø8/110 mm Ø6/110 mm Ø6/170 mm 0.60
C11, C16 4Ø18+6Ø14 1.08 0.6 m Ø8/90 mm Ø6/110 mm Ø6/170 mm 0.60
C12, C14 4Ø18+8Ø14 1.07 0.7 m Ø8/90 mm Ø6/110 mm Ø6/170 mm 0.60
C13, C15 4Ø18+8Ø14 1.07 0.7 m Ø8/95 mm Ø6/110 mm Ø6/170 mm 0.60
Column reinforcement
131
4Φ18 + 8Φ14
4Φ18 + 6Φ14
1 2 3 4 5
SLAB
4Φ18 + 8Φ14
Column C12 - Check of slenderness for negligible 2nd-order effects
Story Combination Column direction z Column direction y
of actions slenderness column slenderness column 132
per EN1990 limit actual eff. l0 (m) sufficient size (m) limit actual eff. l0 (m) sufficient size (m)
6 Eq.6.10a 184.4 8.0 1.61 0.70 179.8 17.1 1.48 0.30
Eq.6.10b 186.5 8.0 1.61 0.70 181.9 17.1 1.48 0.30
5 Eq.6.10a 133.2 7.9 1.60 0.70 124.8 17.1 1.48 0.30
Eq.6.10b 135.2 7.9 1.60 0.70 126.8 17.0 1.48 0.30
4 Eq.6.10a 109.1 7.9 1.60 0.70 109.2 17.2 1.49 0.30
Eq.6.10b 110.8 7.9 1.60 0.70 111. 17.1 1.48 0.30
3 Eq.6.10a 94.1 7.9 1.61 0.70 94.9 17.3 1.50 0.30
Eq.6.10b 95.8 7.9 1.61 0.70 96.5 17.3 1.50 0.30
2 Eq.6.10a 83.0 8.0 1.61 0.70 84.9 17.5 1.52 0.30
Eq.6.10b 84.4 8.0 1.61 0.70 86.5 17.5 1.52 0.30
1 Eq.6.10a 75.0 11.1 2.24 0.70 69.8 23.6 2.04 0.30
Eq.6.10b 76.6 11.1 2.24 0.70 71.0 23.6 2.04 0.30
0 Eq.6.10a 65.1 8.0 1.62 0.70 67.5 16.6 1.44 0.30
Eq.6.10b 66.3 8.0 1.62 0.70 68.7 16.6 1.44 0.30
-1 Eq.6.10a 47.1 7.1 1.43 0.70 47.8 15.4 1.33 0.30
Eq.6.10b 48.0 7.1 1.43 0.70 48.6 15.4 1.33 0.30
Column C12 - Normal stress resultants in seismic design situation
from the analysis, for ULS dimensioning of vertical reinforcement
Story 6 Column Base Column Top
Combination of actions My (kNm) Mz (kNm) N (kN) My (kNm) Mz (kNm) N (kN) 133
EN1990 Eq.6.10a -26.5 -82.5 252.9 28.9 96.6 231.6
EN1990 Eq.6.10b -25.2 -78.2 237.9 27.4 91.7 219.8
G+ψ2Q+E:+X,+Y/maxN 99.5 -3.8 190.4 170.2 121.6 174.7
G+ψ2Q+E:-X,+Y/maxN -134.7 -3.8 190.4 -131.9 121.6 174.7
G+ψ2Q+E:+X,-Y/maxN 99.5 -105.5 190.4 170.2 6.6 174.7
G+ψ2Q+E:-X,-Y/maxN -134.7 -105.5 190.4 -131.9 6.6 174.7
G+ψ2Q+E:+X,+Y/minN 99.5 -3.8 148.0 170.2 121.6 132.3
G+ψ2Q+E:-X,+Y/minN -134.7 -3.8 148.0 -131.9 121.6 132.3
G+ψ2Q+E:+X,-Y/minN 99.5 -105.5 148.0 170.2 6.6 132.3
G+ψ2Q+E:-X,-Y/minN -134.7 -105.5 148.0 -131.9 6.6 132.3
Story 5 Column Base Column Top
Combination of actions My (kNm) Mz (kNm) N (kN) My (kNm) Mz (kNm) N (kN)
EN1990 Eq.6.10a -24.4 -71.7 507.5 24.5 70.1 486.2
