Geochemical Survey: South Egan Range
Geochemical Survey: South Egan Range
By
E. Lanier Rowan, Albert H. Hofstra,
1984
This report is preliminary and has not been reviewed for conformity with
U.S. Geological Survey editorial standards. Any use of trade names is for
descriptive purposes only and does not imply endorsement by the
U. S. Geological Survey.
CONTENTS
Page
Abstract................................................................... 1
Introductlon............................................................... 1
Location and physiography.................................................. 3
Geologic setting........................................................... 3
Known metallic mineral resources........................................... 6
Geochemistry
Introduction.......................................................... S
Sampl1ng design....................................................... 8
Sample col lection..................................................... 8
Sample preparation.................................................... 9
Analytical procedures................................................. 9
Threshold determination............................................... 11
Element associations and factor analysis.............................. 11
Interpretation of geochemical anomalies
Introducti on..................................................... 18
Discussion of anomalies.......................................... 19
Metallic mineral resource favorability..................................... 22
Recommendati ons............................................................ 23
References cited........................................................... 25
Appendix Results of chemical analyses..................................... 27
TABLES
In the northern part of the South Egan Range WSA two regions of known
mineralization were identified, and accordingly, were classified 4D (highest
favorability and certainty) for resource favorability. One region was
classified 3C (moderate favorability and certainty) on the basis of rock
samples containing anomalous concentrations of Au, Ag, and base metals, a
heavy-mineral-concentrate sample containing anomalous silver, and a water
sample with anomalous SO^ , Pb, Zn, Cu, and Mn. The suite of anomalous
elements present in this region is suggestive of a base metal vein-type
deposit; however, base metal skarn, and Cu/Mo porphyry deposit types are also
possible. Three regions classified 2C (low favorability, moderate certainty)
contain numerous scattered, anomalous concentrations of elements (e.g. Cu, Pb,
Mn, Ni, Sn) believed to reflect the relatively high background levels of these
elements in the formations being drained. It is possible, however, that
hydrothermal enrichment has been superimposed on the anomaly pattern related
to lithology, and the anomalies are due to a combination of both sources.
Finally, areas of Quaternary alluvium contained no significant anomalies and
were classified IB (low favorability and certainty).
INTRODUCTION
The Federal Land Policy Management Act of 1976 specifies that lands
administered by the Bureau of Land Management (BLM) must be reviewed for
suitability for preservation as wilderness (Fisher and Juilliand, 1983). One
aspect of the review process is the evaluation of the metallic mineral
resource potential. A Geology-Energy-Minerals (GEM) report (Great Basin GEM
Joint Venture, 1983), a survey of the existing literature, initiated the
evaluation of the South Egan Range Wilderness Study Area (WSA), NV 040-168,
White Pine, Lincoln, and Nye Counties, Nevada (fig. 1). Based on
recommendations made in the GEM report, a reconnaissance geochemical survey
was undertaken to locate areas of metallic mineral resource potential not
previously identified by prospects, claims, or private exploration. The
geochemical survey is the subject of this report, and in conjunction with the
GEM report, will provide the BLM with the information needed to make an
initial recommendation of suitability for wilderness designation (Fisher and
Juilliand, 1983).
NV 040-168
SOUTH EGAN
RANGE WSA
NV 040-166
RIORDANS
WELL WSA
LINCOLN COUNTY
NYE
COUNTY
10 20 30 40
SCALE I : 1,000,000
The South Egan Range Wilderness Study Area (WSA) is underlain primarily
by Paleozoic sediments and Tertiary volcanic rocks. Deformation during the
Late Cretaceous thrusting of the Sevier Orogeny and mid-Tertiary Basin and
Range extensional faulting yielded a structurally complex terrane. Individual
formations, structure, paleontology, and historical geology are discussed in
detail in the Egan/Mt. Grafton GEM report (Great Basin GEM Joint Venture,
1983), and by Hose and Blake (1976), Tschanz and Pampeyan (1975), and Kellogg
(1964, 1963). A more extensive reference list is provided by the GEM report.
The Paleozoic section is represented by formations from each period,
Cambrian through Permian, and includes limestone, dolomite, sandstone, and
shale. The following brief mention of the formations believed most important
in contributing to geochemical anomalies in the Paleozoic section has been
condensed from the GEM report (Great Basin GEM Joint Venture, 1983). The
Ordovician Pogonip Group consists primarily of platy, thin-bedded detrital
limestone interbedded with flat-pebble conglomerate and shale. The Devonian
formations include the Sevy and Simpson dolomites, and the Guilmette Formation
which is an exceedingly dense, fine-grained, dark gray limestone. The cliff-
forming Mississippi an Joana Limestone is a massive, medium gray unit. The
overlying Chainman Shale is a dark gray to black shale interbedded with olive-
gray, platy siltstone. The upper half of this formation contains beds of
quartzite and quartzitic siltstone. The Pennsylvanian Ely Limestone is a
medium gray coarsely crystalline, detrital limestone. These formations are
TABLE 1. Resource potential classification scheme
(Fisher and Juilliand, 1983)
4 Geochemical
Sample Site
012345 10 miles
3
SCALE I « 250JOOO
Hydrothenmal deposits
Porphyry Cu (Bingham) Cu, S Mo, Au, Ag, Re, As,
Pb, Zn, K
Porphyry Mo (Climax) Mo, S W, Sn, F, Cu
Introduction
Sampling Design
Sample Collection
Spring and well water samples were collected from 52 locations. At each
site 400 ml samples were stored in new, untreated plastic bottles, and 60 ml
samples were filtered through a 0.45 micrometer filter, acidified with
reagent-grade concentrated nitric acid to pH 2, and stored in acid-rinsed
polyethylene bottles. Water temperature and pH were measured at each site.
Rock samples were collected during the course of stream-sediment sampling
from 26 outcrops, most of which showed some evidence of mineralization.
Sample Preparation
Rock samples were crushed and then powdered between ceramic plates to
less than 0.15 mm. Water samples required no preparation beyond that done in
the collection process.
Analytical Procedures
Manganese (Mn) 10 20
Silver (Ag) 0.5 1
Arsenic (As) 200 500
Gold (Au) 10 20
Boron (B) 10 20
Barium (Ba) 20 50
Beryl lium (Be) 1 2
Bismuth (Bi) 10 20
Cadmium (Cd) 20 50
Cobalt (Co) 5 10
Chromium (Cr) 10 20
Copper (Cu) 5 10
Lanthanum (La) 20 50
Molybdenum (Mo) 5 10
Niobium (Mb) 20 50
Nickel (Ni) 5 10
Lead (Pb) 10 20
Antimony (Sb) 100 200
Scandium (Sc) 5 10
Tin (Sn) 10 20
Strontium (Sr) 100 200
Vanadium (V) 10 20
Tungsten (W) . 50 100
Yttrium (Y) 10 20
Zi nc (Zn) 200 500
Zirconium (Zr) 10 20
Thorium (Th) 100 200
10
rarely detected in spectrographic analysis. Therefore atomic absorption
analysis (Modification of Viets, 1978) of the bulk sediment samples was used
for As, Sb, and Ag (table 3a).
