0% found this document useful (0 votes)
31 views64 pages

Geochemical Survey: South Egan Range

Uploaded by

ilhamkalung01
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
31 views64 pages

Geochemical Survey: South Egan Range

Uploaded by

ilhamkalung01
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 64

UNITED STATES DEPARTMENT OF THE INTERIOR

U.S. GEOLOGICAL SURVEY

Reconnaissance Geochemlcal Assessment of Metallic


Mineral Resource Potential
South Egan Range Wilderness Study Area (NV 040-168),
White Pine, Lincoln, and Nye Counties, Nevada

By
E. Lanier Rowan, Albert H. Hofstra,

and Gordon W. Day

Open-File Report 84-782

1984

This report is preliminary and has not been reviewed for conformity with
U.S. Geological Survey editorial standards. Any use of trade names is for
descriptive purposes only and does not imply endorsement by the
U. S. Geological Survey.
CONTENTS

Page

Abstract................................................................... 1
Introductlon............................................................... 1
Location and physiography.................................................. 3
Geologic setting........................................................... 3
Known metallic mineral resources........................................... 6
Geochemistry
Introduction.......................................................... S
Sampl1ng design....................................................... 8
Sample col lection..................................................... 8
Sample preparation.................................................... 9
Analytical procedures................................................. 9
Threshold determination............................................... 11
Element associations and factor analysis.............................. 11
Interpretation of geochemical anomalies
Introducti on..................................................... 18
Discussion of anomalies.......................................... 19
Metallic mineral resource favorability..................................... 22
Recommendati ons............................................................ 23
References cited........................................................... 25
Appendix Results of chemical analyses..................................... 27

TABLES

Table 1. Resource potential classification scheme......................... 4


2. Elements associated with different deposit types................. 7
3a. Lower detection limits for sediment,
heavy-mineral concentrate, and rock analyses................... 10
3b. Lower detection limits for water analyses........................ 12
4. Threshold values and average elemental abundances................ 13
5. Factor loadings for stream sediments............................. 15
6. Factor loadings for heavy-mineral concentrates................... 16
7. Factor loadings for spring and well waters....................... 17
APPENDICES

Table A-l. Spectrographic and atomic absorption analyses of stream


sediment samples............................................. 28
A-2. Spectrographic and atomic absorption analyses of heavy-
mineral (panned) concentrate samples......................... 43
A-3. Spectrographic and atomic absorption analyses of spring
and well water samples....................................... 55
A-4. Spectrographic and atomic absorption analyses of
rock samples................................................. 59
FIGURES
Figure 1. Study area location map......................................... 2
2. Geochemical sample sites South Egan Range Wilderness
Study Area.................................................... 5
3. Metallic Mineral Resource Favo/ability Map...................... 24
PLATES

Plate 1. Geochemical Anomalies for stream sediment................. In pocket


2. Geochemical Anomalies for heavy-mineral concentrates...... In pocket
3. Geochemical Anomalies for spring water and rock samples... In pocket
ABSTRACT

A reconnaissance geochemical study of the South Egan Range Wilderness


Study Area (WSA) NV 040-168 was undertaken in 1983 as part of an assessment of
the suitability of Bureau of Land Management administered land for
preservation as wilderness. This study is intended to supplement earlier work
by locating areas with metallic mineral resource potential not previously
identified, and by classifying the study area according to metallic mineral
resource favorability. Anomalous regions were defined primarily on the basis
of chemical analyses of stream-sediment samples collected systematically
throughout the WSA; rock and groundwater samples provided additional
information. Emission spectrography and atomic absorption spectrophotometry
were the primary methods of analysis.

In the northern part of the South Egan Range WSA two regions of known
mineralization were identified, and accordingly, were classified 4D (highest
favorability and certainty) for resource favorability. One region was
classified 3C (moderate favorability and certainty) on the basis of rock
samples containing anomalous concentrations of Au, Ag, and base metals, a
heavy-mineral-concentrate sample containing anomalous silver, and a water
sample with anomalous SO^ , Pb, Zn, Cu, and Mn. The suite of anomalous
elements present in this region is suggestive of a base metal vein-type
deposit; however, base metal skarn, and Cu/Mo porphyry deposit types are also
possible. Three regions classified 2C (low favorability, moderate certainty)
contain numerous scattered, anomalous concentrations of elements (e.g. Cu, Pb,
Mn, Ni, Sn) believed to reflect the relatively high background levels of these
elements in the formations being drained. It is possible, however, that
hydrothermal enrichment has been superimposed on the anomaly pattern related
to lithology, and the anomalies are due to a combination of both sources.
Finally, areas of Quaternary alluvium contained no significant anomalies and
were classified IB (low favorability and certainty).

INTRODUCTION

The Federal Land Policy Management Act of 1976 specifies that lands
administered by the Bureau of Land Management (BLM) must be reviewed for
suitability for preservation as wilderness (Fisher and Juilliand, 1983). One
aspect of the review process is the evaluation of the metallic mineral
resource potential. A Geology-Energy-Minerals (GEM) report (Great Basin GEM
Joint Venture, 1983), a survey of the existing literature, initiated the
evaluation of the South Egan Range Wilderness Study Area (WSA), NV 040-168,
White Pine, Lincoln, and Nye Counties, Nevada (fig. 1). Based on
recommendations made in the GEM report, a reconnaissance geochemical survey
was undertaken to locate areas of metallic mineral resource potential not
previously identified by prospects, claims, or private exploration. The
geochemical survey is the subject of this report, and in conjunction with the
GEM report, will provide the BLM with the information needed to make an
initial recommendation of suitability for wilderness designation (Fisher and
Juilliand, 1983).

Anomalous regions were defined primarily on the basis of chemical


analyses of both bulk sediment and heavy-mineral concentrates from stream-
sediment samples collected systematically throughout the WSA. Analyses of
water samples collected from springs and wells, and of rock samples collected
115° 114°

WHITE PINE \COUNTY

NV 040-168
SOUTH EGAN
RANGE WSA

NV 040-166
RIORDANS
WELL WSA

LINCOLN COUNTY

NYE
COUNTY

10 20 30 40

SCALE I : 1,000,000

Figure 1. Study Area Location Map


from outcrops with mineralized appearance, provided additional information.
Regions within the South Egan Range WSA are ranked according to their resource
potential using the classification scheme in table 1.
Stream sediment, spring and well water, and rock samples (fig. 2) were
collected in June 1983 with the assistance of G. B. Alien. Chemical analyses
of sediment and rock samples were performed by G. W. Day, and R. W. Leinz;
water samples were analyzed by W. H. Ficklin. Manipulation of data and
statistical analysis were performed by B. Chazin and R. J. Goldfarb.
LOCATION AND PHYSIOGRAPHY
The South Egan Range Wilderness Study Area (WSA) is located in east-
central Nevada at the junction of White Pine, Lincoln, and Nye Counties, and
covers approximately 151 square miles (391 km2 ). The northern boundary is
about 25 miles south of Ely (fig. 1). Access to the study area is from
highway 318 on the west and highway 93 on the east by dirt roads of varying
quality. U.S. Geological Survey maps covering the area are the Sawmill
Canyon, Brown Knoll, Parker Station, Haggerty Spring, Moorman Spring NE,
Moorman Spring SE, Shingle Pass, and Lund quadrangles in the 1:24,000 scale
topographic series.
The study area, a portion of the north-south trending Egan Range, is
roughly 25 miles long and 8 miles wide. Relief is about 2,800 feet with a
maximum elevation of 9,670 feet. The range is asymmetrical with a steep
western slope above the White River Valley and a more gentle eastern slope
descending into the Cave and Steptoe Valleys. The climate is arid to semi-
arid and most streams are intermittent.
GEOLOGIC SETTING

The South Egan Range Wilderness Study Area (WSA) is underlain primarily
by Paleozoic sediments and Tertiary volcanic rocks. Deformation during the
Late Cretaceous thrusting of the Sevier Orogeny and mid-Tertiary Basin and
Range extensional faulting yielded a structurally complex terrane. Individual
formations, structure, paleontology, and historical geology are discussed in
detail in the Egan/Mt. Grafton GEM report (Great Basin GEM Joint Venture,
1983), and by Hose and Blake (1976), Tschanz and Pampeyan (1975), and Kellogg
(1964, 1963). A more extensive reference list is provided by the GEM report.
The Paleozoic section is represented by formations from each period,
Cambrian through Permian, and includes limestone, dolomite, sandstone, and
shale. The following brief mention of the formations believed most important
in contributing to geochemical anomalies in the Paleozoic section has been
condensed from the GEM report (Great Basin GEM Joint Venture, 1983). The
Ordovician Pogonip Group consists primarily of platy, thin-bedded detrital
limestone interbedded with flat-pebble conglomerate and shale. The Devonian
formations include the Sevy and Simpson dolomites, and the Guilmette Formation
which is an exceedingly dense, fine-grained, dark gray limestone. The cliff-
forming Mississippi an Joana Limestone is a massive, medium gray unit. The
overlying Chainman Shale is a dark gray to black shale interbedded with olive-
gray, platy siltstone. The upper half of this formation contains beds of
quartzite and quartzitic siltstone. The Pennsylvanian Ely Limestone is a
medium gray coarsely crystalline, detrital limestone. These formations are
TABLE 1. Resource potential classification scheme
(Fisher and Juilliand, 1983)

I. Level of favorability II. Level of certainty


1. The geologic environment and The available data are
the inferred geologic processes insufficient and/or cannot
do not indicate favorability be considered as direct or
for accumulation of mineral indirect evidence to
resources. support or refute the
possible existence of
2. The geologic environment and mineral resources within
the inferred geologic processes the respective area.
indicate low favorability for
accumulation of mineral The available data provide
resources. indirect evidence to
support or refute the
3. The geologic environment, the possible existence of
inferred geologic processes mineral resources.
and the reported mineral
occurrences or valid The available data provide
geochemi ca1/geophysi cal direct evidence, but are
anomaly indicate moderate quantitatively minimal to
favorability for accumulation support or refute the
of mineral resources. possible existence of
mineral resources.
4. The geologic environment, the
inferred geologic processes, The available data provide
the reported mineral occurrences, abundant direct and
and/or valid geochemical/ indirect evidence to
geophysical anomaly, and the support or refute the
known mines or deposits possible existence of
indicate high favorability for mineral resources.
accumulation of mineral resources
TI3N

4 Geochemical
Sample Site

012345 10 miles
3
SCALE I « 250JOOO

Figure 2. Geochemical Sample Sites--


South Egan Range Wilderness Study Area
truncated on the west by a major listric(?)-normal fault developed during the
Miocene east-west Basin and Range extension.
On the east side of the study area, the Paleozoic section is
unconformably overlain by Tertiary non-marine sediments, which are themselves
unconformably overlain by volcanic rocks. The volcanic rocks consist of a
basal conglomerate which grades upwards into a sequence of flows and tuffs.
Compositions are predominantly fel sic although some intermediate to mafic
units have been identified. These rocks are all disrupted by imbricate, low-
angle faults developed probably in response to crustal extension of Oligocene
age (Gans and Miller, 1983). Other small outcrops of volcanic rocks are found
on the western margin of the study area. Above the volcanic rocks along the
eastern border of the range are poorly consolidated Pleistocene sandstone and
conglomerate (Kellogg, H. E., 1964).
KNOWN METALLIC MINERAL RESOURCES

A compilation of known resources, prospects, claims, and leases, based on


a survey of the literature and communication with individual companies and
claim owners, is provided by the GEM report (Great Basin GEM Joint Venture,
1983). Description of deposit types expected in the area, strategic and
critical mineral potential, and a discussion of mineral economics are also
included in the GEM report. A summary of the known mineralization is
presented here.
The Ellison mining district extends into the north end of the study area
and in the 1930's and 1940's produced silver, copper, lead, zinc, and
fluorite. Recent exploration by the U.S. Borax Company indicates potential
for a molybdenum porphyry system at depth below the exposed fluorite,
precious- and base-metal mineralization. Further study of the South Egan
Range WSA was recommended in the GEM report (p. 44) to define the southward
extent of precious and base metal mineralization within the study area.
The volcanic rocks east of Lund at the western border of the study area
have been drilled and found to contain currently subeconomic concentrations of
disseminated gold. The GEM report concludes that there is some potential for
an open-pit precious-metal and industrial minerals mine in this area.
Outside of the areas of known mineralization, outcrop in the study area
was classified 2B (see table 1 for classification scheme) in the GEM report,
i.e. low level of mineral resource favorability and a low level of certainty
in this appraisal. Alluvium at the margins of the study area was classified
1A; i.e. no indication of favorability and no data on which to base an
appraisal.
In the Ward district north of the WSA on the east side of the Egan Range,
a mine currently under development will produce Ag and base metals from a
skarn. Also to the north, about five miles west of Ely, is the Ruth Mine.
Although no longer in production, it was once a major porphyry copper mine.
Based on the mineral occurrences within and north of the study area, types of
mineralization possibly occurring in the study area include: (1) epithermal
precious-metal deposits as veins or disseminations; (2) base-metal veins; (3)
argentiferous base-metal skarn deposits; and (4) Mo and/or Cu porphyry
deposits. Major components and trace elements associated with these deposit
types are listed in table 2.
TABLE 2. Elements associated with different deposit types
(Rose, Hawkes, and Webb, 1979)

Type of deposit Major components Associated elements

Hydrothenmal deposits
Porphyry Cu (Bingham) Cu, S Mo, Au, Ag, Re, As,
Pb, Zn, K
Porphyry Mo (Climax) Mo, S W, Sn, F, Cu

Skarn-Cu (Yerington) Cu, Fe, S Au, Ag

Skarn-Pb (Hanover) Pb, Zn, S Cu, Co

Skarn-W-Mo-Sn (Bishop) W, Mo, Sn F, S, Cu, Be, Bi

Base-metal veins Pb, Zn, Cu, S Ag, Au, As, Sb, Mn

"Epithermal" precious metal Au, Ag Sb, As, Hg, Te, Se,


S, U
GEOCHEMISTRY

Introduction

The purpose of this geochemical survey is to identify new regions of


potentially significant mineralization within the South Egan Range Wilderness
Study Area (WSA). For most of the study area no previous geochemical
exploration results are known to exist. The results of the present study
permit the areas classified as 2B and 1A in the GEM report (Great Basin GEM
Joint Venture, 1983) to be further subdivided and reclassified with greater
certainty.