EN1990 Eq.6.10b -23.1 -68.0 477.5 23.2 66.5 459.4
G+ψ2Q+E:+X,+Y/maxN 102.3 1.0 394.6 139.5 94.7 378.9
G+ψ2Q+E:-X,+Y/maxN -134.6 1.0 394.6 -107.0 94.7 378.9
G+ψ2Q+E:+X,-Y/maxN 102.3 -96.0 394.6 139.5 -1.8 378.9
G+ψ2Q+E:-X,-Y/maxN -134.6 -96.0 394.6 -107.0 -1.8 378.9
G+ψ2Q+E:+X,+Y/minN 102.3 1.0 284.7 139.5 94.7 269.0
G+ψ2Q+E:-X,+Y/minN -134.6 1.0 284.7 -107.0 94.7 269.0
G+ψ2Q+E:+X,-Y/minN 102.3 -96.0 284.7 139.5 -1.8 269.0
G+ψ2Q+E:-X,-Y/minN -134.6 -96.0 284.7 -107.0 -1.8 269.0
Column C12 - Normal stress resultants in seismic design situation from
the analysis, for ULS dimensioning of vert. reinforcement (cont’d)
Story 4 Column Base Column Top
134
Combination of actions My (kNm) Mz (kNm) N (kN) My (kNm) Mz (kNm) N (kN)
EN1990 Eq.6.10a -23.9 -72.1 761.9 24.1 72.5 740.7
EN1990 Eq.6.10b -22.7 -68.4 716.9 22.8 68.7 698.8
G+ψ2Q+E:+X,+Y/maxN 114.3 2.1 598.4 150.1 97.6 582.6
G+ψ2Q+E:-X,+Y/maxN -146.0 2.1 598.4 -118.1 97.6 582.6
G+ψ2Q+E:+X,-Y/maxN 114.3 -97.7 598.4 150.1 -1.5 582.6
G+ψ2Q+E:-X,-Y/maxN -146.0 -97.7 598.4 -118.1 -1.5 582.6
G+ψ2Q+E:+X,+Y/minN 114.3 2.1 421.5 150.1 97.6 405.7
G+ψ2Q+E:-X,+Y/minN -146.0 2.1 421.5 -118.1 97.6 405.7
G+ψ2Q+E:+X,-Y/minN 114.3 -97.7 421.5 150.1 -1.5 405.7
G+ψ2Q+E:-X,-Y/minN -146.0 -97.7 421.5 -118.1 -1.5 405.7
Story 3 Column Base Column Top
Combination of actions My (kNm) Mz (kNm) N (kN) My (kNm) Mz (kNm) N (kN)
EN1990 Eq.6.10a -24.1 -69.7 1016.3 23.9 70.4 995.1
EN1990 Eq.6.10b -22.8 -66.2 956.2 22.6 66.8 938.2
G+ψ2Q+E:+X,+Y/maxN 119.4 1.8 801.6 148.6 93.4 785.8
G+ψ2Q+E:-X,+Y/maxN -151.3 1.8 801.6 -117.0 93.4 785.8
G+ψ2Q+E:+X,-Y/maxN 119.4 -94.3 801.6 148.6 0.0 785.8
G+ψ2Q+E:-X,-Y/maxN -151.3 -94.3 801.6 -117.0 0.0 785.8
G+ψ2Q+E:+X,+Y/minN 119.4 1.8 558.8 148.6 93.4 543.1
G+ψ2Q+E:-X,+Y/minN -151.3 1.8 558.8 -117.0 93.4 543.1
G+ψ2Q+E:+X,-Y/minN 119.4 -94.3 558.8 148.6 0.0 543.1
G+ψ2Q+E:-X,-Y/minN -151.3 -94.3 558.8 -117.0 0.0 543.1
Column C12 - Normal stress resultants in seismic design situation from
the2analysis,
G+ψ for ULS-151.3
Q+E:-X,-Y/minN dimensioning
-94.3 of558.8
vert. reinforcement
-117.0 0.0 (cont’d)
543.1
Story 2 Column Base Column Top
Combination of actions My (kNm) Mz (kNm) N (kN) My (kNm) Mz (kNm) N (kN) 135
+y -y +z -z
6 Top 197.6 197.6 88.0 145.3
Base 274.4 255.3 116.6 182.6
5 Top 274.4 255.3 116.6 182.6