Rock samples were analyzed spectrographically for 31 elements, and by
atomic absorption for Au (Thompson and others, 1968) as well as As, Sb, and Ag
(table 3a). Analyses performed on water samples are listed in table 3b. The
results of chemical analysis of bulk sediment, heavy-mineral concentrate,
rock, and water samples are listed in the appendix.
Threshold determination
The thresholds for element concentrations in the stream sediments are
defined as the upper limit of background values. Values higher than threshold
are considered anomalous and possibly related to mineralization. For the
purpose of threshold determinations and statistical interpretation, the
geochemical data for the Riordan's Well WSA (Hofstra and others, 1984) was
combined with that of the South Egan Range WSA because the geology and types
of mineralization are similar in both areas, and the statistics are generally
more meaningful for a large data base.
Threshold values for each element were determined using cumulative
frequency tables and percent frequency histograms, supplied by the STATPAC
program A470 (VanTrump and Miesch, 1977), which provide a quick method for
visual representation of the data. Modes can be easily recognized, and the
frequency distribution of the data is apparent. Thresholds for elements with
normal distributions were placed at breaks in the frequency distribution of
the data, if present, generally between the 95th and 99th percentiles
(table 4). When multimodal distributions were identified, the threshold was
placed at the point between the population thought to represent unmineralized
lithologies, and the remaining values thought to represent mineralized rock.
A total of only 34 rock samples were obtained from both study areas, and
because many of these were collected from mine dumps, the determinations of
threshold values for rocks were based upon: (1) comparison of the data with
average background abundances of the elements in different rock types
(table 4); and (2) published surveys of known mineralized areas.
Element associations and factor analysis
Because certain groups of elements respond similarly to a given set of
environmental conditions, associations of different elements may serve to
identify more clearly the geochemical variations in the geological
environment. Associations of some elements may be related to rock type, while
others may be related to a particular type of mineralization (see table 2).
Although data for a large number of chemical elements was acquired,
geochemical associations permit the simplification of this data set into a
smaller set of new variables, each consisting of a suite of elements. Factor
analysis is a mathematical technique for deriving these new variables. R-mode
factor analysis (VanTrump and Miesch, 1976; Davis, 1973) was used to define
the geochemical associations in the sediment, concentrate, and water data
bases. This type of factor analysis collects the experimental variables
(elements) that tend to behave similarly into groups termed factors. Because
11
TABLE 3b. Lower detection limits for water analyses
1979
12
TABLE 4. Threshold values and average elemental abundances
14
TABLE 5. Factor loadings for stream sediments,
R-mode factor analysis, VARIMAX factor rotation
15
TABLE 6. Factor loadings for heavy-mineral concentrates
R-Mode factor analysis, VARIMAX factor rotation
16
TABLE 7. Factor loadings for spring and well waters
R-Mode factor analysis, VARIMAX factor rotation
17
Interpretation of geochemical anomalies
Introduction
The study area has been subdivided into zones defined by clusters or
trends of geochemically anomalous sample sites. The anomalous zones referred
to throughout the text, Ml through M5, are shown on plates 1-3 and figure 3.
Geologic coverage exists at a scale of 1:62,000 for the southern 2/3 of the
study area, south of 38°45' (Kellogg, 1964), and at a scale of 1:250,000 for
the northern portion (Hose and Blake, 1975). Thus the formations outcropping
in individual drainage basins could be identified with fair confidence only in
the southern part of the study area. The two areas of known mineralization,
designated Ml and M2, were drawn with highly generalized boundaries because
the detailed geology and/or higher density of geochemical sampling necessary
for greater precision were not available. Areas M3a and M3b are defined on
the basis of linear trends of distinct geochemical signature; the 1:62,000
scale geologic map, however, permitted more precise placement of the
boundaries than would have been possible using only the geochemistry.
The geochemistry of the South Egan Range WSA may be compared with that of
the Riordan's Well WSA, NV 040-166 (Hofstra and others, 1984). Since the same
Paleozoic formations outcrop there, chemical analyses from Riordan's Well WSA
were combined with those of the South Egan Range WSA to form a single data
base. Although lithologically similar, the Riordan's Well WSA has only four
samples with anomalous Pb in the heavy-mineral concentrates, while the Egan
study area has scores of such samples. This marked contrast suggests possible
differences in the recent (after Basin and Range extension) hydrothermal
histories of the two areas. Regional variation in the primary Pb content of
the carbonate sequences may also be a contributing factor. In general,
geochemical anomalies in the South Egan Range WSA tend to be broadly
distributed throughout the area rather than clustered as in the Riordan's Well
WSA.
18
It is distinctly possible that the same ore-forming processes that
produced the Ellison district deposits have operated on other parts of the
entire Paleozoic section resulting in widely dispersed, but geochemically
detectable traces of mineralization throughout the Egan study area.
Nevertheless, mineralization of a similar economic importance to the Ellison
district is not indicated by the data. A shallow intrusion in the Ellison
district and the presence of some Tertiary lava flows and tuffs within the
area imply that the existence of additional shallow intrusions beneath the
study area is not unlikely. The extensive fracturing and faulting present
within the area would provide access for circulating hydrothermal fluids to
most of the Paleozoic section. Since two essential ingredients of an ore-
forming system are a heat source (the Ellison district intrusion and/or
additional undiscovered intrusions) and a fracture system, it is thus highly
speculative, but plausible that widespread, low-level hydrothermal alteration
has enriched large areas and produced a random pattern of scattered anomalies.
Local "pockets" of greater interest occur within the regional
lithologically-controlled pattern of anomalies. These are generally clusters
of sites of anomalous concentrations of two or more ore-metal elements
reinforced by anomalies in a different medium (sediments, concentrates, rock,
or water). Hydrothermal enrichment superimposed on the lithologic
contribution would help explain the small regions of anomalous suites such as
Mo-Cu-Zn-Pb-(±Sn±Cd±Mn). Because many of these elements are commonly
associated with Cu-Mo porphyry and base-metal vein systems, the strongest of
these anomalies may merit more detailed geochemical sampling and geologic
mapping.