A total of 183 bulk sediment samples, and 165 heavy-mineral-concentrate


samples from stream sediments, 26 rock, and 52 water samples were collected
and analyzed by semiquantitative direct-current arc emission spectrography and
atomic absorption spectrophotometry. The results were entered into the U.S.
Geological Survey's computerized archive, the Rock Analysis Storage System
(RASS), and are presented in the appendix.

Sampling Design

Stream-sediment sample sites were chosen to provide representative


coverage for a geochemical assessment of metallic mineral resource potential
in the study area. The study area was divided into one-square-mile cells. In
a given cell, if there was more than one appropriate site, one was chosen at
random to represent the cell. Sites were generally located in first-order or
small second-order streams draining areas of approximately 1/2 to 3/4 of a
square mile. Differences in sediment geochemistry between sample sites should
permit detection of geochemical halos surrounding major mineralized regions.
However, the sample density of one site per square mile represents a
compromise between sensitivity in detecting weaker, more dispersed geochemical
halos, the probability of missing anomalies, and time and cost limitations.
The Ellison district in the northern part of the area, and the subeconomic
gold occurrence east of Lund were both clearly identified using the sampling
methods of this study. It should be emphasized, however, that the sample
density used only permits identification of geochemically anomalous regions
where more detailed geochemical and geologic exploration should be focused.

Sample Collection

A sample of bulk sediment and a sample for heavy-mineral concentrate were


each collected from 183 stream sediment sites. Due to insufficient quantity
only 165 of the concentrate samples could be analyzed. At each site the bulk
sediment sample was composited from a 50-foot stretch of channel, using an
aluminum scoop. All samples were passed through a 10-mesh (2-mm) sieve and
placed into cloth sample bags. Larger samples (about 8 Ibs), collected for
analysis of the heavy minerals, were panned later and the heavy fraction
saved.

Spring and well water samples were collected from 52 locations. At each
site 400 ml samples were stored in new, untreated plastic bottles, and 60 ml
samples were filtered through a 0.45 micrometer filter, acidified with
reagent-grade concentrated nitric acid to pH 2, and stored in acid-rinsed
polyethylene bottles. Water temperature and pH were measured at each site.
Rock samples were collected during the course of stream-sediment sampling
from 26 outcrops, most of which showed some evidence of mineralization.

Sample Preparation

The samples of bulk sediment were passed through an 80-mesh (0.18-mm)


stainless steel sieve and the fine fraction retained. This fraction includes
clay, silt, fine sand, hydroxides, and organic matter. Previous work has
shown that this size fraction has a high capacity for metal ion adsorption and
that secondary minerals of ore deposits, particularly iron and manganese
oxides, tend to be friable and break down to this size. After sieving, the
sediment was split, one fraction saved, and the other submitted for
spectrographic and atomic absorption analysis.

The heavy-mineral (panned) concentrates were passed through a 35-mesh


(0.5-mm) stainless steel sieve, and separated in bromoform (specific gravity
2.8) to remove any remaining light minerals (quartz, feldspar, etc.). The
heavy minerals were separated into three fractions using a large
electromagnet. The most magnetic material, largely magnetite, was discarded;
the second fraction, largely ferromagnesian silicates and iron oxides, was
stored for possible future analysis. The third and least magnetic fraction
contained minerals such as zircon, sphene, rutile, sulfides, sulfates,
carbonates, and oxides. When sufficient quantity of this fraction remained,
it was divided using a Jones splitter. One split was hand ground for
spectrographic analysis, and the other was stored.

Rock samples were crushed and then powdered between ceramic plates to
less than 0.15 mm. Water samples required no preparation beyond that done in
the collection process.

Analytical Procedures

Emission spectrography (Grimes and Marranzino, 1968) was used to analyze


all bulk sediment samples, heavy-mineral concentrates, and rock samples for 31
elements. The lower limit of detection for each element is given in
table 3a. In general the precision is within one reporting value of the
actual value 83% of the time, and within two intervals approximately 96% of
the time (Motooka and Grimes, 1976).

The semiquantitative spectrographic analyses are reported as six-step


geometric midpoints (..., 1, 1.5, 2, 3, 5, 7, 10, 15,...) of increasing
geometric intervals (..., 0.83-1.2, 1.2-1.8, 1.8-2.6, 2.6-3.8, 3.8-5.6, 5.6-
8.3, 8.3-12, 12-18,...). These intervals represent logarithmic class widths
of 0.16667. The line density on the spectrographic plate is approximately
proportional to the log of the amount of the element present. Consequently,
the expected error in reading line densities is logarithmically related to the
element concentration. Geometric classes are advantageous because the error
variance is somewhat proportional to the concentration of the element detected
(Miesch, 1976).

Arsenic, antimony, and silver are potentially important pathfinders for


precious-metal mineralization known to occur in the geologic setting of the
study area. Due to their relatively low natural concentrations and their
relatively high spectrographic lower detection limits (table 3a), they are
TABLE 3a. Lower detection limits for sediment, heavy-mineral
concentrate, and rock analyses

Element Method Lower detection limit Lower detection limit


for sediments (ppm) for heavy-mineral
and rock concentrates (ppm)

Iron (Fe) Emission Spec. 0.05% .1%


Magnesium (Mg) .02% .05%
Calcium (Ca) (Grimes and .05% .1%
Titanium (Ti) Marranzino, 1968) .002% .005

Manganese (Mn) 10 20
Silver (Ag) 0.5 1
Arsenic (As) 200 500
Gold (Au) 10 20
Boron (B) 10 20
Barium (Ba) 20 50
Beryl lium (Be) 1 2
Bismuth (Bi) 10 20
Cadmium (Cd) 20 50
Cobalt (Co) 5 10
Chromium (Cr) 10 20
Copper (Cu) 5 10
Lanthanum (La) 20 50
Molybdenum (Mo) 5 10
Niobium (Mb) 20 50
Nickel (Ni) 5 10
Lead (Pb) 10 20
Antimony (Sb) 100 200
Scandium (Sc) 5 10
Tin (Sn) 10 20
Strontium (Sr) 100 200
Vanadium (V) 10 20
Tungsten (W) . 50 100
Yttrium (Y) 10 20
Zi nc (Zn) 200 500
Zirconium (Zr) 10 20
Thorium (Th) 100 200

Arsenic (As) Atomic Absorption 5


Antimony (Sb) 1
Silver (Ag) (Modification of 0.05
Gold (Au) Viets, 1978) 0.05

10
rarely detected in spectrographic analysis. Therefore atomic absorption
analysis (Modification of Viets, 1978) of the bulk sediment samples was used
for As, Sb, and Ag (table 3a).
Rock samples were analyzed spectrographically for 31 elements, and by
atomic absorption for Au (Thompson and others, 1968) as well as As, Sb, and Ag
(table 3a). Analyses performed on water samples are listed in table 3b. The
results of chemical analysis of bulk sediment, heavy-mineral concentrate,
rock, and water samples are listed in the appendix.
Threshold determination
The thresholds for element concentrations in the stream sediments are
defined as the upper limit of background values. Values higher than threshold
are considered anomalous and possibly related to mineralization. For the
purpose of threshold determinations and statistical interpretation, the
geochemical data for the Riordan's Well WSA (Hofstra and others, 1984) was
combined with that of the South Egan Range WSA because the geology and types
of mineralization are similar in both areas, and the statistics are generally
more meaningful for a large data base.
Threshold values for each element were determined using cumulative
frequency tables and percent frequency histograms, supplied by the STATPAC
program A470 (VanTrump and Miesch, 1977), which provide a quick method for
visual representation of the data. Modes can be easily recognized, and the
frequency distribution of the data is apparent. Thresholds for elements with
normal distributions were placed at breaks in the frequency distribution of
the data, if present, generally between the 95th and 99th percentiles
(table 4). When multimodal distributions were identified, the threshold was
placed at the point between the population thought to represent unmineralized
lithologies, and the remaining values thought to represent mineralized rock.
A total of only 34 rock samples were obtained from both study areas, and
because many of these were collected from mine dumps, the determinations of
threshold values for rocks were based upon: (1) comparison of the data with
average background abundances of the elements in different rock types
(table 4); and (2) published surveys of known mineralized areas.
Element associations and factor analysis
Because certain groups of elements respond similarly to a given set of
environmental conditions, associations of different elements may serve to
identify more clearly the geochemical variations in the geological
environment. Associations of some elements may be related to rock type, while
others may be related to a particular type of mineralization (see table 2).
Although data for a large number of chemical elements was acquired,
geochemical associations permit the simplification of this data set into a
smaller set of new variables, each consisting of a suite of elements. Factor
analysis is a mathematical technique for deriving these new variables. R-mode
factor analysis (VanTrump and Miesch, 1976; Davis, 1973) was used to define
the geochemical associations in the sediment, concentrate, and water data
bases. This type of factor analysis collects the experimental variables
(elements) that tend to behave similarly into groups termed factors. Because
11
TABLE 3b. Lower detection limits for water analyses

Element or Detection limit


constituent Method (ppb) Reference
determined

Ag GFAA .2 Perkin-Elmer, 1977

As GFAA 1 Aruscavage, 1977

Li FAA 10 Perkin-Elmer, 1976

Ca FAA 100 Perkin-Elmer, 1976

Cu GFAA 1 Perkin-Elmer, 1977

Fe GFAA 1 Perkin-Elmer, 1977

Mn GFAA 1 Perkin-Elmer, 1977

K FAA 100 Perkin-Elmer, 1976

Mg FAA 100 Perkin-Elmer, 1976

Mo GFAA 1 Perkin-Elmer, 1977

Na FAA 100 Perkin-Elmer, 1976

Pb GFAA 1 Perkin-Elmer, 1977

Sb GFAA 1 Perkin-Elmer, 1977

Zn GFAA .5 Perkin-Elmer, 1977

so4 Ion Chromatography 100 Fishman and Pyen, 1979

Alkalinity 1 Grans Plot, Titration 1000 Orion Research, 1973


F"
Ion Chromatography 10 Fishman and Pyen, 1979

cr Ion Chromatography 50 Fishman and Pyen, 1979

Sp. Cond. Specific Conductivity Bridge Skougstad and others,

1979

GFAA Graphite furnace atomic absorption (Perkin-Elmer Corporation, 1977)

FAA Flame atomic absorption


1 As bicarbonate

12
TABLE 4. Threshold values and average elemental abundances

Threshold values (ppm) Average elemental abundances (ppm)


for anomalous concentrations (Rose, Hawkes, and Webb, 1979)
(lower percentile limit in parentheses)

Element Stream Heavy-mineral Rock Water** Granite Limestone Shale Fresh


Sediment concentrate Water

Mn 1500 (98) 2000 (99) __ __ 390 1100 850 0.015


Th 1000 (99) 20 1.7 12 0.0001
Cr 150 (99) 1000 4.1 11 90 0.001
Ni 50 (98) 100 (99) 500 4.5 20 68
Co 30 (96) 1 0.1 19 0.0001
Pb 100 (99.5) 300 (92) 70 .001* 18 5 25 .003
Zn 200* (99) 500* (97.5) 300 .013 51 21 100 .020
B 100 (99) 200 (98) 70 10 20 100
Bi 10* (98) 20* (99) 15 .3 1
Mo 7 (99) 10* (96) 15 .005 1.3 0.4 2.6 .0015
Sn 15 (99) 20* (94) 30 3 -- 6
W 100* (98) 200 1.5 .5 1.8
Cd 70 (99) 100 0.1 0.035 0.3
As 30 (98) 500* (99) 90 .007 2.1 1.1 12 .002
Au 20* (99.5) .05* .0023 .005 .004 --
Ag 3 (97) 1* (97.5) .5 .037 0.1 0.19
Sb 3 (92) 200* (98) 3 0.2 0.3 1-2
so4= 50 3.74
F" -- -- --
.6 0.1
Cu 150 (99.5) 100 (98) 150 .009 12 5 42 .003