Base 293.0 255.3 116.6 181.1
4 Top 293.0 255.3 116.6 181.1
Base 293.0 255.3 116.6 181.1
3 Top 293.0 255.3 116.6 181.1
Base 293.0 255.3 88.0 163.5
2 Top 293.0 255.3 88.0 163.5
Base 245.2 197.6 76.8 160.5
1 Top 245.2 197.6 76.8 160.5
Base 175.9 175.9 191.4 223.3
0 Top 175.9 175.9 191.4 223.3
Base 141.8 141.8 216.8 217.0
-1 Top 141.8 141.8 216.8 217.0
Base 0.0 0.0 0.0 0.0
Column C12- Design moment resistance, MRd,c (kNm) - values for minN/maxN
Story Location Direction of MRd vector
138
+y -y +z -z
6 top 259.3/319.6 -259.3/-319.6 92.3/96.9 -92.3/-96.9
base 314.0/322.8 -314.0/-322.8 94.0/98.6 -94.0/-98.6
5 top 338.3/358.4 -338.3/-358.4 106.7/117.2 -106.7/-117.2
base 341.3/361.1 -341.3/-361.1 108.3/118.7 -108.3/-118.7
4 top 363.0/390.6 -363.0/-390.6 119.7/134.4 -119.7/-134.4
base 365.7/392.8 -365.7/-392.8 121.1/135.6 -121.1/-135.6
3 top 384.9/416.2 -384.9/-416.2 131.3/148.3 -131.3/-148.3
base 387.2/417.9 -387.2/-417.9 132.6/149.3 -132.6/-149.3
2 top 404.1/435.0 -404.1/-435.0 141.7/159.0 -141.7/-159.0
base 406.1/436.2 -406.1/-436.2 142.8/159.8 -142.8/-159.8
1 top 421.0/447.0 -421.0/-447.0 151.0/166.5 -151.0/-166.5
base 423.1/448.0 -423.1/-448.0 152.2/169.1 -152.2/-169.1
0 top 446.5/454.1 -446.5/-454.1 166.1/169.8 -166.1/-169.8
base 447.2/454.0 -447.2/-454.0 166.6/169.2 -166.6/-169.2
-1 top 454.1/445.2 -454.1/-445.2 170.1/156.3 -170.1/-156.3
base 454.1/443.8 -454.1/-443.8 169.5/155.7 -169.5/-155.7
Column C12 - Dimensioning of transverse reinforcement between the
column end regions, for the ULS in shear (for maxN or minN)
Story design shear, VEd provided ties strut angle shear resistance (kN)
(kN) Ø no. legs spacing VRd,s VRd,max
139
y z (mm) y z (mm) y z y z y z
§ ‡ o o
6 for maxN 87. 43. 6 3 5 170 22 22 363. 219. 545. 490.
for minN 87. 41. 22o 22o 349. 214. 545. 490.
5 for maxN 66. 24. 6 3§ 5‡ 170 22o 22o 412. 236. 545. 490.
for minN 66. 23. 22o 22o 382. 225. 545. 490.
4 for maxN 66. 23. 6 3§ 5‡ 170 22o 22o 461. 252. 545. 490.
for minN 67. 22. 22o 22o 415. 236. 545. 490.
3 for maxN 66. 22. 6 3§ 5‡ 170 22o 22o 510. 268. 545. 490.
for minN 66. 22. 22o 22o 448. 247. 545. 490.
2 for maxN 66. 20. 6 3§ 5‡ 170 22o 22o 549. 284. 556. 490.
for minN 66. 20. 22o 22o 482. 259. 545. 490.
1 for maxN 39. 14. 6 3§ 5‡ 170 22o 22o 523. 273. 545. 490.
for minN 39. 14. 22o 22o 460. 252. 545. 490.