Discussion of anomalies
Zones Ml and M2 have been classified 4D because they are known to contain
mineral resources (fig. 3). The associations of anomalous metals in these two
regions may help to identify similar types of mineralization in other parts of
the study area. It should be noted that the terms "mineralization" and
"resource" do not imply the existence of an ore deposit. They refer only to
accumulations of ore minerals of subeconomic unspecified or unknown grade
(Brobst and Pratt, 1973; McKelvey, 1972).
Ml includes the southern end of the Ellison district where veins were
mined for precious and base metals, and a porphyritic intrusion with potential
for molybdenum mineralization lies below the near-surface vein system. This
region is best defined by anomalous elements in the heavy-mineral
concentrates, particularly lead. Of the 12 concentrate sites (duplicate sites
not included) in this area, 9 have anomalous lead, 5 have anomalous Cu and Zn,
and 3 have anomalous Sn, Mo, and Bi. In addition, high scores for factor 6
(see discussion of element associations) in which the most important
constituents are Co, Cu, Pb, and Zn, appeared at 6 sites.
The bulk sediment samples showed 6 anomalous values at only 3 sites in
Ml. At 2 sites Ag, As, and factor 3 (important constituents: Cu, As, Ni)
scores were anomalous; at one site B was anomalous. Rock samples generally
showed elevated values for a large suite of elements: Ag, Bi, Cd, Cu, Mo, Sn,
W, Pb, Zn, As, and Sb. Four spring samples collected several miles east of Ml
snowed anomalous Pb and Cu concentrations.
19
Elevated Cu and Mn in concentrates at three sites (E015, E132, and E025)
south and southeast of Ml suggest a possible extension of the same ore-forming
system. It is also possible, however, for background levels of Cu to be
concentrated to anomalous levels through adsorption by Mn oxides. As
mentioned earlier, the lack of detailed geology (i.e., the exact position of
the Paleozoic-Tertiary boundary with respect to individual drainage basins)
combined with the sample density of approximately one site per square mile,
prevents the boundaries of areas Ml (and M2) from being drawn with greater
precision.
Zone M2 is an area of known (subeconomic) disseminated Au and Ag
mineralization. This occurrence is best delineated by enrichments of As in
bulk sediments and Zn in the heavy-mineral concentrates. The presence of As
is expected because of its strong association with gold. The anomalous Zn in
the concentrates from the same sites was not expected, and together with the
As, provides an element association potentially useful in interpreting similar
anomalies. Spatially associated anomalous scores for factor 6 in concentrates
(Co, Cu, Pb, Zn) and for factor 3 (Cu, As, Ni) in the sediments reinforce the
single element anomalies. In addition, a rock sample (E117R) collected from
the center of the area contained highly anomalous (580 ppm) As.
Regions M3a and M3b (plates 1, 2, and 3) are adjacent northeast-trending
anomalous belts. In general, sites in each belt drain basins within different
geologic formations because the belts are separated by a lithologically
controlled asymmetric ridge. Streams within M3a generally flow northwest from
the ridge or down stratigraphic section, while streams within M3b generally
flow southeast from the ridge or up section. Sites within M3a drain primarily
the Devonian Guilmette Formation with contributions from older units such as
the Silurian Simpson and Sevy dolomites and the Ordovician Pogonip Group;
sites in M3b drain primarily the Missippian Joana Limestone and younger units
such as the Chainman Shale and the Pennsylvanian Ely Limestone. For purposes
of discussion the boundaries of M3a and M3b have been terminated to the south
where a drainage divide no longer separates the two regions, or permits
distinction of two separate geochemical trends. The anomalous element suites
of regions M3a and M3b continue to appear to the south, but without
topographic separation of basin systems draining different formations, the
"signatures" of M3a and M3b overlap and blend together.
The principal differences between regions M3a and M3b are as follows.
Region M3a is characterized by anomalous Mo in concentrates, while region M3b
with one exception, has none. M3b is best defined by anomalous Ni, B, and Ag
(±Zn, Cu, Pb, and Mn) in sediments, very strongly reinforced by anomalous
scores for factor 3 (Cu, As, Ni) and factor 4 (Cr, Ni, B, Ag); region M3a,
except for one occurrence of factor 3, contains no anomalous sediment
samples. The exceptions to these observations are in the zones where the
distinctive signatures of the two belts overlap.
The Ni and B concentrations in the sediments do not significantly exceed
the average abundances reported for these elements in shale (table 4).
Although anomalous with respect to the rest of the study area, it appears that
they merely represent relatively high background levels of these elements
within the formations being drained rather than mineral potential. The
anomalous Ag might be in part explained by enrichment through coprecipitation
of background Ag concentrations with Mn and Fe oxides; Mn is anomalous in this
region also.
20
The parallelism of belts M3a and M3b with the strike of the geologic
formations, and the fact that their distinctive geochemistry can be explained
by geologically and topographically separate systems of drainage basins,
strongly suggests lithologic control of their geochemistry. However, there
are individual samples suggestive of hydrothermal enrichment superimposed on
these broad, lithologically controlled geochemical trends. Rock sample E145R
located near the center of M3a, is a gray carbonate containing veins of quartz
and pink dolomite. While this type of veining is common it indicates that
hydrothermal circulation was indeed taking place whether or not it was
responsible for mineralization. Rock sample E129R, located in the southwest
corner of M3a, was gossan collected from a prospect pit and contained 10% Fe,
70 ppm Pb, and 10 ppm Sn. The presence of gossan is significant because it is
a weathered residual of sulfide mineralization. The original mineralization
might have been one of a number of deposit types known to occur in this
geologic setting; these include porphyry Mo and Cu, base- and precious-metal
vein, and skarn deposits. This sample reinforces the adjacent
Mo-Zn-Cu-Cd-Ni-B-concentrate anomaly (E126, E127, and E128) placing this small
region among those worthy of possible follow-up. Similarly, water samples
E196W and E083W, although outside of M3a and M3b, are of special interest
because of their anomalous concentrations of Mo, F", and SO^ and Mo, As, and
Mn, respectively. In the absence of nearby evaporite sequences it may be
assumed that anomalous sulfate was derived from sulfide minerals. SO^ , Mo,
and F" are commonly associated with Mo porphyry systems.
The geology and geochemistry of regions M3a, M3b, and M3c are very
similar, and they are given the same resource favorability classification.
M3a and M3b were discussed separately only because a ridge whose crest
coincided with the Joana Limestone-Guilmette Formation contact separated
basins draining two groups of formations, and made it possible to distinguish
different geochemical signatures for M3a and M3b. The Paleozoic formations of
regions M3a and M3b continue to outcrop throughout most of region M3c.