* Lower detection limit


** Water samples were analyzed by methods listed on table 3b
specific types of mineral deposits frequently contain a characteristic
geochemical signature composed of a distinct suite of trace elements, factors
may be useful in defining deposit types. In this study factor analysis did
not directly affect the choice of boundaries of anomalous areas; however, it
helped in choosing which elements to plot and in recognizing areas of
lithologic control over geochemical anomalies.
The suite of elements that makes up a factor is determined through
interpretation of the factor loadings which depict the influence of each
factor on a variable (i.e, element), and may be interpreted similarly to
correlation coefficients. In other words, a high positive or negative loading
denotes, respectively, a positive or negative geochemical correlation between
the element and the factor. Related to the loadings are the factor scores,
which measure the magnitude of the factor's effect on each individual sample.
Tables 5, 6, and 7 show the factor loadings for the factors determined to
be statistically significant (eigenvalues greater than one) within the
sediment, concentrate, and water data bases, respectively.
The first two factors in stream sediments are related to lithology. Most
of the elements in factor 1 (Y, Ti, V, Mn, Sc, Zr, Fe, Sr, Ba, La, Co, Be) are
associated with felsic and alkalic igneous rocks (Rose, Hawkes, and Webb,
1979) and elements in factor 2 (Ca, Mg, Pb) are indicative of carbonates
(table 5). The elements for these two factors were not plotted on the
enclosed geochemical maps because the interest here is in metallic mineral
deposits. Suites of elements in factors 3, 4, and 5 are less obviously
attributable to discrete lithologies, and represent mixes of both mineralized
and unmineralized sources. Factor 3 defines an element association whose most
important constituents are Ni, Cu, and As; similarly, the important
constituents of factor 4 are Cr, Ni, Ag, B, and for factor 5, Zn. When
factors are referred to throughout the text, their important constituents are
listed in parentheses. Anomalous concentrations of the important constituents
of factors 3, 4, and 5, as well as ore-related elements not included in the
factor analysis, such as Bi, Mo, Sb, and Sn, are plotted on plate 1.
The element associations in heavy-mineral concentrates defined by factors
1-5 are probably related to lithologic controls (table 6). Factor 6, however,
shows a strong loading with Zn, and weaker Pb, Cu, and Co loadings defining a
suite of elements often associated with metallic mineralization. Plate 2
shows samples enriched in these elements and/or other elements not included in
the factor analysis but possibly related to mineralization, including Ag, As,
Au, Bi, Cd, Mo, Sb, Sn, and W.
In spring waters, factors 4 and 5 are the most likely to be
representative of mineralization (table 7). Factor 4 has strong positive
loadings for Zn and Cu, while factor 5 has strong positive loadings for F~ and
$04 , and a slightly weaker loading for Mo. Sample sites with anomalous
concentrations of these elements are plotted on plate 3. Factor analysis was
not applicable to the rock data due to the small number of samples.

14
TABLE 5. Factor loadings for stream sediments,
R-mode factor analysis, VARIMAX factor rotation

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Fe%...... . 0.8248 -0.0677 0.0556 0.1276 0.3547


Mg%...... . -0.2446 0.8071 -0.2142 0.0595 0.0113
Ca%...... . -0.1554 0.7940 0.1538 0.0627 -0.1712
Ti%...... . 0.8676 -0.1294 0.1736 0.0347 0.2004
Mn ....... . 0.8553 0.1885 0.1173 0.1991 0.1306
B. ......... 0.4567 0.1754 0.2865 0.6395 -0.2360
Ba. ...... . 0.8025 0.2842 -0.1936 0.2502 -0.1228
Be....... . 0.5779 0.2851 -0.2370 0.3654 -0.3144
Co....... . 0.6862 -0.2105 0.0950 0.3256 0.2852
Cr. ....... 0.4760 0.2953 0.0263 0.6471 0.0700
Cu. ...... 0.2421 0.1978 0.7136 -0.2070 0.2576
La........ 0.7978 -0.1687 -0.1625 -0.1193 -0.0152
Ni....... . 0.2057 0.0048 0.5653 0.6479 -0.0863
Pb.. ...... 0.3896 0.6863 0.0497 0.1239 0.0481
Sc....... 0.8505 -0.0448 0.0010 0.2071 0.0751
Sr.. ....... 0.8084 0.1332 -0.0803 0.1201 -0.1310
V. ....... 0.8565 0.0088 0.1375 0.2094 0.2805
Y.........> 0.8682 -0.0012 0.0362 0.3125 0.0352
Zn....... . 0.2269 -0.0782 0.0021 0.0792 0.8739
Zr. .......> 0.8277 -0.0793 0.1296 -0.0032 0.0412
As......... -0.1810 -0.1340 0.6855 0.0839 -0.1061
Ag. ........ 0.0220 0.0323 -0.2257 0.7782 0.2275

Percent of 43.65% 12.14% 8.05% 6.26% 5.41%


total data
variance
explained
(75.51%)

Element Y, Ti, V, Mg, Ca, Cu, As, Ag, Ni, Zn


Assoc. Mn, Sc, Pb Ni Cr, B
Zr, Fe,
Sr, Ba,
La, Co, Be

15
TABLE 6. Factor loadings for heavy-mineral concentrates
R-Mode factor analysis, VARIMAX factor rotation

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5 Factor 6

Fe%...... . 0.7776 0.2799 -0.0051 0.2664 0.0775 -0.0195


Mg%...... . -0.0634 0.1008 -0.4296 0.7621 -0.2479 0.0188
Ca%...... n PVR/I _n "3404 0.1361 0.7416 0.1682 -0.0120
Ti%........ 0.5040 0.7095 0.0800 -0.0500 -0.0014 -0.0194
Mn....... . 0.7487 0.2832 -0.1321 -0.1383 -0.1516 0.1202
B... ....... 0.6242 -0.1809 0.1172 0.0284 0.2943 0.2168
Ba. ...... . 0.1771 n i OQQ 0.0506 n osi4 0.8590 n 04?4
Be......... -0.1390 0.1449 0.7602 0.0343 -0.1266 0.0690
Co....... . 0.6788 0.2325 -0.1810 -0.0868 -0.1370 0.3046
Pr . 0.6583 0.0799 0.1735 n 371Q n ofids _n 14.14.
Cu. ...... . 0.7224 0.0065 -0.0024 0.1066 0.1458 0.3005
La......... 0.6177 0.3939 0.4304 -0.0590 0.0557 -0.2311
Mb....... . 0.0972 0.6324 0.1713 0.2097 -0.2897 0.1470
Ni......... 0.7939 -0.1010 0.0992 0.1177 0.1438 -0.1017
Pb....... . 0.2859 0.1451 0.1608 0.4746 0.1011 0.4989
Sc. ........ 0.1709 0.7369 0.0573 -0.1827 0.0894 -0.1619
Sr. ........ 0.1432 -0.1452 0.6451 -0.1005 0.5073 -0.0356
V........., 0.7973 0.3779 0.0125 0.1072 0.1015 -0.0354
Y. ......... 0.4738 0.4283 0.5303 0.0094 0.2432 -0.2488
Zn.. ....... 0.0664 -0.1334 -0.0610 -0.0356 -0.0023 0.8049
Zr. ...... . -0.0240 0.6877 -0.0776 -0.0537 0.4741 -0.0559

Percent of 31.47% 12.16% 10.11% 6.52% 5.28% 5.22%


total data
variance
explained
(70.76%)

Element V, Ni, Fe Sc, Ti Be, Sr Mg, Ca Ba, Sr Zn, (Pb),


Assoc. Mn, Cu, Co Zr, Nb Y (Co), (Cu)
Cr, B, La,
Ti

16
TABLE 7. Factor loadings for spring and well waters
R-Mode factor analysis, VARIMAX factor rotation

Variable Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

As........ 0.5383 -0.0045 0.2213 -0.5029 -0.3251


Li........ 0.5837 0.1865 0.2243 0.1954 0.2517
Ca........ 0.1767 -0.0303 0.8920 -0.1112 0.0439
Cu. ....... -0.0580 0.4471 0.1098 0.7045 -0.0525
Fe. ....... -0.0310 0.8272 0.0679 0.1968 -0.1397
Mn........ -0.0807 0.8539 -0.1681 0.106 0.0007
K. ........ 0.7168 0.0262 -0.0252 -0.0177 -0.0327
Mg........ -0.0010 -0.4300 0.5987 0.2872 0.3509
Mo........ 0.5070 0.4523 0.0209 -0.2429 0.4662
Na........ 0.8929 -0.1641 0.0846 -0.1204 0.1000
Pb........ 0.0230 0.2898 _n ??zn n i ?QQ -f) RSSQ

Zn. ....... 0.0068 -0.0006 -0.0687 0.9010 0.0960


so4 . ...... 0.6274 -0.0400 0.3043 -0.0633 0.5101
Alkalinity.. 0.1951 -0.0915 0.9152 -0.0354 0.0525
F......... 0.5415 0.0021 0.2524 0.0601 0.6317
Cl. ....... 0.8388 -0.1236 0.2662 -0.0215 0.0845
Sp. Cond.... 0.3419 -0.1308 0.8827 0.0151 0.2323

Percent of 33.49% 14.05% 12.39% 7.27% 5.72%


total data
variance
explained
(72.92%)

Element Na, Cl, Mn, Fe Alk., Ca, Zn, Cu, F, S04


Assoc. K, S04 , Mg Mo
Li, F,
As, Mo

17
Interpretation of geochemical anomalies

Introduction

Under ideal conditions, the occurrence of anomalously high concentrations


of an ore-related element, or a specific association of elements in a sample,
may indicate that economic mineralization is present. Anomalies not related
to mineralization may be caused by: (1) rock types with high background
concentrations of ore-related elements; (2) concentration of normal background
abundances of ore elements by coprecipitation with iron and manganese oxides
and by adsorption by clays and organics; (3) contamination; (4) sampling or
analytical errors; and (5) random statistical variation.

The absence of an anomaly does not necessarily mean that a mineral


deposit does not exist. The deposit may occur too deep, or below an
impervious layer that prevents transport of elements into the sample medium.
In stream sediments and spring waters, dilution and/or immobilization of
elements may cause samples collected in the vicinity of mineralization to show
only sub-threshold values. Regions of interest are generally sites with
anomalous concentrations of two or more ore metal elements and/or clusters of
anomalous sites, particularly when reinforced by anomalies in different sample
media, (e.g. bulk stream sediment, heavy-mineral concentrates, spring water,
and rock).

The study area has been subdivided into zones defined by clusters or
trends of geochemically anomalous sample sites. The anomalous zones referred
to throughout the text, Ml through M5, are shown on plates 1-3 and figure 3.
Geologic coverage exists at a scale of 1:62,000 for the southern 2/3 of the
study area, south of 38°45' (Kellogg, 1964), and at a scale of 1:250,000 for
the northern portion (Hose and Blake, 1975). Thus the formations outcropping
in individual drainage basins could be identified with fair confidence only in
the southern part of the study area. The two areas of known mineralization,
designated Ml and M2, were drawn with highly generalized boundaries because
the detailed geology and/or higher density of geochemical sampling necessary
for greater precision were not available. Areas M3a and M3b are defined on
the basis of linear trends of distinct geochemical signature; the 1:62,000
scale geologic map, however, permitted more precise placement of the
boundaries than would have been possible using only the geochemistry.

The geochemistry of the South Egan Range WSA may be compared with that of
the Riordan's Well WSA, NV 040-166 (Hofstra and others, 1984). Since the same
Paleozoic formations outcrop there, chemical analyses from Riordan's Well WSA
were combined with those of the South Egan Range WSA to form a single data
base. Although lithologically similar, the Riordan's Well WSA has only four
samples with anomalous Pb in the heavy-mineral concentrates, while the Egan
study area has scores of such samples. This marked contrast suggests possible
differences in the recent (after Basin and Range extension) hydrothermal
histories of the two areas. Regional variation in the primary Pb content of
the carbonate sequences may also be a contributing factor. In general,
geochemical anomalies in the South Egan Range WSA tend to be broadly
distributed throughout the area rather than clustered as in the Riordan's Well
WSA.