0 for maxN 35. 14. 6 3§ 5‡ 170 26o 22o 626. 327. 626. 490.
for minN 35. 13. 23o 22o 575. 298. 575. 490.
-1 for maxN 17. 10. 6 3§ 5‡ 170 29o 22o 676. 354. 676. 490.
for minN 17. 10. 26o 22o 622. 325. 624. 490.
§: The value 3 applies for the number of legs , if a si ngle cros s-tie connect s the two central bars of
the short sides; if a diam on d tie is us ed around all four central bars of the four sides, instead of
orthogonal s traight cross -ties, then the number is 3.9.
‡ : The value 3 applies for the num ber of legs, if a single cross-tie connects the two central bars of
the long s ides; if a diamond tie is u sed around all four central bars, instead of orthogonal s traight
cross-ties, then the number is 4.65.
Column C12 -Confinement reinforcement at column ends (for maxN)
Story required ωwd required aωwd stirrups provided ωwd provided aωwd
(for DC M) (for DCM) legs Ø (mm) spacing (mm) 140
base top base Top y z base top base top base Top base top
6 0.00 0.00 0.000 0.000 3§ 5‡ 6 6 110 110 0.174 0.174 0.055 0.055
5 0.00 0.00 0.000 0.000 3§ 5‡ 6 6 110 110 0.174 0.174 0.055 0.055
4 0.00 0.00 0.000 0.000 3§ 5‡ 6 6 110 110 0.174 0.174 0.055 0.055
3 0.00 0.00 0.000 0.000 3§ 5‡ 6 6 110 110 0.174 0.174 0.055 0.055
2 0.00 0.00 0.000 0.000 3§ 5‡ 6 6 110 110 0.174 0.174 0.055 0.055
1 0.08 0.00 0.136 0.000 3§ 5‡ 8 6 90 110 0.379 0.174 0.133 0.055
0 0.00 0.00 0.000 0.000 3§ 5‡ 6 6 170 170 0.113 0.113 0.025 0.025
-1 0.00 0.00 0.000 0.000 3§ 5‡ 6 6 170 170 0.113 0.113 0.025 0.025
§: The value 3 applies for the number of legs , if a si ngle cros s-tie connect s the two central bars of
the short sides; if a diam on d tie is us ed around all four central bars of the four sides, instead of
orthogonal s traight cross -ties, then the number is 3.9.
‡ : The value 3 applies for the num ber of legs, if a single cross-tie connects the two central bars of
the long s ides; if a diamond tie is u sed around all four central bars, instead of orthogonal s traight
cross-ties, then the number is 4.65.
Column C12- Capacity design factor for the design of column's footing
Combination of actions MRdy (kNm) MEdy (kNm) aCDy MRdz (kNm) MEdz (kNm) aCDz aCD
141
G+ψ2Q+E:+X,+Y/maxN 448.0 117.4 4.58 169.1 2.1 33.35 3.0
G+ψ2Q+E:-X,+Y/maxN 448.0 152.9 3.52 169.1 2.1 33.35 3.0
G+ψ2Q+E:+X,-Y/maxN 448.0 117.4 4.58 169.1 47.1 3.59 3.0
G+ψ2Q+E:-X,-Y/maxN 448.0 152.9 3.52 169.1 47.1 3.59 3.0
G+ψ2Q+E:+X,+Y/minN 423.1 117.4 4.33 152.2 5.1 30.0 3.0
G+ψ2Q+E:-X,+Y/minN 423.1 152.9 3.32 152.2 5.1 30.0 3.0
G+ψ2Q+E:+X,-Y/minN 423.1 117.4 4.33 152.2 47.1 3.23 3.0
G+ψ2Q+E:-X,-Y/minN 423.1 152.9 3.32 152.2 47.1 3.23 3.0
142
16 from analysis
20
design envelope
12
Height (m)
16
8 12
Height (m)
4 8
0 4
0 4000 8000 12000
Bending moment (kNm) 0
0 500 1000 1500 2000 2500
Shear force (kN)
Wall W1 reinforcement
(left half of section) 144
Design envelopes of wall W3: moments (left), shears (right)
20 from analysis
145
design envelope
16
20 from analysis