However, without topographic separation of the basins draining different
formations, the signatures that characterized regions M3a and M3b overlap, and
no clear pattern can be discerned. It appears that lithology plays as
important a role in determining anomalies in M3c as it does in M3a and M3b.
Thus anomalies in sediments are believed primarily related to the trace
element chemistry of the Joana Limestone, Chainman Shale, and Ely Limestone,
and anomalies in concentrates to the Guilmette and older formations.
The three samples anomalous in Au, Ag, As, Sb, Pb, Zn, Cu, Mo, and Mn,
combined with a high silver value in sediment, and a spring water sample
containing anomalous SO^ and base metals, are strongly suggestive of several
types of mineralization all known to occur in similar geologic settings.
Based on the suites of anomalous elements in region M4, porphyry copper and
molybdenum are among the deposit types suggested; the Ruth porphyry copper
deposit in the northern Egan Range (about five miles west of Ely) and the
Ellison district porphyry molybdenum target are nearby examples of these
deposit types. Precious metal anomalies may be indicative of base/precious
metal skarn deposits similar to the one in the Ward district, approximately
ten miles north of the study area in the Egan Range. Finally, base- and
precious-metal vein deposits are commonly associated with anomalous Au, Ag,
As, Sb, Pb, Zn, and Cu; the Ellison mining district provides a nearby example
of this type of mineralization in the same geologic formations.
M3c-2C contains primarily the same units found in regions M3a and M3b;
the 2C favorability ranking is based on the same reasoning given for areas M3a
and M3b.
M4-3C: Three rock samples containing anomalous Au, Ag, As, Sb, and base
metals, reinforced by an anomalous water sample, and a value of 30 ppm Ag in
concentrates differentiate this region from the surrounding areas ranked 2C.
The elements anomalous in this area coincide most closely with the suite
associated with base-metal vein deposits (see table 2); however skarn and
porphyry mineralization are also possible, given the geologic setting and the
geochemistry.
RECOMMENDATIONS
Rock sample E129R, a gossan containing 10% Fe, 70 ppm Pb, and 10 ppm Sn,
and water samples E196W and E083W anomalous in Mo, F", and SO^ and Mo, As,
and Mn respectively, were mentioned in discussion of region M3b. These
samples are suggestive of mineralization, however, in the authors' judgement,
are not significant enough to warrant separate zones of higher favorability.
Although these samples fall in zones ranked 2C, a thorough follow-up study
would include mapping of geology and alteration, and a more detailed
geochemical survey of the sections containing these samples could upgrade, or
at least improve confidence, in the ranking.
23
I I 5°00'
R62EJ R63EITI3N
LEGEND
WSA BOUNDARY
0123 4 miles
N
) i
TION
T9N
Brobst, Donald A., and Pratt, W. P., 1973, jn_ Brobst, D. A. and W. P. Pratt,
eds., United States Mineral Resources: U.S. Geological Survey
Professional Paper 820, p. 1-8.
Davis, John C., 1973, Statistics and data analysis in geology: New YorK,
John Wiley and Sons, Inc., 547 p.
Fisher, Don, and Juilliand, Jean, 1983, BLM studies millions of acres in
western U.S. for possible wilderness designation: Mining Engineering,
v. 35, no. 10, p. 1409-1410.
Fishman, M. J., and Pyen, G., 1979, Determination of selected anions in water
by ion chromatography: U.S. Geological Survey Water Resources
Investigations 79-101, 30 p.
Gans, P. B., and Miller, E. L., 1983, Style of mid-Tertiary extension in east-
central Nevada: Utah Geological and Mineralogical Survey, Special
Studies 59, Guidebook Part I, p. 107-160.
Great Basin GEM Joint Venture, 1982, Egan/Mt. Grafton G-E-M Resources Area
(GRA No. NV-14) Technical Report (NV 040-168, 040-169, 040-172): Bureau
of Land Management (Denver), Final Draft, December 1982.
Hofstra, A. H., Rowan, E. L., and Day, G. W., 1984, Reconnaissance geochemical
assessment of metallic mineral resource potential, Riordan's Well
Wilderness Study Area (NV 040-166), Nye County, Nevada: U.S. Geological
Survey Open-File Report 84- (in press).
Hose, R. K., Blake, M. C., and Roscoe, S., 1976, Geology and mineral resources
of White Pine County, Nevada: Nevada Bureau of Mines and Geology
Bulletin 85.
25
Miesch, A. T., 1976, Geochemical survey of Missouri methods of sampling,
laboratory analysis, and statistical reduction of data: U.S. Geological
Survey Professional Paper 954-A.
Orion Research Inc., 1973, Orion Research Analytical Methods Guide, 7th
edition: Cambridge, Massachusetts, 20 p.
Rose, A. W., Hawkes, H. E., and Webb, J. S., 1979, Geochemistry in mineral
exploration: New York, Academic Press, p.
Skougstad, M. W., Fishman, M. J., Friedman, L. C., Erdman, D. E., and Duncan,
S. S., 1979, Methods for determination of inorganic substances in water
and fluvial sediments: Techniques of Water-Resource Investigations of
the United States Geological Survey, Chapter A-I.
Thompson, C. E., Nakagawa, H. M., and Van Sickle, G. H., 1968, Rapid analysis
for gold in geologic materials, J_n_ Geological Survey research 1968: U.S.
Geological Survey Professional Paper 600-B, p. B130-B132.
Tschanz, C. M., and Pampeyan, E. H., 1970, Geology and mineral deposits of
Lincoln County, Nevada: Nevada Bureau of Mines and Geology Bulletin 73.
VanTrump, G., and Miesch, A. T., 1977, The U.S. Geological Survey's RASS-
STATPAC system for management and statistical reduction of geochemical
data: Computers and Geoscience, v. 3, p. 475-488.
26
APPENDIX. Results of Chemical Analyses
27
zooo cocco o o oc o o oo oo ooooo
« « O O tt ^* ^ ^ *» «« fv * O ^3 OB ^* ^ ^ * «« ^rf « O *O 9*
ccoc eccce escca c.ocee eoo>ee oceso ooeec caeca s a> o c B>
o oo i
iOOO C -J O C O OOOOO O O O O O OOi
>OOOO OOOOO OOOOO ^ w< O w> -4 O O -* V O O w)i ^ O O <« < OOO « O»w-^ OU»-WOW> * O
OOOO C ^" O O O COOOO OOOOO OOOOO O O O ro w» OOOOO OOOWO OOOOO » OO.