18
It is distinctly possible that the same ore-forming processes that
produced the Ellison district deposits have operated on other parts of the
entire Paleozoic section resulting in widely dispersed, but geochemically
detectable traces of mineralization throughout the Egan study area.
Nevertheless, mineralization of a similar economic importance to the Ellison
district is not indicated by the data. A shallow intrusion in the Ellison
district and the presence of some Tertiary lava flows and tuffs within the
area imply that the existence of additional shallow intrusions beneath the
study area is not unlikely. The extensive fracturing and faulting present
within the area would provide access for circulating hydrothermal fluids to
most of the Paleozoic section. Since two essential ingredients of an ore-
forming system are a heat source (the Ellison district intrusion and/or
additional undiscovered intrusions) and a fracture system, it is thus highly
speculative, but plausible that widespread, low-level hydrothermal alteration
has enriched large areas and produced a random pattern of scattered anomalies.
Local "pockets" of greater interest occur within the regional
lithologically-controlled pattern of anomalies. These are generally clusters
of sites of anomalous concentrations of two or more ore-metal elements
reinforced by anomalies in a different medium (sediments, concentrates, rock,
or water). Hydrothermal enrichment superimposed on the lithologic
contribution would help explain the small regions of anomalous suites such as
Mo-Cu-Zn-Pb-(±Sn±Cd±Mn). Because many of these elements are commonly
associated with Cu-Mo porphyry and base-metal vein systems, the strongest of
these anomalies may merit more detailed geochemical sampling and geologic
mapping.
Discussion of anomalies
Zones Ml and M2 have been classified 4D because they are known to contain
mineral resources (fig. 3). The associations of anomalous metals in these two
regions may help to identify similar types of mineralization in other parts of
the study area. It should be noted that the terms "mineralization" and
"resource" do not imply the existence of an ore deposit. They refer only to
accumulations of ore minerals of subeconomic unspecified or unknown grade
(Brobst and Pratt, 1973; McKelvey, 1972).
Ml includes the southern end of the Ellison district where veins were
mined for precious and base metals, and a porphyritic intrusion with potential
for molybdenum mineralization lies below the near-surface vein system. This
region is best defined by anomalous elements in the heavy-mineral
concentrates, particularly lead. Of the 12 concentrate sites (duplicate sites
not included) in this area, 9 have anomalous lead, 5 have anomalous Cu and Zn,
and 3 have anomalous Sn, Mo, and Bi. In addition, high scores for factor 6
(see discussion of element associations) in which the most important
constituents are Co, Cu, Pb, and Zn, appeared at 6 sites.
The bulk sediment samples showed 6 anomalous values at only 3 sites in
Ml. At 2 sites Ag, As, and factor 3 (important constituents: Cu, As, Ni)
scores were anomalous; at one site B was anomalous. Rock samples generally
showed elevated values for a large suite of elements: Ag, Bi, Cd, Cu, Mo, Sn,
W, Pb, Zn, As, and Sb. Four spring samples collected several miles east of Ml
snowed anomalous Pb and Cu concentrations.

19
Elevated Cu and Mn in concentrates at three sites (E015, E132, and E025)
south and southeast of Ml suggest a possible extension of the same ore-forming
system. It is also possible, however, for background levels of Cu to be
concentrated to anomalous levels through adsorption by Mn oxides. As
mentioned earlier, the lack of detailed geology (i.e., the exact position of
the Paleozoic-Tertiary boundary with respect to individual drainage basins)
combined with the sample density of approximately one site per square mile,
prevents the boundaries of areas Ml (and M2) from being drawn with greater
precision.
Zone M2 is an area of known (subeconomic) disseminated Au and Ag
mineralization. This occurrence is best delineated by enrichments of As in
bulk sediments and Zn in the heavy-mineral concentrates. The presence of As
is expected because of its strong association with gold. The anomalous Zn in
the concentrates from the same sites was not expected, and together with the
As, provides an element association potentially useful in interpreting similar
anomalies. Spatially associated anomalous scores for factor 6 in concentrates
(Co, Cu, Pb, Zn) and for factor 3 (Cu, As, Ni) in the sediments reinforce the
single element anomalies. In addition, a rock sample (E117R) collected from
the center of the area contained highly anomalous (580 ppm) As.
Regions M3a and M3b (plates 1, 2, and 3) are adjacent northeast-trending
anomalous belts. In general, sites in each belt drain basins within different
geologic formations because the belts are separated by a lithologically
controlled asymmetric ridge. Streams within M3a generally flow northwest from
the ridge or down stratigraphic section, while streams within M3b generally
flow southeast from the ridge or up section. Sites within M3a drain primarily
the Devonian Guilmette Formation with contributions from older units such as
the Silurian Simpson and Sevy dolomites and the Ordovician Pogonip Group;
sites in M3b drain primarily the Missippian Joana Limestone and younger units
such as the Chainman Shale and the Pennsylvanian Ely Limestone. For purposes
of discussion the boundaries of M3a and M3b have been terminated to the south
where a drainage divide no longer separates the two regions, or permits
distinction of two separate geochemical trends. The anomalous element suites
of regions M3a and M3b continue to appear to the south, but without
topographic separation of basin systems draining different formations, the
"signatures" of M3a and M3b overlap and blend together.
The principal differences between regions M3a and M3b are as follows.
Region M3a is characterized by anomalous Mo in concentrates, while region M3b
with one exception, has none. M3b is best defined by anomalous Ni, B, and Ag
(±Zn, Cu, Pb, and Mn) in sediments, very strongly reinforced by anomalous
scores for factor 3 (Cu, As, Ni) and factor 4 (Cr, Ni, B, Ag); region M3a,
except for one occurrence of factor 3, contains no anomalous sediment
samples. The exceptions to these observations are in the zones where the
distinctive signatures of the two belts overlap.
The Ni and B concentrations in the sediments do not significantly exceed
the average abundances reported for these elements in shale (table 4).
Although anomalous with respect to the rest of the study area, it appears that
they merely represent relatively high background levels of these elements
within the formations being drained rather than mineral potential. The
anomalous Ag might be in part explained by enrichment through coprecipitation
of background Ag concentrations with Mn and Fe oxides; Mn is anomalous in this
region also.

20
The parallelism of belts M3a and M3b with the strike of the geologic
formations, and the fact that their distinctive geochemistry can be explained
by geologically and topographically separate systems of drainage basins,
strongly suggests lithologic control of their geochemistry. However, there
are individual samples suggestive of hydrothermal enrichment superimposed on
these broad, lithologically controlled geochemical trends. Rock sample E145R
located near the center of M3a, is a gray carbonate containing veins of quartz
and pink dolomite. While this type of veining is common it indicates that
hydrothermal circulation was indeed taking place whether or not it was
responsible for mineralization. Rock sample E129R, located in the southwest
corner of M3a, was gossan collected from a prospect pit and contained 10% Fe,
70 ppm Pb, and 10 ppm Sn. The presence of gossan is significant because it is
a weathered residual of sulfide mineralization. The original mineralization
might have been one of a number of deposit types known to occur in this
geologic setting; these include porphyry Mo and Cu, base- and precious-metal
vein, and skarn deposits. This sample reinforces the adjacent
Mo-Zn-Cu-Cd-Ni-B-concentrate anomaly (E126, E127, and E128) placing this small
region among those worthy of possible follow-up. Similarly, water samples
E196W and E083W, although outside of M3a and M3b, are of special interest
because of their anomalous concentrations of Mo, F", and SO^ and Mo, As, and
Mn, respectively. In the absence of nearby evaporite sequences it may be
assumed that anomalous sulfate was derived from sulfide minerals. SO^ , Mo,
and F" are commonly associated with Mo porphyry systems.

The geology and geochemistry of regions M3a, M3b, and M3c are very
similar, and they are given the same resource favorability classification.
M3a and M3b were discussed separately only because a ridge whose crest
coincided with the Joana Limestone-Guilmette Formation contact separated
basins draining two groups of formations, and made it possible to distinguish
different geochemical signatures for M3a and M3b. The Paleozoic formations of
regions M3a and M3b continue to outcrop throughout most of region M3c.
However, without topographic separation of the basins draining different
formations, the signatures that characterized regions M3a and M3b overlap, and
no clear pattern can be discerned. It appears that lithology plays as
important a role in determining anomalies in M3c as it does in M3a and M3b.
Thus anomalies in sediments are believed primarily related to the trace
element chemistry of the Joana Limestone, Chainman Shale, and Ely Limestone,
and anomalies in concentrates to the Guilmette and older formations.

The possibility that hydrothermal enrichment in certain elements has been


superimposed on the lithology controlled trends cannot be eliminated. As
mentioned earlier, the abundance of Pb in concentrates throughout the Egan WSA
compared with the Riordan's Well WSA might be suggestive of different
hydrothermal histories for the two areas (Hofstra and others, 1984).
Certainly the existence of undiscovered Tertiary intrusions at depth is
plausible, and the fracture system necessary for fluid circulation is
present. The only strong factor loading for Pb is in stream sediment factor 2
(Ca, Mg, Pb). This might be interpreted to mean either that the carbonates
were rich in primary Pb, or that the carbonates were particularly susceptible
to Pb enrichment by hydrothermal activity. Less abundant than Pb are the
scattered occurrences of anomalous Ni, Mo, Sn, Cd, Cu, and Mn in
concentrates. A number of springs (E086W, E260W, E259W, E257W, E407W, and
E255E) were moderately anomalous in Pb, Cu, Zn, Mn, and As. Spring sample
E262W is of somewhat greater interest because of its anomalous Mo and S04
21
Region M4 in the east-central portion of the study area contains three
significant rock samples (E152R, E160R, and E163R). E152R was collected from
a dike containing volcanic breccia fragments of felsic to intermediate
composition. It contained detectable Au (<0.05 ppm), As (>200 ppm), as well
as anomalous Sb and Mn. E160R and E163R were, respectively, gray siltite with
jarosite-1imonite fracture coatings, and vuggy red-brown-green jasperoid.
E160R was anomalous in Ag and Sb, and E163R contained anomalous As, Sb, Zn,
Pb, Cu, Mn, and Mo. These three rock samples are aligned roughly north-south
and E152R lies within half a mile of a 30 ppm Ag value in concentrates at site
E158. At site E158 anomalous concentrations were found only for silver;
however, rock sample E152R, which contained detectable Au, is within a mile to
the west. Anomalous values for Cu, Mn, and factor 3 (Cu, As, Ni) in sediments
and Pb, Sn, Mn, and factor 6 (Co, Cu, Pb, Zn) in concentrates in the vicinity
of E158 provide some reinforcement of the Ag anomaly; however, the possible
role of Mn oxides in concentrating elements such as Cu cannot be dismissed.
Approximately one mile northwest of sample E158R anomalous Cu and Mn occur in
sediments. At three sites two miles east of E158 anomalous Cu and factor 3
(Cu, As, Ni) occur in sediments; and anomalous Pb, Mn, and factor 6 (Co, Cu,
Pb, Zn) occur in concentrates.

In the immediate vicinity of rock sample E163R, a water sample, E406W,


contains anomalous SO^ , Pb, Zn, Cu, and Mn. To the north, an anomalous
concentrate sample E162 is enriched in Cu, Ni, and B. Northeast of E163R
there are anomalous values of Cu, As, and Ni and factor 3 (Cu, As, Ni) in
sediments.

The three samples anomalous in Au, Ag, As, Sb, Pb, Zn, Cu, Mo, and Mn,
combined with a high silver value in sediment, and a spring water sample
containing anomalous SO^ and base metals, are strongly suggestive of several
types of mineralization all known to occur in similar geologic settings.
Based on the suites of anomalous elements in region M4, porphyry copper and
molybdenum are among the deposit types suggested; the Ruth porphyry copper
deposit in the northern Egan Range (about five miles west of Ely) and the
Ellison district porphyry molybdenum target are nearby examples of these
deposit types. Precious metal anomalies may be indicative of base/precious
metal skarn deposits similar to the one in the Ward district, approximately
ten miles north of the study area in the Egan Range. Finally, base- and
precious-metal vein deposits are commonly associated with anomalous Au, Ag,
As, Sb, Pb, Zn, and Cu; the Ellison mining district provides a nearby example
of this type of mineralization in the same geologic formations.

Region M5 consists of Quaternary alluvium at the margins of the study


area. Samples collected from these areas probably do not reflect underlying
geologic conditions; classification and the rare instances of anomalous
element concentrations might be explained by coprecipitation phenomena.

METALLIC MINERAL RESOURCE FAVORABILITY

The regions designated Ml through M5 refer to the map in figure 3.

M1-4D is known to contain base- and precious-metal vein mineralization,


which although currently non-economic, is a resource of Cu, Pb, Zn, Ag, and
possibly Au. In addition there is reportedly potential for a molybdenum
porphyry system at depth.
22
M2-4D is an area known to contain currently subeconomic resources in
disseminated deposits of Au and Ag.

M3a-2C and M3b-2C are belts defined by anomalous concentrations of suites


of elements believed to reflect the relatively high background of these
elements in the surrounding outcrop. The low favorability assessment does not
reflect the possibility of mineralization where hydrothermal circulation and
alteration may have enriched certain elements.

M3c-2C contains primarily the same units found in regions M3a and M3b;
the 2C favorability ranking is based on the same reasoning given for areas M3a
and M3b.

M4-3C: Three rock samples containing anomalous Au, Ag, As, Sb, and base
metals, reinforced by an anomalous water sample, and a value of 30 ppm Ag in
concentrates differentiate this region from the surrounding areas ranked 2C.
The elements anomalous in this area coincide most closely with the suite
associated with base-metal vein deposits (see table 2); however skarn and
porphyry mineralization are also possible, given the geologic setting and the
geochemistry.

M5-1B is an area of Quaternary alluvium where the few samples probably do


not reflect the underlying geologic conditions. With only minor exceptions,
samples from this area contained no anomalous element concentrations.

RECOMMENDATIONS

Rock sample E129R, a gossan containing 10% Fe, 70 ppm Pb, and 10 ppm Sn,
and water samples E196W and E083W anomalous in Mo, F", and SO^ and Mo, As,
and Mn respectively, were mentioned in discussion of region M3b. These
samples are suggestive of mineralization, however, in the authors' judgement,
are not significant enough to warrant separate zones of higher favorability.
Although these samples fall in zones ranked 2C, a thorough follow-up study
would include mapping of geology and alteration, and a more detailed
geochemical survey of the sections containing these samples could upgrade, or
at least improve confidence, in the ranking.

