0% found this document useful (0 votes)
111 views20 pages

A-Level Pure Math Exam Paper

The document is the front cover and first 3 questions of a mathematics exam. Question 1 asks to sketch a graph and solve an inequality. Question 2 asks to find the gradient of a parametric curve at a point. Question 3 asks to find values of a and b in a polynomial given divisibility and remainder conditions.

Uploaded by

سحر خالق
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
111 views20 pages

A-Level Pure Math Exam Paper

The document is the front cover and first 3 questions of a mathematics exam. Question 1 asks to sketch a graph and solve an inequality. Question 2 asks to find the gradient of a parametric curve at a point. Question 3 asks to find values of a and b in a polynomial given divisibility and remainder conditions.

Uploaded by

سحر خالق
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 20

Cambridge International AS & A Level

CANDIDATE
NAME

CENTRE CANDIDATE
NUMBER NUMBER
*9146949640*

MATHEMATICS 9709/32
Paper 3 Pure Mathematics 3 October/November 2023

1 hour 50 minutes

You must answer on the question paper.

You will need: List of formulae (MF19)

INSTRUCTIONS
³ Answer all questions.
³ Use a black or dark blue pen. You may use an HB pencil for any diagrams or graphs.
³ Write your name, centre number and candidate number in the boxes at the top of the page.
³ Write your answer to each question in the space provided.
³ Do not use an erasable pen or correction fluid.
³ Do not write on any bar codes.
³ If additional space is needed, you should use the lined page at the end of this booklet; the question
number or numbers must be clearly shown.
³ You should use a calculator where appropriate.
³ You must show all necessary working clearly; no marks will be given for unsupported answers from a
calculator.
³ Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place for angles in
degrees, unless a different level of accuracy is specified in the question.

INFORMATION
³ The total mark for this paper is 75.
³ The number of marks for each question or part question is shown in brackets [ ].

This document has 20 pages. Any blank pages are indicated.

JC23 11_9709_32/2R
© UCLES 2023 [Turn over
2

BLANK PAGE

© UCLES 2023 9709/32/O/N/23


3

1 (a) Sketch the graph of y = 4x − 2. [1]

(b) Solve the inequality 1 + 3x < 4x − 2. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23 [Turn over


4

2 The parametric equations of a curve are

x = ln t2 , y = e2−t ,
2

for t > 0.

Find the gradient of the curve at the point where t = e, simplifying your answer. [4]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/32/O/N/23


5

3 The polynomial 2x3 + ax2 − 11x + b is denoted by p x. It is given that p x is divisible by 2x − 1
and that when p x is divided by x + 1 the remainder is 12.

Find the values of a and b. [5]

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/32/O/N/23 [Turn over


6

4 (a) On a sketch of an Argand diagram, shade the region whose points represent complex numbers z
satisfying the inequalities  z − 4 − 3i ≤ 2 and Re z ≤ 3. [4]

(b) Find the greatest value of arg z for points in this region. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23


7

x x + 1
6
Find the exact value of Ô
x2 + 4
5 dx. [6]
0

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

................................................................................................................................................................

© UCLES 2023 9709/32/O/N/23 [Turn over


8

6 (a) By sketching a suitable pair of graphs, show that the equation


cot x = 2 − cos x
has one root in the interval 0 < x ≤ 12 π. [2]

(b) Show by calculation that this root lies between 0.6 and 0.8. [2]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23


9
Q P
(c) Use the iterative formula xn+1 = tan −1
1
2 − cos xn
to determine the root correct to 2 decimal

places. Give the result of each iteration to 4 decimal places. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23 [Turn over


10

7 (a) By expressing 31 as 21 + 1, prove the identity cos 31  4 cos3 1 − 3 cos 1. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23


11

(b) Hence solve the equation

cos 31 + cos 1 cos 21 = cos2 1


for 0Å ≤ 1 ≤ 180Å. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23 [Turn over


12

2 + 3ai
= , 2 − i, where a and , are real constants.
a + 2i
8 It is given that

(a) Show that 3a2 + 4a − 4 = 0. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23


13

(b) Hence find the possible values of a and the corresponding values of ,. [3]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23 [Turn over


14

9
y

M
x
O a π

The diagram shows the curve y = sin x cos 2x, for 0 ≤ x ≤ π, and a maximum point M , where x = a.
The shaded region between the curve and the x-axis is denoted by R.

(a) Find the value of a correct to 2 decimal places. [5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23


15

(b) Find the exact area of the region R, giving your answer in simplified form. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23 [Turn over


16

10 The equations of the lines l and m are given by


−2
` a ` a ` a ` a
3 1 6
l: r = −2 + , 1 and m: r = −3 + - 4 ,
1 2 6 c
where c is a positive constant. It is given that the angle between l and m is 60Å.

(a) Find the value of c. [4]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23


17

(b) Show that the length of the perpendicular from 6, −3, 6 to l is 11.

[5]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23 [Turn over


18

11 The variables x and y satisfy the differential equation

+ y2 + y = 0.
dy
x2
dx
It is given that x = 1 when y = 1.

(a) Solve the differential equation to obtain an expression for y in terms of x. [8]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23


19

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

(b) State what happens to the value of y when x tends to infinity. Give your answer in an exact form.
[1]

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

........................................................................................................................................................

© UCLES 2023 9709/32/O/N/23


20

Additional Page

If you use the following lined page to complete the answer(s) to any question(s), the question number(s)
must be clearly shown.

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

........................................................................................................................................................................

Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every
reasonable effort has been made by the publisher (UCLES) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the
publisher will be pleased to make amends at the earliest possible opportunity.

To avoid the issue of disclosure of answer-related information to candidates, all copyright acknowledgements are reproduced online in the Cambridge
Assessment International Education Copyright Acknowledgements Booklet. This is produced for each series of examinations and is freely available to download
at www.cambridgeinternational.org after the live examination series.

Cambridge Assessment International Education is part of Cambridge Assessment. Cambridge Assessment is the brand name of the University of Cambridge
Local Examinations Syndicate (UCLES), which is a department of the University of Cambridge.

© UCLES 2023 9709/32/O/N/23

You might also like