OOOO OOOOO OOOOO OOOOO OOOOO OOOOO OOOfMO OOOOO OOOOO 3 »
xzxcz zzzzz f x
X O Z O O Z O ZO O O O O Z OOOOO OOOOZ OOOOO OO O Z O O X O O i
29
<f\ O O
a o- - o o .»
t -
oo
V fw
V V
c »
e »
30
, _ _ _ _____ _____ _____ _____ _____ _ __ __ _____ _oooo
C C IB C GC <r OP CD B 0 V O O O C. CD CT O BCfcDVO B 9 3 S <D B (C O 1C B <E B O> B 19 «* B B 0 0 T)
ooooo ooooo ooooo owooo o-rf-^oo OOO«MO ooooo
OOOOO OOO-^O O W> w> wi «« O 0> O O >w OOOOO W O O O O OO'
- . ,. ,- . . i o a
__ »_. . «
.«.« « . . . . . . . * . «.» . « . «. » a
ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo »
»
,.' . -^ .',''. - - .-.-
- . :..'- .
- '.. .
» .
O.m
.-: - '''':-.' - . - ' " ' «
V v . - ' - -.-. ./ -' ; _ K»
_ _ _ _ ^ < *f
« « « « . » » » 4 « « « » «e
OOOOO OOOOO OOOOO OOOOO tt-v*«OO OOOv<w> OOOOO OOOOO OOOOO * *^
ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo « e
« I
o % «
0 00 O «
z a.
xzzz z z z z z z z z z z z z z z z z z z
IO OOV»OO OOOOO. OOOOO OOOOO OOOOO OOOOO OOOOO O<
A A A *
.......... .... .... ..___.. .._. .,.. -»_ _., ...._.... _.._.... - oooo - ' *»
BCCOO OCBBOO eceos o a* o a c asoeio oeoac oe oa e *j o o o a «
S X X Z KX X O X
" '"-"'".%' * : : 'JV . ""*..
xx sxx xzxxs zz.xzz x x x xx xxzx x x xx xx zszss xxzxxxzxzz w <.-." "
j '- - '- ',.'-: v .<--" - ;-:' :> -'.-::;-:: vv- -' ;.-. '^ ;.-i'.--,--- , .- .--r --: -.-.-...- ^A, J ' >; "
IOO ZXXOO O O v« O«-» O X X X O X X X X w< wt OX X X X *»«« X O w»w>w>w«O OXtffOO
ooooo owtooo ooooo ooooa ooooo ooooo ooooo
C 3
I * O
« ea
W> W> O O
A A
« a»
«w >w <w
z o oo x:
OOOO«* OOfOO OOOOO OVKOXO VMW>«MOO OOO««O OOO Ok* OOOOO OOv>OO O. 1
10000 osooo ooooo ooooo ooooo ooooo ooooo
_ - .... ** f
O OO O O X w* w* O O O O ^f ^ O W* V* W* w* ^ Wk Wk w* w* w* O ^^ ^* V* w* X ^ M* ^* ^ W* M* M* O O ^ V* ^t O> *^ n
xxxiex xzx^ex
1 N t N H 00^ ' OOf Ot N DOOM oor fflt(t)
N N t N II 000' U OOf Ot N 000 'I oot tettu
1 N t N N 000' 1< 002 01 H 000* I , 002 Set tl»
N N N N N oot N Ot N OOI oot
1 N N N N UQU't N Ot N 002 ;v, i; V' '. oot 180(1)
N ' " ot> N >' ' ' 02 V'^t-'v " 00 1
M N il N N 001
H . '. Ot :^''r :"-i'' . . 002 SB/Ill
r; N tt N N 002 N 01 01 " rv;- '''; oot
N N 01 N N ot N 01 N set Til
01 OOf N | Of N 001 H-V..'.,^:;- 002
1 Of N N
N N 01 N N OOf N : 02 N 00r '^'4: v/ 001 .
ooi (v.'^ r; '*' 001
N N 01 N N 00* N 02 MN ',i
N N t> N N OOf H ' , 02 ooi " ;'.<; :'>'., 002 J 91 > U
N
t»*
02*
ot N N OOI H Ot . N OOI : ,;v:V"-
oti v;^'.:' .
OOI
N tl N N 002 002> Of N 001 SilSf I)
son ti
N
02* t N N 002 002 ot N . oti .. '.,'-, 002
H Of tl N N 002 N Of N Otl V ?"V'< ' 002
H N t N N oot II 02 N 04 4^i$: ' oot sm n
H
N
N
N
f>
ot
N
N
N
N .
002
002
N
N
(I
it
N
N ' , 01 J': -">V.- oot
oot sottii
N
02' N N 002 002> Of N ', ' ooi . ,-.,' ;, y: ' 002
to* M ' ' ' 01 <. £*'. ' ' '
N f N N 01 N N '. N let m
W N f N N Of N 01 N 02 »;'v. : .':'i, M mm
rt N t N N 02 N ot N ot /.; ; . M somi
N N 01 N II OOI a 01 M ' Of '- :v<:; r' oot snot n
N Of tl N N oat N , ot -. n oft^:,^;,:^! OOf ' CO
001 i: -,*.'tt' ' OOf CO
M Of f N N oot N 02 N
n if f> ' N N 002 H Ot N . 002 :> '><-:!. 002 -;- 18)2 I)
Of -><<-;^V OOI ? sm<rll
N N U2 N
'
N
N
001 N
N .'
V 01
N . NN ,',' ',' N i . so»2i»
N N 02 H Of 0 1 "i': '"i. ' ' .l',
N N (2 N N 02 N , ' <-. 01 .- N : '-'V;. v 02 .f^;-;^V,^-'" ooi ,: J8V2U
O j ^i/V' '*' "$ > ' N " '> .
N N tt N N Of N 01 , N V: ; : '
N ' M \': V ' '
N N 01 N N 002 02 0? C$ ; ;^- 002 .