Further investigation of the region ranked 3C, such as detailed geologic


mapping, and more detailed geochemical study, is recommended on the basis of
anomalous samples in three different media (water, rock, and sediment) which
provide direct if not abundant evidence of mineralization.

23
I I 5°00'
R62EJ R63EITI3N

LEGEND
WSA BOUNDARY

- LAND CLASSIFICATION -f-TI2N


BOUNDARY
M3-2C METALLIC MINERAL
RESOURCE AREA-
FAVORABILITY
CLASSIFICATION
(TABLE I)

0123 4 miles

N
) i

TION

T9N

FIGURE 3-METALLIC MINERAL RESOURCE FAVORABILITY


MAP, SOUTH EGAN RANGE WSA NV 040-168,
WHITE PINE, LINCOLN, NYE COUNTIES, NEVADA
REFERENCES CITED

Aruscavage, P., 1977, Determination of arsenic, antimony, and selenium in coal


by atomic absorption spectrometry with a graphite tube atomizer: U.S.
Geological Survey Journal of Research, v. 5, no. 4, p. 405-408.

Brobst, Donald A., and Pratt, W. P., 1973, jn_ Brobst, D. A. and W. P. Pratt,
eds., United States Mineral Resources: U.S. Geological Survey
Professional Paper 820, p. 1-8.

Davis, John C., 1973, Statistics and data analysis in geology: New YorK,
John Wiley and Sons, Inc., 547 p.

Fisher, Don, and Juilliand, Jean, 1983, BLM studies millions of acres in
western U.S. for possible wilderness designation: Mining Engineering,
v. 35, no. 10, p. 1409-1410.

Fishman, M. J., and Pyen, G., 1979, Determination of selected anions in water
by ion chromatography: U.S. Geological Survey Water Resources
Investigations 79-101, 30 p.

Gans, P. B., and Miller, E. L., 1983, Style of mid-Tertiary extension in east-
central Nevada: Utah Geological and Mineralogical Survey, Special
Studies 59, Guidebook Part I, p. 107-160.

Great Basin GEM Joint Venture, 1982, Egan/Mt. Grafton G-E-M Resources Area
(GRA No. NV-14) Technical Report (NV 040-168, 040-169, 040-172): Bureau
of Land Management (Denver), Final Draft, December 1982.

Grimes, D. J., and Marranzino, A. P., 1968, Direct-current arc and


alternating-current spark emission spectrographic field methods for
semiquantitative analysis of geologic materials: U.S. Geological Survey
Circular 591.

Hofstra, A. H., Rowan, E. L., and Day, G. W., 1984, Reconnaissance geochemical
assessment of metallic mineral resource potential, Riordan's Well
Wilderness Study Area (NV 040-166), Nye County, Nevada: U.S. Geological
Survey Open-File Report 84- (in press).

Hose, R. K., Blake, M. C., and Roscoe, S., 1976, Geology and mineral resources
of White Pine County, Nevada: Nevada Bureau of Mines and Geology
Bulletin 85.

Kellogg, H. E., 1963, Paleozoic stratigraphy of the Southern Egan Range,


Nevada: Geological Society of America Bulletin, v. 74, p. 685-708.

____1964, Cenozoic stratigraphy and structure of the Southern Egan Range,


Nevada: Geological Society of America Bulletin, v. 75, p. 949-968.

McKelvey, V. E., 1973, Mineral resource estimates and public policy, in


Brobst, D. A. and Pratt, W. P., eds., United States Mineral Resources:
U.S. Geological Survey Professional Paper 820, Chapter 1, p. 9-19.

25
Miesch, A. T., 1976, Geochemical survey of Missouri methods of sampling,
laboratory analysis, and statistical reduction of data: U.S. Geological
Survey Professional Paper 954-A.

Motooka, J. M., and Grimes, D. J., 1976, Analytical precision of one-sixth


order semiquantitative spectrographic analysis: U.S. Geological Survey
Circular 738.

Orion Research Inc., 1973, Orion Research Analytical Methods Guide, 7th
edition: Cambridge, Massachusetts, 20 p.

Perkin-Elmer Corporation, 1976, Analytical methods for atomic absorption


spectrophotometry: Norwalk, Connecticut, p.

Perkin-Elmer Corporation, 1977, Analytical methods for atomic absorption


spectrophotometry, using the HGA graphite furnace: Norwalk, Connecticut,
586 p.

Rose, A. W., Hawkes, H. E., and Webb, J. S., 1979, Geochemistry in mineral
exploration: New York, Academic Press, p.

Skougstad, M. W., Fishman, M. J., Friedman, L. C., Erdman, D. E., and Duncan,
S. S., 1979, Methods for determination of inorganic substances in water
and fluvial sediments: Techniques of Water-Resource Investigations of
the United States Geological Survey, Chapter A-I.

Thompson, C. E., Nakagawa, H. M., and Van Sickle, G. H., 1968, Rapid analysis
for gold in geologic materials, J_n_ Geological Survey research 1968: U.S.
Geological Survey Professional Paper 600-B, p. B130-B132.

Tschanz, C. M., and Pampeyan, E. H., 1970, Geology and mineral deposits of
Lincoln County, Nevada: Nevada Bureau of Mines and Geology Bulletin 73.

VanTrump, G., and Miesch, A. T., 1977, The U.S. Geological Survey's RASS-
STATPAC system for management and statistical reduction of geochemical
data: Computers and Geoscience, v. 3, p. 475-488.

Viets, J. G., 1978, Determination of silver, bismuth, cadmium, copper, lead,


and zinc in geological materials by atomic-absorption spectrometry with
tricaprylylmethylammonium chloride: Analytical Chemistry, v. 52,
p. 1097-1101.

26
APPENDIX. Results of Chemical Analyses

27
zooo cocco o o oc o o oo oo ooooo
« « O O tt ^* ^ ^ *» «« fv * O ^3 OB ^* ^ ^ * «« ^rf « O *O 9*
ccoc eccce escca c.ocee eoo>ee oceso ooeec caeca s a> o c B>
o oo i
iOOO C -J O C O OOOOO O O O O O OOi
>OOOO OOOOO OOOOO ^ w< O w> -4 O O -* V O O w)i ^ O O <« < OOO « O»w-^ OU»-WOW> * O
OOOO C ^" O O O COOOO OOOOO OOOOO O O O ro w» OOOOO OOOWO OOOOO » OO.
OOOO OOOOO OOOOO OOOOO OOOOO OOOOO OOOfMO OOOOO OOOOO 3 »
xzxcz zzzzz f x
X O Z O O Z O ZO O O O O Z OOOOO OOOOZ OOOOO OO O Z O O X O O i

w* O O O O OOOOO w«OOmm OOi

10 OOOOZ ZOOOO Z Z O O Z OOOl


O a >rt ix o O r»
a - ^ IM

OOOOO O*»Off.t» M%mo«*O OOOOO OOOOO o O O O <* OOOOO OOOmO OOOOl


e » a.
e . i
C 9

OOOOO OOOOO OOOOO OOOOO ClOOOn OOOOO OOOOO OOOOO OOOOO

ieasa esaiBa ao a o o aaeeea coosiao aaaso

lOOOO OOOOO OOOOO O O O O O OOOOO OOOOO

29
<f\ O O
a o- - o o .»

^ *^ OOO *^ <f* ** «^ O irt O O O O ^* 2 ^* ^s w* O *** ^* O <

t -

OOO O Z O O O OOOOO OOOOO OOOOO O O O O O O O O O O O O O O <


O /» «« * O O »- ^>-OOi» OOOOO OOOOO OOOOO o i" »- ~ O O O O O

oo
V fw
V V

c »
e »

I O O O OZw»ZO *» Z Irt . : O O O OOOOO OOOOO OOOOm OOOZW* W*OOOO

OOO OzOOO 01 OOOOO OOOOO OOOOO OOOOO OO*»OI

O OOO OO OOOOO OOOOO OOOOO OOO O OOOOO

tt 3k B O O B B O O 9 3D B9)O3>B 3)O)DOQ SOOOO OBOAB OOB3>B OBSB3

* OOOOO OOOOO OOOCO OOOOO OOOOO OOOOO OOOOO OOOOO

30
, _ _ _ _____ _____ _____ _____ _____ _ __ __ _____ _oooo
C C IB C GC <r OP CD B 0 V O O O C. CD CT O BCfcDVO B 9 3 S <D B (C O 1C B <E B O> B 19 «* B B 0 0 T)
ooooo ooooo ooooo owooo o-rf-^oo OOO«MO ooooo
OOOOO OOO-^O O W> w> wi «« O 0> O O >w OOOOO W O O O O OO'
- . ,. ,- . . i o a
__ »_. . «
.«.« « . . . . . . . * . «.» . « . «. » a
ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo »
»
,.' . -^ .',''. - - .-.-
- . :..'- .
- '.. .
» .
O.m
.-: - '''':-.' - . - ' " ' «
V v . - ' - -.-. ./ -' ; _ K»
_ _ _ _ ^ < *f
« « « « . » » » 4 « « « » «e
OOOOO OOOOO OOOOO OOOOO tt-v*«OO OOOv<w> OOOOO OOOOO OOOOO * *^
ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo « e
« I
o % «
0 00 O «
z a.
xzzz z z z z z z z z z z z z z z z z z z
IO OOV»OO OOOOO. OOOOO OOOOO OOOOO OOOOO OOOOO O<
A A A *
.......... .... .... ..___.. .._. .,.. -»_ _., ...._.... _.._.... - oooo - ' *»
BCCOO OCBBOO eceos o a* o a c asoeio oeoac oe oa e *j o o o a «
S X X Z KX X O X
" '"-"'".%' * : : 'JV . ""*..
xx sxx xzxxs zz.xzz x x x xx xxzx x x xx xx zszss xxzxxxzxzz w <.-." "
j '- - '- ',.'-: v .<--" - ;-:' :> -'.-::;-:: vv- -' ;.-. '^ ;.-i'.--,--- , .- .--r --: -.-.-...- ^A, J ' >; "
IOO ZXXOO O O v« O«-» O X X X O X X X X w< wt OX X X X *»«« X O w»w>w>w«O OXtffOO
ooooo owtooo ooooo ooooa ooooo ooooo ooooo
C 3
I * O
« ea
W> W> O O
A A
« a»
«w >w <w
z o oo x:
OOOO«* OOfOO OOOOO OVKOXO VMW>«MOO OOO««O OOO Ok* OOOOO OOv>OO O. 1
10000 osooo ooooo ooooo ooooo ooooo ooooo
_ - .... ** f
O OO O O X w* w* O O O O ^f ^ O W* V* W* w* ^ Wk Wk w* w* w* O ^^ ^* V* w* X ^ M* ^* ^ W* M* M* O O ^ V* ^t O> *^ n
xxxiex xzx^ex
1 N t N H 00^ ' OOf Ot N DOOM oor fflt(t)
N N t N II 000' U OOf Ot N 000 'I oot tettu
1 N t N N 000' 1< 002 01 H 000* I , 002 Set tl»
N N N N N oot N Ot N OOI oot
1 N N N N UQU't N Ot N 002 ;v, i; V' '. oot 180(1)
N ' " ot> N >' ' ' 02 V'^t-'v " 00 1
M N il N N 001
H . '. Ot :^''r :"-i'' . . 002 SB/Ill
r; N tt N N 002 N 01 01 " rv;- '''; oot
N N 01 N N ot N 01 N set Til
01 OOf N | Of N 001 H-V..'.,^:;- 002
1 Of N N
N N 01 N N OOf N : 02 N 00r '^'4: v/ 001 .
ooi (v.'^ r; '*' 001
N N 01 N N 00* N 02 MN ',i
N N t> N N OOf H ' , 02 ooi " ;'.<; :'>'., 002 J 91 > U
N
t»*
02*
ot N N OOI H Ot . N OOI : ,;v:V"-
oti v;^'.:' .
OOI
N tl N N 002 002> Of N 001 SilSf I)
son ti
N
02* t N N 002 002 ot N . oti .. '.,'-, 002
H Of tl N N 002 N Of N Otl V ?"V'< ' 002
H N t N N oot II 02 N 04 4^i$: ' oot sm n
H
N
N
N
f>
ot
N
N
N
N .
002
002
N
N
(I
it
N
N ' , 01 J': -">V.- oot
oot sottii
N
02' N N 002 002> Of N ', ' ooi . ,-.,' ;, y: ' 002
to* M ' ' ' 01 <. £*'. ' ' '
N f N N 01 N N '. N let m
W N f N N Of N 01 N 02 »;'v. : .':'i, M mm
rt N t N N 02 N ot N ot /.; ; . M somi
N N 01 N II OOI a 01 M ' Of '- :v<:; r' oot snot n
N Of tl N N oat N , ot -. n oft^:,^;,:^! OOf ' CO
001 i: -,*.'tt' ' OOf CO
M Of f N N oot N 02 N
n if f> ' N N 002 H Ot N . 002 :> '><-:!. 002 -;- 18)2 I)
Of -><<-;^V OOI ? sm<rll
N N U2 N
'
N
N
001 N
N .'
V 01
N . NN ,',' ',' N i . so»2i»
N N 02 H Of 0 1 "i': '"i. ' ' .l',
N N (2 N N 02 N , ' <-. 01 .- N : '-'V;. v 02 .f^;-;^V,^-'" ooi ,: J8V2U
O j ^i/V' '*' "$ > ' N " '> .
N N tt N N Of N 01 , N V: ; : '
N ' M \': V ' '
N N 01 N N 002 02 0? C$ ; ;^- 002 .
N N t N N 001 N 01 M. 02 ;;;: , -:^. OOI ; sno2U
N N t N N OOf N f1 N 02 ..-'': 'V'.:4 . i'-., . 002 1961 13
N N tf N N 002 N ' ;" 02 M , ' ' 01 '*V't^'^-' 002 . Sfl9lll
1 N tl N N 002 N Ot II .
oi' ':'-:''?%'- oot $89111
N
09*
Ot N * , " 001 002 it N of v; ;.'"Uv; " OOI SOf I II
N 09'
01 N
' ' . H
OOI 002 f1 N
Of v^''1 ' OOI $02HJ
N if i N N 051 002> 02 H . . ooi "^i<>: - OOt ' 19101 J
N N N N ' .- ' M 000' I 002 OS N OOO't/^;^;:.- 002 setoii
oi' "'.t^ff- I0210H
t N Of N N . 002 N ft NN ' 002
N N t N N 02 002> Ot Of ; '' '.'. OOI S0»(0i
N N t N N OOI N 01 N
o« ' ,' OOI IBttOl
N 01 N N 002 N 02 N ooi ..-,'.;. , ;. OOf JB»SOJ
N t n N 002 M Of N ooi .J^:.; OOf SflftO)
tt * 1 t , ,
.. t ; ' : 'r ^N t
ed.qg cd.Oy idd.oy .ad. Mi -ad "" dd-ujt dd-ji dd-n dd.A '. ' ; dd.^j
pir Jtin r pu* 'u loiun I »»H« ou| d
*6u»» t »OJt %t |d«t{ |u*.|p*{.*t »n jo tl/ltuy uo| tdjoiqy »J»o»y put .. j-V»)q*l
o~«~C CC^CC CXC»» »»«»» d^wtC^ JT
« s >< o e o o « o «- o vx o a « ^c 01
» V* »»!*» VI *» VI VI C VI
V
*
e .
" ? ' '- ' ": -^ "" " =' '' '' ': - ' ' " "::l ;" -^ --f :- ; - =-.. ^; Jt
** *"..** ** ' 9 '
5'r-
-»-^~ --»- *»-«-^ --«.»*«. ^v«.*- - 0 .
. jr
k
;;" '.;-'/" ' * ' .' »*.. a
OOOWiQ OOOOO OOOOO OOOOO OOOOO ~ o
« « « - ^n* _.^t»-» «
OOOOWl OOOOO OOOOQ O W» O O O % e
** 3
A .O
' - -' -* e 9
3 »
« 9
OOOOO OOOOO OOOOO OOOOWt OOOOO
V 3C
* T* o
OwiO^O OOOOO O O -« O O Vi O O O O w>OOi^O OOOOO OOOOO OOOOO OOOOO
ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo
e
. 9
* 1
O O O ->J O OOOOO OOOOO OOOOO KOOOO OOOOO OOOOO OOOOO OOOOO «
» M
0. 9
" continue
{\
pit!
o
"*"" c o
c
Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z X X X X X Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z K Z TJ 9