12 design envelope
16
Height (m)
8
12
4
Height (m)
8
0
0 1000 2000 3000 4000 5000 4
-4
0
-8 0 500 1000 1500
-4
Bending moment (kNm)
-8
12
wall W5–X (left), Y
Height (m)
Height (m)
8 8
(right) direction:
4 moments (top), shears 4
0 (below) 0
0 5000 10000 15000 0 500 1000 1500 2000
-4 20 -4 from analysis
20 from analysis
design envelope -8 design envelope
-8 16
16
Bending moment12
(kNm) 12 Bending moment (kNm)
Height (m)
Height (m)
8 8
4 4
0 0
0 1000 2000 30000 400 800 1200
-4 -4
-8 -8
magnified 6-base
-My, +Mz
+My, -Mz
3977
-3975
-1207
1207
-447
431
115
-110
294
294
shears -My, -Mz
+My, +Mz
3977
-5763
-1207
1463
431
-728
-110
119
294
588
-My, +Mz 5766 -1463 -728 119 588
5-base
+My, -Mz -5763 1463 699 -115 588
-My, -Mz 5766 -1463 699 -115 588
+My, +Mz -7551 1573 -1010 154 882
-My, +Mz 7555 -1572 -1010 154 882
4-base
+My, -Mz -7551 1573 966 -149 882
-My, -Mz 7555 -1572 966 -149 882
+My, +Mz -9339 1682 -1294 216 1176
-My, +Mz 9344 -1682 -1294 216 1176
3-base
+My, -Mz -9339 1682 1231 -209 1176
-My, -Mz 9344 -1682 1231 -209 1176
+My, +Mz -11127 1670 -1582 292 1470
-My, +Mz 11133 -1670 -1582 292 1470
2-base
+My, -Mz -11127 1670 1492 -283 1470
-My, -Mz 11133 -1670 1492 -283 1470
+My, +Mz -11365 2414 -1792 255 1806
Corresponding MRd at base: 11590 6194 at νd = 0.065
-My, +Mz 11373 -2414 -1792 255 1806
Corresponding MRd at base: 11590 6194 at νd = 0.065
1-base
+My, -Mz -11365 2414 1685 -251 1806
Corresponding MRd at base: 11590 4279 at νd = 0.065
-My, -Mz 11373 -2414 1685 -251 1806
Corresponding MRd at base: 11590 4279 at νd = 0.065
+My, +Mz -11360 2514 -1387 1135 2100
-My, +Mz 11378 -2510 -1387 1135 2100
0-base
+My, -Mz -11360 2514 1395 -784 2100
-My, -Mz 11378 -2510 1395 -784 2100
+My, +Mz -6794 2125 -217 1135 2394
-My, +Mz 6848 -2125 -217 1135 2394
-1-base
+My, -Mz -6794 2125 826 -784 2394
-My, -Mz 6848 -2125 826 -784 2394
Wall W5 - Design in shear, for diagonal tension and compression
(neglecting short-shear-span effects)
floor location amplification design shear horizontal bars strut shear resistance
150
factor for shear maxVEd (kN) Ø Legs spacing sh (mm) angle (kN)
(mm) max provided VRd,s VRd,max
6 web 1.5 1208 8 2 200 200 22o 1573 2234
flanges 1.5 116 8 2×2 200 200 22o 1573 2234
o
5 web 1.5 1463 8 2 200 200 22 1573 2234
flanges 1.5 120 8 2×2 200 200 22o 1573 2234
4 web 1.5 1573 8 2 200 200 22o 1573 2234
flanges 1.5 154 8 2×2 200 200 22o 1573 2234
3 web 1.5 1683 8 2 200 185 22o 1701 2234
flanges 1.5 216 8 2×2 200 185 22o 1573 2234
o
2 web 1.5 1670 8 2 200 185 22 1701 2234
flanges 1.5 292 8 2×2 200 185 22o 1573 2234
1 web 1.5 2415 8 2 200 115 24o 2428 2428
flanges 1.5 256 8 2×2 200 115 22o 1573 2234
0 web - 2514 8 2 200 105 25o 2516 2516
flanges - 1136 8 2×2 200 105 22o 1573 2234
o
-1 web - 2125 8 2 200 145 22 2170 2234
flanges - 1136 8 2×2 200 145 22o 1573 2234
Wall W5 - Vertical, horizontal, hoop reinforcement (whole story and
base of story above); steel added at construction joints