N N t N N 001 N 01 M. 02 ;;;: , -:^. OOI ; sno2U
N N t N N OOf N f1 N 02 ..-'': 'V'.:4 . i'-., . 002 1961 13
N N tf N N 002 N ' ;" 02 M , ' ' 01 '*V't^'^-' 002 . Sfl9lll
1 N tl N N 002 N Ot II .
oi' ':'-:''?%'- oot $89111
N
09*
Ot N * , " 001 002 it N of v; ;.'"Uv; " OOI SOf I II
N 09'
01 N
' ' . H
OOI 002 f1 N
Of v^''1 ' OOI $02HJ
N if i N N 051 002> 02 H . . ooi "^i<>: - OOt ' 19101 J
N N N N ' .- ' M 000' I 002 OS N OOO't/^;^;:.- 002 setoii
oi' "'.t^ff- I0210H
t N Of N N . 002 N ft NN ' 002
N N t N N 02 002> Ot Of ; '' '.'. OOI S0»(0i
N N t N N OOI N 01 N
o« ' ,' OOI IBttOl
N 01 N N 002 N 02 N ooi ..-,'.;. , ;. OOf JB»SOJ
N t n N 002 M Of N ooi .J^:.; OOf SflftO)
tt * 1 t , ,
.. t ; ' : 'r ^N t
ed.qg cd.Oy idd.oy .ad. Mi -ad "" dd-ujt dd-ji dd-n dd.A '. ' ; dd.^j
pir Jtin r pu* 'u loiun I »»H« ou| d
*6u»» t »OJt %t |d«t{ |u*.|p*{.*t »n jo tl/ltuy uo| tdjoiqy »J»o»y put .. j-V»)q*l
o~«~C CC^CC CXC»» »»«»» d^wtC^ JT
« s >< o e o o « o «- o vx o a « ^c 01
» V* »»!*» VI *» VI VI C VI
V
*
e .
" ? ' '- ' ": -^ "" " =' '' '' ': - ' ' " "::l ;" -^ --f :- ; - =-.. ^; Jt
** *"..** ** ' 9 '
5'r-
-»-^~ --»- *»-«-^ --«.»*«. ^v«.*- - 0 .
. jr
k
;;" '.;-'/" ' * ' .' »*.. a
OOOWiQ OOOOO OOOOO OOOOO OOOOO ~ o
« « « - ^n* _.^t»-» «
OOOOWl OOOOO OOOOQ O W» O O O % e
** 3
A .O
' - -' -* e 9
3 »
« 9
OOOOO OOOOO OOOOO OOOOWt OOOOO
V 3C
* T* o
OwiO^O OOOOO O O -« O O Vi O O O O w>OOi^O OOOOO OOOOO OOOOO OOOOO
ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo
e
. 9
* 1
O O O ->J O OOOOO OOOOO OOOOO KOOOO OOOOO OOOOO OOOOO OOOOO «
» M
0. 9
" continue
{\
pit!
o
"*"" c o
c
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z X X X X X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z K Z TJ 9
f»
e
« 9
»TJ
ooooo ooooo ooooo ooooo a
c
a.
O «/ O >M O fuOOOO O w» O O O OOOOO fwOOvnO OOOOO OOOOO OOOOO OOOOO V
U OO O U OOOOO OOOOO O <>OO O ooooo ooooo ooooo ooooo ooooo
fc
A A ^j
** »
e
;
o
e a
* a
c
e
a
o
e
w -o MOOOO OOOOO OOOOO OOOOO O >S> O O O O O O W> O OOOOO O w» O O «rt OmomO
a
|ou
'com .a »
( ptf«
rg
a v **
N«v»d»
It
Sfdi ifnl JB
ft
* "o
w e X
«« a
* e
o >
z
r
-o » . ' ''"-
»% e -*---, - '
c »
OOOOO »OOOOO OOOOtA OOOOO
C 0 a
o «*
c -"»--. -...^ -,\ .."- . - -
4.
O %
A C
a
-» -'.-.-
' fc - - .'-"'-'
« 3
*
a. '' -''."::'i^''"v^- :.""^v...-.:.J^;-v.- ''r1 '51; t-'-.- -x- ' "^^ ' ''''-?'*- '.' ' '?.: "
*-' "! ,'-''-'* '' "-' "'-' 'fi\. J ': '- .::::''-- / : '.~ V . ' : ; ,^"-
t
a - «-
a - : ,. v v .- , . v . v
- i . . - - "
""*'.-" -\-.tSi-j 'i---;^v '; '..^- ;... - "' ' " .-"
M
35
zzzzz
z zz = z z z z z z z z z z z z z z z z
» » a zzssz-x z = zzzzz
oo
«« «»
V V
36
_ c
oo «oc CBCOO aa oc o <& o o o> o eoaee cooes cooes soouio eseoa T>
« **..*»
0-
«»-«-,*- r^i"^ r*^rr r**3^ ^^«,^^ 2 c
«
-
, ' 4%
- ' '""3
o
- M *»
- k
..-"'' "' * ' -. ". ' ~ '': " . '
',-" " " . " » Q.
OOOOO OwOO O OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO « . 0
»
X 4»
. a ^»
" _ ^ -. <W 4WW «««M-***fV
1
CSW»O-«*V« WIOOOO OW»OOO OOOOO *» % e
-
3
I* O
1 e. 3
oo ooo COOOO OOOOV OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO tr
C-»«
z«
«<<
T
ooo o o O < » O <« O OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO OOOO * »
ooo oo OOOOO OOOOO OOOOO OOOOO
" co *
. 3 ^
- X - »
. » « 4* 4
OOOOO O -M C O O OOOOO OOOOO OOOOO OOOOO O^OOOO OOOOO OOOOO T3
OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO z a.
- » 0.3
Z Z Z 2 2 zzzzz zzzzz zzzzz zzzzz »« 1 «A
0 A >
,* 0
^ 3 T>
>
« 1 3 «
. ^5 c -K
zzzzz z zzzz zz zzz zzz zz rz z zz zzzzz zzzzz zzzzz zzzzz ._»
o
*
0
« c1 c
x>
zz zz z zzzzz zz zz z zzz zz zz z zz ZZZZZ ZZZZZ ZZZZZ ZZZZZ T3 »
_ - 3
4>
OO OOWi OOOOO O O V" O O OOOOO OOOOO OOOOO OOOOO OOOOO O O O O wi 3
. c
_ >w v» ~* « o« w AJ w~*«w«*«w
OOOOO O*v<C**wO OOOOO OOC»O»»« OOOOO ooooci MOOOO oocoo oooo<w r>
oo o oo OOOOO OOOOO OOO 0 0 OOOOO OOOOO OOOOO OOOOO OOOOO
A A A A A A A * A V
cease cccsa a aceo ecoss
»
^
«
?.-.* - - " '
A ' '' '"'"'- ' "" A ' -- . -J >
» -
«!'
« ~
- -" " '*"'.'. . ' *'-. ' > ' "-;/-'."-' '..' ' ' ,,'j? - ! '* *' -\,- < ''' ^
A.
-.- . -" ' -- . »
tD
^
w
9
','"'"- .- . . "
- - .-. ^ _ - TJt »
o.
c
»»
o
" w **
- ~ ^t-
Q » »»
OOOO** OOOOO OO O « O OOOOO OOOOO OOOOO OOOOO OOOOO OOOOU » V
% -«
r"o^
f*
' " ' " " w « m e
w _. ^ ^j e 9
OOOOW> W« O O O O OOOOt* OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO 3 »
% 9
»
- »» 3 <
.- - -. - , * ' - * a.