e
« 9
»TJ
ooooo ooooo ooooo ooooo a
c
a.
O «/ O >M O fuOOOO O w» O O O OOOOO fwOOvnO OOOOO OOOOO OOOOO OOOOO V
U OO O U OOOOO OOOOO O <>OO O ooooo ooooo ooooo ooooo ooooo
fc
A A ^j
** »
e

;
o

e a
* a
c
e

a
o

e
w -o MOOOO OOOOO OOOOO OOOOO O >S> O O O O O O W> O OOOOO O w» O O «rt OmomO
a
|ou
'com .a »
( ptf«

rg
a v **
N«v»d»
It
Sfdi ifnl JB

ft
* "o
w e X
«« a
* e
o >
z
r
-o » . ' ''"-
»% e -*---, - '

c »
OOOOO »OOOOO OOOOtA OOOOO
C 0 a
o «*
c -"»--. -...^ -,\ .."- . - -
4.
O %
A C
a
-» -'.-.-
' fc - - .'-"'-'

« 3

* ** w -^ ' ' '

*
a. '' -''."::'i^''"v^- :.""^v...-.:.J^;-v.- ''r1 '51; t-'-.- -x- ' "^^ ' ''''-?'*- '.' ' '?.: "
*-' "! ,'-''-'* '' "-' "'-' 'fi\. J ': '- .::::''-- / : '.~ V . ' : ; ,^"-
t
a - «-
a - : ,. v v .- , . v . v
- i . . - - "

""*'.-" -\-.tSi-j 'i---;^v '; '..^- ;... - "' ' " .-"
M

& oasaa oaooo asaoa assao at a m a o


SS22- -^rrr i^^-S ^^CCX

35
zzzzz

z zz = z z z z z z z z z z z z z z z z

zzzzz zzzzz =zz zz zzzzz

ooooo ooooo ooooo ooooo oooow> ooooo ooooo ooooo oooon


*- O O O OOOOO OOOOO OOOOm OfwOO«* !" C O O »- C O «« O O O O O ^» O O»OOO

» » a zzssz-x z = zzzzz
oo
«« «»
V V

a-* *> mO O V> O O O O O O O Z »» O O O


k a »
e % a
» »
a« c >-

o zzzzz zzzzz zzzzz zz


« jc a
*a a - ' . - . -- ;'_. . -.;

IOOOO OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO

_____ ___-)0 OOOOODOOOO' O Z O O Z Z O OOO OOOOO OOOOZ OZOl


t a OOOOO OOOOO OOOOO OOOOO O CO - OOOO COOOO OOOO O O(

"\^rf»«». «> f O » »>rf«C»S'1< iv tv «^ » "^ -*«^-O«3 ~ » "»


« l»W»lAM«V> «««<0« «^^.».>» ».>.M.«.>. » «^ «0 O O O C «.«. »« 'V ~~"*

36
_ c
oo «oc CBCOO aa oc o <& o o o> o eoaee cooes cooes soouio eseoa T>
« **..*»
0-
«»-«-,*- r^i"^ r*^rr r**3^ ^^«,^^ 2 c
«
-
, ' 4%
- ' '""3
o
- M *»
- k
..-"'' "' * ' -. ". ' ~ '': " . '
',-" " " . " » Q.
OOOOO OwOO O OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO « . 0
»
X 4»
. a ^»
" _ ^ -. <W 4WW «««M-***fV
1
CSW»O-«*V« WIOOOO OW»OOO OOOOO *» % e
-
3
I* O
1 e. 3
oo ooo COOOO OOOOV OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO tr
C-»«

«<<
T
ooo o o O < » O <« O OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO OOOO * »
ooo oo OOOOO OOOOO OOOOO OOOOO
" co *
. 3 ^
- X - »
. » « 4* 4
OOOOO O -M C O O OOOOO OOOOO OOOOO OOOOO O^OOOO OOOOO OOOOO T3
OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO z a.
- » 0.3
Z Z Z 2 2 zzzzz zzzzz zzzzz zzzzz »« 1 «A
0 A >
,* 0
^ 3 T>
>
« 1 3 «
. ^5 c -K
zzzzz z zzzz zz zzz zzz zz rz z zz zzzzz zzzzz zzzzz zzzzz ._»
o
*
0
« c1 c
x>
zz zz z zzzzz zz zz z zzz zz zz z zz ZZZZZ ZZZZZ ZZZZZ ZZZZZ T3 »
_ - 3
4>
OO OOWi OOOOO O O V" O O OOOOO OOOOO OOOOO OOOOO OOOOO O O O O wi 3
. c
_ >w v» ~* « o« w AJ w~*«w«*«w
OOOOO O*v<C**wO OOOOO OOC»O»»« OOOOO ooooci MOOOO oocoo oooo<w r>
oo o oo OOOOO OOOOO OOO 0 0 OOOOO OOOOO OOOOO OOOOO OOOOO
A A A A A A A * A V
cease cccsa a aceo ecoss
»
^
«
?.-.* - - " '
A ' '' '"'"'- ' "" A ' -- . -J >
» -
«!'
« ~
- -" " '*"'.'. . ' *'-. ' > ' "-;/-'."-' '..' ' ' ,,'j? - ! '* *' -\,- < ''' ^
A.
-.- . -" ' -- . »
tD
^
w
9
','"'"- .- . . "
- - .-. ^ _ - TJt »
o.
c
»»
o
" w **
- ~ ^t-
Q » »»
OOOO** OOOOO OO O « O OOOOO OOOOO OOOOO OOOOO OOOOO OOOOU » V
% -«
r"o^
f*
' " ' " " w « m e
w _. ^ ^j e 9
OOOOW> W« O O O O OOOOt* OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO 3 »
% 9
»
- »» 3 <
.- - -. - , * ' - * a.
« * «
*<
- V
ft
e
C "
X 3 -^
e «
1
« «
» % M>
x a.
-
»X <
A
« 1 a. s
A « »
AJ tw T> 1
n «i
e
3 T3
."." " . x
<
« 9 »
V e
OOOvnO OOOOO OOOOO OOOOO OOOOO o. n
0
^ . ».
tr o
m f e
V
OZOOZ OOOOO OOOOZ OOOOO
n
o
»
»» 9
V
f »
« »
3
IM
WI
~ » e
> «
««o.
»
«
<
»
vt
>
w 1
TJ
«
Tibl« A-l »- SpectrogrtphIc »nd Atoxic Abiorption An*lytet of S trt «>>S*dli*tnt S«nplri fro» South Cg*n *«ngt Study Art*,
. UM|« Pine* Lincoln* «ntf Nye Countit** Nt va d«--con| tnutd
V-PP« W-PP- tr»pp« T h- Au>pp« Ai-pp* Sb-oo*
I I «* 14

E224B5 II H <1 0 10 N N N H N
E225BS 100 N ?0 too N N 5 .15 N
(22605 too N '' 10 150 N N 15 N N
E227BS too 50 N 10 200 N N j N K
I22HB$ - 500 N : 50 ' 200 NJ N 15 N N

C22°8S 500 70 MN '. .''' . 10 200 N N <5 .05 1


E2)OM»$ 70 20 200 n N 55 N K
£2jou5. IOO N JO 100 N N 10 .35 1
100 70 N :' ' . 15 100 N n 5 N N
E2J2US 70 N . ., 15 100 N H 10 K N

E2JJBS 500 100 N ..; JO 200 N N 10 N N


£2J*US 500 100 N ' r; JO 500 N N 10 N N
E2J60$ 200 100 N - 20 200 N II 5 .10
700 70 N , ' ' 20 200 N II 15 fc N
E2J88S 100 50 N 10 100 N N 10 .10 N

I2J°0$ 700 50 N JO IOO N K to .13 *


E2*00$ 100 70 N 20 150 (1 N to .35 N
I 2*108$ 500 70 N JO 700 N N 5 .19 S
12*10$ 200 IOO N 20 500 N N 20 .05 N
100 N 10 150 N N 5 .10 K

E2*JO$ too 50 N 10 100 n N <5 N II


E2**US 50 N 10 200 H N 5 .05 tl
tog 50 M 20 150 N N 25 N \
£2*60$ IOO JO N 10 70 N II 10 N _
200 50 N 20 too N U 10 N H

£2*80$ 100 JO N 10 200 N II 5 .05 . 1


E200S 200 70 N 20 H 200 N N 5 .05
N 50 200 200 N N 10 .O 1
500 too
E2S10S JOO 50 N 20 N 200 II N 70 .05 M
£2528$ 2UO 70 N 15 N 150 II N 5 .05

E25Ju$ too 20 N to N 150 II N 10 .05 N


500 70 N JO N 500 H N N H n
noios 200 100 N 20 N 200 H N <s H :;
EJOies 100 20 N to N 70 N N J5 II i,
EjfH8$ 500 IOO N 20 N JOO N N JO N K