Floor Boundary elements: dimensions & reinforcement Web reinforcement added
location size (m) vertical bars hoops ωwd location vertical horizontal steel @ 151
Ø no Ø s req. prov. Ø sv Ø sh joint
(mm) (mm) (mm) (mm) (mm) (mm) (mm) (mm2)
6 corners 0.25×0.25 18 4 8 105 0.0 0.32 web 8 200 8 200 -
edges 0.15×0.25 18 4 8 105 0.0 0.46 flanges 8 200 8 200 -
5 corners 0.25×0.25 18 4 8 110 0.0 0.30 web 8 200 8 200 -
edges 0.15×0.25 18 4 8 110 0.0 0.43 flanges 8 200 8 200 -
4 corners 0.25×0.25 20 4 8 110 0.0 0.30 web 8 200 8 200 -
edges 0.15×0.25 20 4 8 110 0.0 0.43 flanges 8 200 8 200 -
3 corners 0.25×0.25 20 5 8 110 0.0 0.30 web 8 200 8 185 -
edges 0.15×0.25 20 5 8 110 0.0 0.26 flanges 8 200 8 185 -
2 corners 0.25×0.25 20 6 8 105 0.0 0.24 web 8 200 8 185 -
edges 0.25×0.25 20 6 8 110 0.0 0.24 flanges 8 200 8 185 -
1 corners 0.4×0.25, 18 10 8 105 0.0 0.24 web 8 200 8 115 -
0.55×0.25
edges 0.4×0.25 20 6 8 110 0.0 0.24 flanges 8 200 8 115 -
0 corners 0.4×0.25, 18 10 8 105 0.0 0.24 web 8 200 8 105 -
0.55×0.25
edges 0.4×0.25 20 6 8 110 0.0 0.24 flanges 8 200 8 105 -
-1 corners 0.4×0.25, 18 10 8 105 0.0 0.24 web 8 200 8 150 -
0.55×0.25
edges 0.4×0.25 20 6 8 110 0.0 0.24 flanges 8 200 8 150 -
-2 corners 0.4×0.25, 18 10 8 105 0.0 0.24 web 8 200 8 150 -
0.55×0.25
edges 0.4×0.25 20 6 8 110 0.0 0.24 flanges 8 200 8 150 -
Wall W5 reinforcement (left half of section) & biaxial moment resistance diagram
152
10000
-5000
-10000
-20000 -10000 0 10000 20000
moment steel concrete moment concrete crack spacing crack width minimum provided
(kNm) stress/fyk stress/fck (kNm) stress/fck (mm) (mm) (mm2) (mm2)
left end, top 114.7 0.006 0.001 102.1 0.001 252.5 0.00 893 1018
midspan, top 165.9 0.001 0.001 146.8 0.001 0.0 0.00 174 509
right end bottom 889.4 0.034 0.010 770.0 0.009 200.2 0.01 1863 2036
whole span, web 877.8 0.02
Beam B21
Location for characteristic loads G+Q for quasi-permanent loads G+ψ2Q steel for crack control
moment steel concrete moment concrete crack spacing crack width minimum provided
(kNm) stress/fyk stress/fck (kNm) stress/fck (mm) (mm) (mm2) (mm2)
left end, bottom 671.8 0.026 0.008 575.6 0.006 412.1 0.01 1863 2036
midspan bottom 332.0 0.007 0.002 294.9 0.001 200.2 0.01 1867 2036
right end bottom 1115.3 0.043 0.013 997.4 0.011 200.2 0.01 1863 2036
whole span, web 877.8 0.03
Beam B22
Location for characteristic loads G+Q for quasi-permanent loads G+ψ2Q steel area/crack control
moment steel concrete moment concrete crack spacing crack width minimum provided
(kNm) stress/fyk stress/fck (kNm) stress/fck (mm) (mm) (mm2) (mm2)
left end bottom 759.1 0.043 0.013 691.3 0.012 412.1 0.02 1861 2036
midspan top 298.1 0.001 0.001 249.2 0.001 0.0 0.00 174 509
right end top 110.0 0.005 0.001 99.3 0.001 252.5 0.00 893 1018
whole span, web 877.8 0.03
Perimeter Frame 1, basement stories - Foundation beams B20, B21, B22 - ULS
design of transverse reinforcement (multiplier of seismic internal forces: 1.4).