« * «
*<
- V
ft
e
C "
X 3 -^
e «
1
« «
» % M>
x a.
-
»X <
A
« 1 a. s
A « »
AJ tw T> 1
n «i
e
3 T3
."." " . x
<
« 9 »
V e
OOOvnO OOOOO OOOOO OOOOO OOOOO o. n
0
^ . ».
tr o
m f e
V
OZOOZ OOOOO OOOOZ OOOOO
n
o
»
»» 9
V
f »
« »
3
IM
WI
~ » e
> «
««o.
»
«
<
»
vt
>
w 1
TJ
«
Tibl« A-l »- SpectrogrtphIc »nd Atoxic Abiorption An*lytet of S trt «>>S*dli*tnt S«nplri fro» South Cg*n *«ngt Study Art*,
. UM|« Pine* Lincoln* «ntf Nye Countit** Nt va d«--con| tnutd
V-PP« W-PP- tr»pp« T h- Au>pp« Ai-pp* Sb-oo*
I I «* 14
E224B5 II H <1 0 10 N N N H N
E225BS 100 N ?0 too N N 5 .15 N
(22605 too N '' 10 150 N N 15 N N
E227BS too 50 N 10 200 N N j N K
I22HB$ - 500 N : 50 ' 200 NJ N 15 N N
200 70 N 20 N 2CO N N J5 H *
0058$
20 N N N 70 N N 5 N N
EJ06B$
EJ070$ IOO 70 N 15 N 200 N N 20 N N
10 N N N 20 N N 5 M N
tJ08U$
50 N 15 100 N N JO .35 N
CtOflUS
E*0»0$ 100 20 N 10 150 5 N N
JOO IOO N 50 150 5 .35 1
£*toe$ N K
£*11B$ 200 JO N 20 200 1
20 N 10 150 <5 N N
£*12B$ too
N 20 200 5 N H
I*1JO$ JOO 50
017
ooo
ooo
ooo
!»blf A*l lM«t'Ojr«pblc »nd Atonic Absorption Antlyttl of Strt«»«S«dlM«nt S««plct lro« South fg*n Mngt Study Ar*«,
, , , .,, . . Whit* Hnt« Lincoln* «nd NX* CountUi* Nt v«d«-«cont (nued
{ pit PP« Co-pp« Cr-pp» C«-pp« l*-pp« 1Io-pp« Nb-pp« Nl-pp^ fb'ppa Sb-ppa fC'ppa Sn*pp
;-;^; ; I t t 1 »
ciitas v- if^i&vr.
-: : ??. N 10 20 T 20 N N ) N N s N
EtISBf N J 30 to N N N 20 10 N J N
iMAaj H :,':?;:.* N . ' J SO * ro N N 20 <10 N s N
ftblf A-l IptclrogripHc «nd Atomic Abiorptlon Analytti of Str -S«dU»nt S*«pl«t lro» South tg*n lUngt Study Ar»«»
..';,. Whit* fln«/ Lincoln* and Ny« (ountlts/ N««»di--eontinued
$. ;'''' :V';'-, ' . l
* Sr-pp« ', .' V»pp« H-PP» Y-ppii !n-pp« Xr-pp« Th-pp« Au*pp> Al-ppn *B-f>t>" Jb-pp
, . ' ..._ ' ; '. , l 1 1 »«
ro
O O & «- +r
oC
«> * > ui «> *. «w^
WOOO »
ooooo ooooo ooooo ci > O O O OOOOMt OOOOO OOOOO OOOOO
O O M V> v» wiv>wt-*wi O O O ^ »» O «M O O O 9 O O w> O OOOOO O< MOO
oc>ooo ooooo ooooo ooooo ooooo ooooo o< OOO'
>OO OOOOO OO' OOOOO OOOOO O O O w« O OOOOO OOOOO
ooooo ooooo ooooo ooooo ooooo ooooo ooow«o ooooo ooooo
ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo e
a. e a.
3
Zz zz z
ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo
**O*wOO O O w C3O U«OW>OO v» O O O O OloOOO OOOOO MOOOM O^^OOO
ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo
ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo
IOO OOOOO OOOOO O O «» O O OOOOO O O w* « » I
a zo:
44
O O O O O OOOOO O O O O O O O O O O O O 3 O O O O O O O O O O O O O O O O O O O O O O
OOOOO OOOOO OOOOO O O O O O OOOOO OOOOO OOOOO OOOOO OOOOO
ooooo ooooo a o m «n o ooooo aoooo ooooo ooooo ooooo ooooo
?... ooooo
""""" ~r~" r r."£r -~~~«
ooooo ooo«*o ooooo
-_.-r^"
o o <« o o
«- -..~~';~~ "- -.
ooooo ooooo ooooo o o o » o
45
a O*>OOOT om«noo r-oooo ao o oo ooooo O O v\ O ^* O O O O O O O O O O O O <f* if* At
X A A A AAAA A - A A A
o
.c -.. 1 .
e
IM a o
M r>
3
3
0
*»
& 0
.« r %..- -
a-o
% e 3. » W»
e e
» o
«
o-i
f
« e |- C^^ ^ _- ^ ^
a
k. O
**
M
oa X
e ?
w
a
at
o
V-
,-: - - , , - > r
t
2 3
IW w,«. », «^M ^ «S>
46
< « V
«- ^ .. iw ..* wt.. ^ .».«_ <B
OZZ Z O O Z Z G Z Z O Z VI Z Z Z O O Z O G Z Z Z Z O Vfl OSOOO "O a
Wi ^4 ^i \* w* w% O ^^ *A ^ w «A «A o O O wl O w* wt ^ o ^tf ^ O O \ft \ft f^ wt wt w* O ^ ^f ^4 *w V
O2OOO O O O O Z OZZZO Z O O O O O Z O G O OOOOO OOOOO Z O OOO OOOOO
3
. ", - . %
A -» AAAAA A-« A A A A A Mrw««<B
O ox O O G OOOOO OOOOO OW«OOO OOOOO OOOOO OOOOO OOOOO OOOOO >
r\ t*
e n
e
.--.'
- - r~ "
- . i» « «M ^ : ^M . - ' §<
»»» »»»%»» « « I.Q.
OOOOO OOOOO OwtvnOO MOOOO OOOOO OOOOO OOOO%» O OO OOOOO t> %
9 9
A A A
****** %J* «^ %« %M
G Z Z O Z Z O Z Z Z Z Z Z O Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z OO O!