200 70 N 20 N 2CO N N J5 H *
0058$
20 N N N 70 N N 5 N N
EJ06B$
EJ070$ IOO 70 N 15 N 200 N N 20 N N
10 N N N 20 N N 5 M N
tJ08U$
50 N 15 100 N N JO .35 N
CtOflUS
E*0»0$ 100 20 N 10 150 5 N N
JOO IOO N 50 150 5 .35 1
£*toe$ N K
£*11B$ 200 JO N 20 200 1
20 N 10 150 <5 N N
£*12B$ too
N 20 200 5 N H
I*1JO$ JOO 50
017
ooo
ooo
ooo
!»blf A*l lM«t'Ojr«pblc »nd Atonic Absorption Antlyttl of Strt«»«S«dlM«nt S««plct lro« South fg*n Mngt Study Ar*«,
, , , .,, . . Whit* Hnt« Lincoln* «nd NX* CountUi* Nt v«d«-«cont (nued
{ pit PP« Co-pp« Cr-pp» C«-pp« l*-pp« 1Io-pp« Nb-pp« Nl-pp^ fb'ppa Sb-ppa fC'ppa Sn*pp
;-;^; ; I t t 1 »
ciitas v- if^i&vr.
-: : ??. N 10 20 T 20 N N ) N N s N
EtISBf N J 30 to N N N 20 10 N J N
iMAaj H :,':?;:.* N . ' J SO * ro N N 20 <10 N s N
ftblf A-l IptclrogripHc «nd Atomic Abiorptlon Analytti of Str -S«dU»nt S*«pl«t lro» South tg*n lUngt Study Ar»«»
..';,. Whit* fln«/ Lincoln* and Ny« (ountlts/ N««»di--eontinued
$. ;'''' :V';'-, ' . l
* Sr-pp« ', .' V»pp« H-PP» Y-ppii !n-pp« Xr-pp« Th-pp« Au*pp> Al-ppn *B-f>t>" Jb-pp
, . ' ..._ ' ; '. , l 1 1 »«

f«l*B$ ' "' , ' 'n ';kS"-": jo , N 10 N 200 N N N N N


Kijos : :.,. 100 vv;; 20 , ; N 10 N ISO N N 10 N N
ctues ' . ", 200 *.,£';* so .; :-:.; " N 20 N ' 100 N N 10 N N

ro
O O & «- +r
oC
«> * > ui «> *. «w^
WOOO »
ooooo ooooo ooooo ci > O O O OOOOMt OOOOO OOOOO OOOOO
O O M V> v» wiv>wt-*wi O O O ^ »» O «M O O O 9 O O w> O OOOOO O< MOO
oc>ooo ooooo ooooo ooooo ooooo ooooo o< OOO'
>OO OOOOO OO' OOOOO OOOOO O O O w« O OOOOO OOOOO
ooooo ooooo ooooo ooooo ooooo ooooo ooow«o ooooo ooooo
ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo e
a. e a.
3
Zz zz z
ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo
**O*wOO O O w C3O U«OW>OO v» O O O O OloOOO OOOOO MOOOM O^^OOO
ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo
ooooo ooooo ooooo ooooo ooooo ooooo ooooo ooooo
IOO OOOOO OOOOO O O «» O O OOOOO O O w* « » I

a zo:

44
O O O O O OOOOO O O O O O O O O O O O O 3 O O O O O O O O O O O O O O O O O O O O O O
OOOOO OOOOO OOOOO O O O O O OOOOO OOOOO OOOOO OOOOO OOOOO
ooooo ooooo a o m «n o ooooo aoooo ooooo ooooo ooooo ooooo

>OOrwO « >*.. f. ^- O OOOOO OOOOO O O O O «» O O 0 O O <nOOOO OOrwOO

?... ooooo
""""" ~r~" r r."£r -~~~«
ooooo ooo«*o ooooo
-_.-r^"
o o <« o o
«- -..~~';~~ "- -.
ooooo ooooo ooooo o o o » o

lOOO OOOOO OOOOO o O O O O O O O O O O O O C O OOOOO O O -

45
a O*>OOOT om«noo r-oooo ao o oo ooooo O O v\ O ^* O O O O O O O O O O O O <f* if* At

X A A A AAAA A - A A A
o

.c -.. 1 .

e
IM a o
M r>
3
3
0

& 0
.« r %..- -

a-o
% e 3. » W»

e e
» o
«
o-i
f
« e |- C^^ ^ _- ^ ^
a
k. O
**
M

e " " "." "


M O

Se t* ooooo 1*0000 »s» « a a o ooooo ooo«no ooom<v >WIM<VOO o o «« o o e o o «M


e -*
0 - __.;.. :-" --.-:--" :! ;-
vc
e&
«% - - »> mn<n« n> m ^»

oa X

X k ooo^a oo*>oo ooooo ooov%o o o <« o o oooo>- oooo^ aoooo 000-10

e ?
w
a
at
o
V-

,-: - - , , - > r
t

2 3
IW w,«. », «^M ^ «S>

46
< « V
«- ^ .. iw ..* wt.. ^ .».«_ <B
OZZ Z O O Z Z G Z Z O Z VI Z Z Z O O Z O G Z Z Z Z O Vfl OSOOO "O a
Wi ^4 ^i \* w* w% O ^^ *A ^ w «A «A o O O wl O w* wt ^ o ^tf ^ O O \ft \ft f^ wt wt w* O ^ ^f ^4 *w V
O2OOO O O O O Z OZZZO Z O O O O O Z O G O OOOOO OOOOO Z O OOO OOOOO
3
. ", - . %
A -» AAAAA A-« A A A A A Mrw««<B
O ox O O G OOOOO OOOOO OW«OOO OOOOO OOOOO OOOOO OOOOO OOOOO >
r\ t*
e n
e
.--.'
- - r~ "
- . i» « «M ^ : ^M . - ' §<
»»» »»»%»» « « I.Q.
OOOOO OOOOO OwtvnOO MOOOO OOOOO OOOOO OOOO%» O OO OOOOO t> %
9 9
A A A
****** %J* «^ %« %M
G Z Z O Z Z O Z Z Z Z Z Z O Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z OO O!
« « m
o »
OOOOO >
ooooo- ooooo OOOOO OOOOO ooooo ooooo
ooooo ooooo OOOOO OOOOO OOOOO OOOOO
ooooo OOtnOO OOOOO Q O *- O O OOOOO OOOOO ooooo coooo

X X X X X X XO

OOOOO OOOOO tf*OOOO OOtftmO O O X O O OOOOO OOOOO OOOOO OOOOO

48
ooooo ooooo ooooo ooooo ooooo oo

«- .. _ " .*"** ..___.._


£ * * * A A AA AAAAA
a
»

Z 2 X X X Z Z Z Z Z Z

* OOOOO OOOOO OOOOO O O O » O OOOOO OOOOW> OOOOO OOOOO OOOOO

e O
«* * OOOOO
« . . . OOOOO
« OOOOO
» OOOOO OOOOO
.».. OOOOO
. . . OOOOO
. . . . OOOOO
. . . O O O O O
. » .
C » Ow»«nA*«- *n«n«noO f»OOOO OOOOO OOOOO »>. O «> o O o O <r> O O fw O O O O ooOtf*K>
C_» -« ** «- » <vv>w>tf« «w«wM*w *".'*. «-«*«*« " «.
o
«* » *» _- . - . '-
.*- . ' J '"- '
» c .--'"''" " -
: .
>
'- I'
o at «e

M «
< 3

49
OS
A A A A
:z z z z z z x x
>O Z Z Z M Z Z Z Z MIWIZZO Z Z O Z Z o z z oz
NlO O -J
'O O V Q O O O OOO O-»O»*0 OOOOO
z z x x z o x o o z ox
A »- OOO
Tiblt A-2 SptctropriphU Antlyitt of P«nntd*(onftntrttti fro* It rti«»}t dUt nt M«plti fro* South fgin Range Study
Are«f Uhlti Plot* Lincoln/ and Nyt Count it continwtd
( pit Sb-ppH Sc-ppa Sn*pp« W-PP« W-pp« pp« lr-pp« Th*pp«
I I I f I 1 1 1
H 10 N JOO JO N JOO N >2/000 N
I171PC M ;'.-. -. so SO 200 200 N SOO N >2/000 N
1 172PC N jo N SOO too N 200 N >2,000 N
117JPC N :.'... 50 N 200 ISO N 1/000 N >2/000 <200
N : ; - JO N SOO 70 H ISO N >2/000 N
JOO JO 200 JOO N . 700 N >2/000 ' NN
I176PC <200 20 N SOO 100 N JOO N >2/000
E177PC 700 20 N SOO 70 N JOO N >2/000 N
E178PC N 10 N SOO . 70 N $00 N >2/000 <200
N 20 N 2,000 too N 1/000 N >2/000 N
EIBOPC N 10 N 700 SO N ISO N >2/000 N
E20UPC N 20 N SOO 70 N 70 N >2/000 N
E201PC N 1$ N 1/000 100 N SOO N >2,000 N
E202PC N JO N SOO too N 70 N >2,000 N
E20SPC N jo N 200 ISO N 200 N >2,000 N
E20S1PC N 50 N 700 ISO N JOO N >2,000 N
E209PC N 10 N SOO 100 N 100 N >?,000 N
C2I012PC '" ' H 70 >2,000 N
10 $,000 so N 1/000 N
I212JPC N io N 200 so N 100 N >2/000 N
E2128Pf N 1J , N 3/000 100 N 1/000 N >2,000 N

fJ12P( 20 N 1/000 so N SOO N >2/000 N


E2i JOPC 10 N 200 so N 1SO N >2,000 N
£21 JSPC 10 N 10,000 too N 70 N 1,500 N
(21 JPC 20 N 200 100 N ISO N >2/000 N
I2UJPC " 1/500 100 H 1/000 N >2,000 N
E21SOPC 70 1/000 70 N 700 N >2,000 N
E2I68PC 1J SOO . 70 N SOO N >2,000 N
E220PC JO 200 ISO N ISO N >2,000 N
C221PC JO 10/000 1SO N 700 N >2,000 . M
E222PC 20 200 JO N SO N 1,500 N

E22J7PC N 10 ' N 1,500. 70 N 700 N >2,000 N


I22JPC N 10 N 70 N SO N >2,000 N
' NN 70 N >2,000 N
(2247PC N JO SOO 20 N
E22*PC N zo N N 200 N 200 N >2,000 N
C22SPC N -20 N 1/500 100 N SOO 000 >2/000 N

C226PC N 10 N 200 SO N 70 N >2,000 N


E227PC N 10 N 10/000 JO N 70 N 1,500 N
C229PC N <10 N 2/000 20 N 70 N 1,000 N
EMIlSPt 200 70 N 1/000 70 N JOO N >2,000 . N
C2JOPC N JO N 1/500 JOO N . 1/000 N >2/000 N
, 'M
12J1PC N 10 100 N ; SOO N >2,000 N
1,500
I232PC N 20 N 10/000 20 N SOO N >2/000 N
I2JJPC N JO N 2/000 100 N 1/000 N >2,000 N
I2J4PC N JO N 1/500 100 N JOO N >2,000 200
E2J7PC . N 20 N SOO SO N 70 N >2/000 N
t f4t)U A-ZV fptctr*gr«pMc Antlyitt f f nntd-Conctntrttt t fro* It rt JtdUint l«»plti fro* South Egtn »ngt Study
, Ari«» UMtt Pint/ Lincoln/ ind Nyt Counttf i--eont (nut d
L«tlludt longitude . Ft-pct. Ngopct. Cl-pCt* fi'pct. Mn-ppa Ag-ppa Ai»ppii Au«pp«
I 1 t s i » J 1 *

I238PC 38 41 9 '*. 114 S8 26 2.00 .20 10.0 1.00 SOO N N N ISO 10,000
E239PC 38 41 19 114 S8 19 ,1.00 .20 s.o .20 soo N N N 100 HO/000
E2410PC ' 38 32 16 114 57 0 S.OO 2.00 .20.0 2.00 1/000 N N N 70 1/000
> E241PC 38 41 13 114 58 $7 , 10.00 .SO 20.0 .so 1,500 N N N ISO 5,000
E243PC 38 40 SO , 114 $7 IS .50 S.OO 10.0 .30 200 N N N <20 SOO
1
; E24SPC 38 39 7 114 S9 46 S.OO 1.50 15.0 . .so 700 N N N 200 2/000
E246PC 18 39 22 114 58 19 2.00 7.00 50.0 .07 200 1 N N 20 200
E24fcP( 38 39 27 114 54 17 10.00 2.00 10.0 2.00 1,500 N N N 70 1,500
E249PC 33 38 20 114 SB 46 2.00 2.00 20.0 .SO SOO N N N SO 1,000
! E2S1PC 38 36 31 114 SB 16 1.00 .SO 20.0 .70 300 N N N SO 5,000

E252PC 38 3S 37 114 $7 J 1.00 2.00 20.0 .so SOO N N N 70 >10,000


cn E2S)P( 18 37 25 114 58 34 . S.OO .SO 10.0 .70 1/500 N N N ISO 1/500
no ! E254PC 38 43 14 114 55 26 1.00 .SO 2.0 .70 SOO N N N <20 700
E101PC 38 51 8 114 57 34 1.SO .SO 20.0 .SO SOO N N N 20 300
' E302PC 38 SI 0 114 57 6 S.OO .70 SO.O .20 SOO N N N 70 7/000

E3U3PC 38 SO S4 114 57 7 2.00 .70 SO.O .20 1/000 N N N 70 5,000


E104PC 38 SO 46 114 56 16 2.00 1.00 20.0 .20 SOO N N N SO 10,000
f30SPC ' 38 SO 48 114 56 13 1.00 .SO 20.0 . .10 soo N N N 30 5,000
E306PC 38 SO 43 114 56 IS 2.00 .70 2.0 .SO 1/000 M N N SO 2,000
; E307PC 38 49 29 114 57 1 2.00 1.00 10.0 1.00 1/500 N N N 70 1,000

> E308PC 38 48 57 114 56 S7 . 2.00 2.00 S.O .50 1/000 N N N SO 7,000


EtObPC 38 32 11 114 57 5 2.00 1.50 SO.O .50 soo N N M 70 SOO
' U09PC 38 32 14 114 S7 3 . S.OO 1.00 10.0 2.00 1,500 N N N 70 5,000
E410PC 38 32 16 114 57 0 .20 .20 s.o 1.00 300 N N N 20 500
E411PC 38 33 8 114 57 26 S.OO .70 20.0 1.00 500 N N N SO SOO

t E412PC 38 33 34 114 57 35 2.00 1.00 20.0 1.00 1/000 N N N 70 2/000


1 E4UPC 38 33 59 114 58 18 1.00 1.00 1S.O 1.00 300 N N N 70 7/000
E4I4PC 38 33 31 114 SS 7 1.50 .50 2.0 .SO 300 N ' N N <20 1,000
E4ISPC 38 34 SO 114 SB 12 .SO 1.00 20.0 .50 300 N N N 50 SOO
E416PC 38 3S 26 114 SB 30 1.00 .SO 20.0 .30 SOO N N N 70 SOO
ooo ooooo oo<
z z z z z aezoaewi ooz zz z z z w> z z z oz:
A A A A A
>OOOO OOOOO OOOWIO OO M» O O OOOOO
c
a
«
« a
ooooo
lOOZ OZOOO OZOI
T»blt A-2 « Sptc trooriphtc Anilyitl of P»nned-Coftctnt r»tti fro* tl r»i«-$edUtnt fro* South fgin lludf
. v _, . Art*, UMtt Hnt* Lincoln* «nd Nyt Count Ui-r-cont fnutd

l«*plf Sb*ppi $C-PP« Sn-pp« Ir-pp* V-pp. !