Beam 20
156
Region length design shear (kN) max tie provided ties strut shear resistance (kN)
(m) seismic non-seismic spacing, mm No. Ø, mm s, mm angle VRd,s VRd,max
Left half (D) 3.50 562.5 1897 250 15 10 250 22o 3654 5535
Right half (C11) 3.50 1995 1864 250 15 10 250 22o 3654 5535
Beam 21
Region length design shear (kN) max tie provided ties strut shear resistance (kN)
(m) Seismic non-seismic spacing, mm No. Ø, mm s, mm angle VRd,s VRd,max
Left half (C11) 2.50 134.7 134.1 250 11 10 250 22o 3654 5535
Right half (W1) 2.50 1960 1567 250 11 10 250 22o 3654 5535
Beam 22
Region length design shear (kN) max tie provided ties strut shear resistance (kN)
(m) seismic non-seismic spacing, mm No. Ø, mm s, mm angle VRd,s VRd,max
Left half (W1) 2.50 1705.4 85.0 250 11 10 250 22 3654 5535
Right half (C1) 2.50 1139.7 -529.7 250 11 10 250 22 3654 5535
Reinforcement & strip footing of basement wall-and-foundation beam
157
Footing F12 of column C12 – Geometry; design forces at center of footing's
base - Soil bearing pressure and capacity per EC7
Footing depth h:0.70 m; footing plan dimensions : //y by = 2.00 m, //z bz = 2.00 m
158
overburden depth:0.0 m column cross-sectional dimensions: //y cy = 0.70 m, //z cz = 0.30 m
column axis eccentricity://y ay = 0 m, //z az = 0 m
Combination of actions capacity design Ntot My ey/by Vy Mz ez/bz Vz soil bearing
magnification (kN) (kNm) (kN) (kNm) (kN) pressure capacity
factor (kPa) (kPa)
DA3 EN1990 Eq.(6.10a)* - 2632 -5 0.001 8 6 0.001 6 661 1276
DA3 EN1990 Eq.(6.10b)* - 2471 -5 0.001 8 6 0.001 5 620 1276
G+ψ2Q+E:+X,+Y/maxN 3.0 2278 26 0.012 40 56 0.006 23 590 1673§
G+ψ2Q+E:-X,+Y/maxN 3.0 2278 33 0.012 29 56 0.007 23 592 1677§
G+ψ2Q+E:+X,-Y/maxN 3.0 2278 26 0.010 28 47 0.006 14 588 1674§
G+ψ2Q+E:-X,-Y/maxN 3.0 2278 33 0.010 17 47 0.007 14 590 1679§
G+ψ2Q+E:+X,+Y/minN 3.0 1252 26 0.023 40 56 0.010 23 334 1669§
G+ψ2Q+E:-X,+Y/minN 3.0 1252 33 0.023 29 56 0.013 23 336 1674§
G+ψ2Q+E:+X,-Y/minN 3.0 1252 26 0.019 26 47 0.010 14 332 1671§
G+ψ2Q+E:-X,-Y/minN 3.0 1252 33 0.019 15 47 0.013 14 334 1677§
*: The most unfavourable outcome of the application of Eqs.(6.10a) or (6.10b) applies.
Footing F12 of column C12 – ULS design in shear, punching shear and
flexure
Combination of actions shear stress vEd & resistance (kPa) punching shear at distance av 159
160
A
Top face of all foundation elements flush with top surface of RC slab,
playing the role of tie-beams and bottom diaphragm of box foundation.
EUROCODES
161
Thank you !