« « m
o »
OOOOO >
ooooo- ooooo OOOOO OOOOO ooooo ooooo
ooooo ooooo OOOOO OOOOO OOOOO OOOOO
ooooo OOtnOO OOOOO Q O *- O O OOOOO OOOOO ooooo coooo
X X X X X X XO
48
ooooo ooooo ooooo ooooo ooooo oo
Z 2 X X X Z Z Z Z Z Z
e O
«* * OOOOO
« . . . OOOOO
« OOOOO
» OOOOO OOOOO
.».. OOOOO
. . . OOOOO
. . . . OOOOO
. . . O O O O O
. » .
C » Ow»«nA*«- *n«n«noO f»OOOO OOOOO OOOOO »>. O «> o O o O <r> O O fw O O O O ooOtf*K>
C_» -« ** «- » <vv>w>tf« «w«wM*w *".'*. «-«*«*« " «.
o
«* » *» _- . - . '-
.*- . ' J '"- '
» c .--'"''" " -
: .
>
'- I'
o at «e
M «
< 3
49
OS
A A A A
:z z z z z z x x
>O Z Z Z M Z Z Z Z MIWIZZO Z Z O Z Z o z z oz
NlO O -J
'O O V Q O O O OOO O-»O»*0 OOOOO
z z x x z o x o o z ox
A »- OOO
Tiblt A-2 SptctropriphU Antlyitt of P«nntd*(onftntrttti fro* It rti«»}t dUt nt M«plti fro* South fgin Range Study
Are«f Uhlti Plot* Lincoln/ and Nyt Count it continwtd
( pit Sb-ppH Sc-ppa Sn*pp« W-PP« W-pp« pp« lr-pp« Th*pp«
I I I f I 1 1 1
H 10 N JOO JO N JOO N >2/000 N
I171PC M ;'.-. -. so SO 200 200 N SOO N >2/000 N
1 172PC N jo N SOO too N 200 N >2,000 N
117JPC N :.'... 50 N 200 ISO N 1/000 N >2/000 <200
N : ; - JO N SOO 70 H ISO N >2/000 N
JOO JO 200 JOO N . 700 N >2/000 ' NN
I176PC <200 20 N SOO 100 N JOO N >2/000
E177PC 700 20 N SOO 70 N JOO N >2/000 N
E178PC N 10 N SOO . 70 N $00 N >2/000 <200
N 20 N 2,000 too N 1/000 N >2/000 N
EIBOPC N 10 N 700 SO N ISO N >2/000 N
E20UPC N 20 N SOO 70 N 70 N >2/000 N
E201PC N 1$ N 1/000 100 N SOO N >2,000 N
E202PC N JO N SOO too N 70 N >2,000 N
E20SPC N jo N 200 ISO N 200 N >2,000 N
E20S1PC N 50 N 700 ISO N JOO N >2,000 N
E209PC N 10 N SOO 100 N 100 N >?,000 N
C2I012PC '" ' H 70 >2,000 N
10 $,000 so N 1/000 N
I212JPC N io N 200 so N 100 N >2/000 N
E2128Pf N 1J , N 3/000 100 N 1/000 N >2,000 N
I238PC 38 41 9 '*. 114 S8 26 2.00 .20 10.0 1.00 SOO N N N ISO 10,000
E239PC 38 41 19 114 S8 19 ,1.00 .20 s.o .20 soo N N N 100 HO/000
E2410PC ' 38 32 16 114 57 0 S.OO 2.00 .20.0 2.00 1/000 N N N 70 1/000
> E241PC 38 41 13 114 58 $7 , 10.00 .SO 20.0 .so 1,500 N N N ISO 5,000
E243PC 38 40 SO , 114 $7 IS .50 S.OO 10.0 .30 200 N N N <20 SOO
1
; E24SPC 38 39 7 114 S9 46 S.OO 1.50 15.0 . .so 700 N N N 200 2/000
E246PC 18 39 22 114 58 19 2.00 7.00 50.0 .07 200 1 N N 20 200
E24fcP( 38 39 27 114 54 17 10.00 2.00 10.0 2.00 1,500 N N N 70 1,500
E249PC 33 38 20 114 SB 46 2.00 2.00 20.0 .SO SOO N N N SO 1,000
! E2S1PC 38 36 31 114 SB 16 1.00 .SO 20.0 .70 300 N N N SO 5,000
LetItudt ' Longitude Ag-ppk At-ppk Lt-ppm t*-pp f r-ppb Hn-ppb «-ppw
;; ;' "' .'.-' . . , '.« t* I
on
t«tlt A-5 Atoalf Abtorptton An«lyiti ot wittr Si'plri Iron South Cgm lingi Study Ar«i» uh I 1 1 Hnr* 'Lintel n« ind
Nt vidi--cont I nutd
cn
c»
,", lible A-4-» Iptctrogrtphlc and Ato«(c Abiorptton Anilyt*' of Dock Stuplu Iron South fg*n fting« Study Art** White Ftn</
: : , . Lincoln* and Nyt (ountlti Nivodo.
C'M*- not detected) <t detected but btlow the tl«lt Of determination ihownl >* determined to bi greater th»n tht value thown.)
\ Sample Latitude .Longitude re pet. Ng-pct, Ca»pct. Tl-pct. "Y°" Agopp* Af*pp* Au-pp» *>pp«. BfPPB
'
1 1 1 s
E1S2R 1 H N S 20 7 70 N 20 5 30 N 1$
EUOR :1 N N N 300 100 100 N N 20 to too 5
E163R 1 N N 10 SO 200 N 20 N SO too 100 N
E166R N N N N 10 70 N N N N N X N
E206R 2 N N N '0 . ISO 100 N N S 200 H 13
E235R 10 ISO 70 30
19
% «. I >
oooooo oo ooooo TI o
o oozoo oz z oo zzzzo o o ao z z z z z z » n
O OOOOO OOOOO OOOOO OOOOO OOOOO
I O
_^ - TJ r- a
OOOO O Z O O o Z Z O O O ZOOOO OZZZZ 3 »
m 3
O fc
3«C
OOO vnu» O< OOOOOO T> Z
ooo oo o oooooo . a -c 30
z oozoz ozozz zzozz ooooo ozzzz » o
k
o
C M
M a »
» » »
t o
O OOOOO OZOOO ZZZOO OOOOO OOOOO _ -
I v>
o t>
TJ C
o OB ^ *N* \A ^« \^ i,* ^ a o
A ooo o -» ovxa AOOCA a o c *- a «
u> aoao z avnaoa swiaaut ooao o o z z z z
^< «M a w« o
zzz r e. z s o