U-ppn V*PP« In-ppa lr»pp« Th-pp«
' I
i 1 !' i I
E236FC : jo SO 1*000 100 N 300 N >l/000 N
C239r>C N 2*000 50 N ISO N 1*500 N
C2UQPC 70 1/500 150 N 1/500 N >2<000 N
C2UPC N 300 N 500 N >2»000 N
'";/-. '0 N 200 30 N 150 N >2*000 N

C24SPC V ";'.. 30 N 700 100 N ISO N >2*000 N


[246PC H'U JO N N 50 N 20 N 1*500 N
[246PC -, 30 N 200 200 N 300 N > 2/000 <200
, JO M 200 100 N 100 N >2/000 N
C2S1PC ;.t;:. 20 N 1*000 70 N SOO N >2/000 N

C2S2PC ' " 10 N 1*500 70 N . 200 N >2/000 N


Ul C253PC ? 20 N 200 200 N 200 N >2/000 N
E2S4PC 50 N 700 50 N 300 N >2«000 <200
tJOlPC 10 N 1*000 50 N 150 N >2/000 N
EJ02PC 30 N 1*000 150 N 700 ' N . >2/000 N

CJOJPC N SOO 70 N' so 1*000 2/000 N


(30&PC 30 N 700 30 N ISO N >2/000 N
CJOSPC 20 N 700 20 N 70 N >2/000 N
CJ06PC 20 N 200 70 N 100 SOO >2/000 N
fiO/PC JO SOO 150 N SOO ' N >2/000 N

U08PC 30 N 200 N 150 N >2/000 N


10 1*000 ISO N 500 N > 2/000 N
70 SOO 200 N 700 N >2/000 N
K10PC 20 700 70 N 200 N >2/000 N
f41tPC SO 500 100 N SOO N >2/000 <200
C412PC 30 500 100 N 300 N >2*000 N
CU3PC 20 700 70 N SOO N >2/000 N
*UPC 200 70 N SOO. N >2/000 300
E415PC 20 SOO 20 N 100 N >2/000 N
C416PC 20 200 50 N 70 N >2/000 N
ss
F ;
* o
-. C W
r 3 «
I 3 .
»*«"«- »« > »<« » - « « w« k« wo
99
ooooo
A A A A A A
o o o o c» ooooo ooooo ooooo «- o o o o ooooo ooooo ooooo *»oooo tf
i -<w O O O O OO O OOW<OO OOOOO V* o O O O OOOOO OOOOO OOOOO I* O O<vO
OOOOO O O O O -«w OO'-OO OOOOO O -w O O O »OOOO O O O o O OOOOO O O OO I
O -O O O O OOOOO O O w> o> O OOOOO OOOOO OOOOO OOOOO OOOOO OOOOO
I»bl»A-3-- Moalt Absorption Anflytt* ( W«t«r |«Bplt( fro* South fg«n Mng? Studx »< « » Uhltf'Mnt* Lincoln* *nd hyt
Count<tt> krv*d«--tont<nutd

LetItudt ' Longitude Ag-ppk At-ppk Lt-ppm t*-pp f r-ppb Hn-ppb «-ppw
;; ;' "' .'.-' . . , '.« t* I

31 40 9 114 J4 14 V'- <,2 2.J 62 1.0 3.2 12.0


38 38 39 114 $7 36 L' <.2 . 1.8 66 1.7 90.0 5.1
f 103U 38 39 22 114 36 SS K", <.2 2.7 78 1.9 120.0 3.9 3.9
38 39 36 11436 16''": : *,2 2.3 7$ 1.6 8.6 3.2
38 39 36 114 36 34 ,';- i/V <,2 1.3 67 4.2 8.7
v/''(
1(064 38 40 44 1U 3» 11V';' . <,l 3,J ,01 71 14.0 20.0 60.0 17.0
3« *2 42 114 S7 0 ' - <,2 12.0 5J 1.8 3.1 i.e 12.0

on
t«tlt A-5 Atoalf Abtorptton An«lyiti ot wittr Si'plri Iron South Cgm lingi Study Ar«i» uh I 1 1 Hnr* 'Lintel n« ind
Nt vidi--cont I nutd

SMPlt «o-cp . N*-ppm ^b-ppk Sb-pob Jn-ppb


«« « 11 «4 «» .

<1 t <1.0 <1 }.t 6.4 2(0 .10 1.9 (10


<1 6 <1.0 <t (.9 7.0 2)0 .10 1.6 190
2 . J <1.0 <1 4.6 U.O 260 .10 1.S (70
ClOlw > <1 « i } <1.0 <» 2.6 11.0 290 .20 2.) ' (20
': ; <» ; , <i.o <i 1.6 u.o 2*0 .10 2.1 *io
H06W , , i J JO 1.1 <1 15.0 70.0 2*0 '.JO U.O (10
ttO/w 2 69 , <1,0 <» 2.1 )1.0 290 .20 17.0 (10

cn

,", lible A-4-» Iptctrogrtphlc and Ato«(c Abiorptton Anilyt*' of Dock Stuplu Iron South fg*n fting« Study Art** White Ftn</
: : , . Lincoln* and Nyt (ountlti Nivodo.
C'M*- not detected) <t detected but btlow the tl«lt Of determination ihownl >* determined to bi greater th»n tht value thown.)

\ Sample Latitude .Longitude re pet. Ng-pct, Ca»pct. Tl-pct. "Y°" Agopp* Af*pp* Au-pp» *>pp«. BfPPB
'
1 1 1 s

E008H 38 52 36 114 SS SO .5 .OS 10.00 .050 1/000 N - J M N 10 500


10091 38 52 39 114 56 51 .1 .02 .20 .050 50 N N N <10 20
. C 1Q4I 38 36 35 114 S7 40. .1 .OS 5,00 .020 . 50 H H N 50 {20
,i107ll . 38 54 10 114 54 SS < ,1 .10 2.00 .010 20 N N N N <20
E108B 36 54 10 iu ss 8 10.0 OS .30 ... .020 200 N 200 N 10 <20

EI09M 38 54 19 114 55 16 10.0 .10 10.00 .200 SO 200.0 300 N 10 20


Ell OH 38 34 16 ' 114 SS 34 2.0 1.00 , 20.00 ,100 >S,000 20.0 N H N 20
EH OH , 3B 54 16 114 SS 34 10.0 1.00 10.00 ,;' .200 2/000 500.0 700 N IS <20
film 38 54 17 114 SS 36 , >' .. S.O .10 10.00 : .200 300 S.O 300 N 10 103
C114D 3B 54 24 114 SS 16 ;,;; ;._; 20.0 .02 .05 :, .too 10 2.0 3/000 N 70 20
u :';^v'
El 1S» 3D 54 22 I 114 55 1.0 ,' .10 ' 1.00 ,100 too N N H 10 1/030
E1I7R 38 50 S 114 56 29 10.0 / ,10 .50 .100 100 N 300 H 30 133
«£> E129R 38 4) 26 . 114 39 59 10.0 .10 .20 ,020 10 N N H 50 ton
E14$» 38 48 7 114 56 37 .5 3.00 10.00 <.002 20 N H N M i;
CI46M 38 46 3 114 56 39 .- ',,, . .1 S.OO 10.00 .005 50 N N N 10 <*0

E1S2M 38 43 32 > IK 54 47 2.0 .30 S.OO .500 500 N N N to 1/OJO


E160R 3) 41 SO , 114 54 39 1.0 .10 .30 .100 30 N N N 50 2CO
£16J« 38 40 46 114 SS 57 7.0 .10 1.00 .020 500 N 1/000 N 10 203
E166D 38 36 59 114 SS 41 .1 .10 ' 2.00 <.002 SO N N N 10 <?0
E206M 36 54 25 114 SS 19 : 2.0 1.00 S.OO .100 700 N N N N 700

E206A 38 54 25 114 55 19 < 3.0 2.00 S.OO .100 soo N N N 00 1/000


E207II 38 54 S 114 56 4 ' ' - 7.0 .20 20.00 .200 500 100.0 SOO N 10 200
£208". 38 54 6 114 56 2 2.0 .02 .30 ' .200 too 10.0 2/000 N 50 303
E209M 38 S3 40 114 So 6 20.0 . .20 . S.OO .050 200 150.0 >10/000 N 70 230
I211K 38 S3 31 114 56 1 20.0 .10 20.00 .050 SOO 100.0 1/000 N SO 503

C23SH IS 42 56 114 J7 SS 1.0 .50 2.00 .200 200 too 1*000


A-4*» $p tctrogrtph Ic and Atonic Absorption An«lysti of flock S«i»pltt fro* South Eg«n flange Study Are*/ White fine/
Lincoln/ *nd Nye Counties Nivodo.
8e-pp« Bl»ppn Cd-pp« Cp-ppn Cr-pp« _ Cu-ppm Mo-pp« Nb-pp« Nt-pp« Pb-pp« $b-pp« Sfpp«
II lilt ill i ii

EOOBR 1 N N N ISO ' N 10 N N


20 N N 150
E009R N N N N 10 30 N N N 10 ' N N N
El OAR :l N N N 10 100 N N N 10 10 N N
E107R I N N N <10 70 N N N N 10 N N
E108R 2 N N 10 10 200 N 70 H SO 500 N S
50 ' N
E109R N 700 SOO N 100 >20/000 SO N 10 10/000 S
E110R N IS >SOO 20 30 3.000 N 20 N s 5/000 N . N
E110R 1 200 >SOO 30 SO >20/000 N N N 10 >20/000 N . to
El I1R 1 N N N 30 5/000 100 SO N 10 70 N s
£1 UR N N 100 N 10 1/000 N N N N 10/000 N N

E11SR 2 N N N 00 ISO 100 N N N 70 N s


E117R N N N N 20 too 20 N N s 10 N N
E129R 1 N N N 20 100 N N N 30 70 N HI
E14SA N N N N 10 100 N N N N 100 N N
EK6R N N N N 10 100 N N N * 20 N N

E1S2R 1 H N S 20 7 70 N 20 5 30 N 1$
EUOR :1 N N N 300 100 100 N N 20 to too 5
E163R 1 N N 10 SO 200 N 20 N SO too 100 N
E166R N N N N 10 70 N N N N N X N
E206R 2 N N N '0 . ISO 100 N N S 200 H 13

E2U6R 2 N N N 10 100 100 N <20 5 30 N 5


E207H 1 100 N 20 70 10/000 20- N N ' 20 500 103 5
E20BR :l N N N 30 100 70 N N 10 70 203 II
E209R N N >SOO 10 SO 20/000 . ISO N N 10 >20.000 N 5
E2HR ;1 N N N 20 1/000 N IS N 20 20.000 N H

E235R 10 ISO 70 30
19
% «. I >
oooooo oo ooooo TI o
o oozoo oz z oo zzzzo o o ao z z z z z z » n
O OOOOO OOOOO OOOOO OOOOO OOOOO
I O
_^ - TJ r- a
OOOO O Z O O o Z Z O O O ZOOOO OZZZZ 3 »
m 3
O fc
3«C
OOO vnu» O< OOOOOO T> Z
ooo oo o oooooo . a -c 30
z oozoz ozozz zzozz ooooo ozzzz » o
k
o
C M
M a »
» » »
t o
O OOOOO OZOOO ZZZOO OOOOO OOOOO _ -
I v>
o t>
TJ C
o OB ^ *N* \A ^« \^ i,* ^ a o
A ooo o -» ovxa AOOCA a o c *- a «
u> aoao z avnaoa swiaaut ooao o o z z z z
^< «M a w« o
zzz r e. z s o

You might also like