0% found this document useful (0 votes)
249 views15 pages

2023 Core Math Marking Scheme-3

The document provides a marking scheme for a mock core mathematics examination with 50 multiple choice questions and their answers. It also provides details and marks for 6 longer questions testing various math concepts like trigonometry, algebra, geometry and patterns.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
249 views15 pages

2023 Core Math Marking Scheme-3

The document provides a marking scheme for a mock core mathematics examination with 50 multiple choice questions and their answers. It also provides details and marks for 6 longer questions testing various math concepts like trigonometry, algebra, geometry and patterns.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 15

ADUMAN SENIOR HIGH SCHOOL

MARKING SCHEME
CORE MATHEMATICS
MOCK EXAMINATION, 2023
1 D 11 A 21 D 31 B 41 A
2 B 12 D 22 C 32 B 42 B
3 C 13 B 23 B 33 C 43 B
4 D 14 D 24 B 34 A 44 B
5 D 15 B 25 C 35 D 45 C
6 A 16 A 26 A 36 A 46 B
7 B 17 C 27 C 37 A 47 A
8 B 18 C 28 A 38 B 48 D
9 D 19 A 29 D 39 B 49 C
10 B 20 B 30 A 40 C 50 C
Question Details Marks
Number
1. (a) 42−x × 16x+1 = 64
42−x × 42(x+1) = 43 M1
42−x+2(x+1) = 43
2 − x + 2(x + 1) = 3 M1
2 − x + 2x + 2 = 3
x+4=3
x=3−4
x = −1 A1

(b) a + x + 20 + 5 = 65
a + x = 65 − 25
a = 40 − x M1
b + 15 + 20 + 5 = 50
b = 50 − 40
b = 10 M1
c + x + 15 + 5 = 40
c + x = 40 − 20
c = 20 − x M1
a + b + c + x + 15 + 5 + 20 = 100
40 − x + 10 + 20 − x + x + 40 = 100 M1
110 − x = 100
110 − 100 = x
x = 10 A1
Total 8 marks
Question Details Marks
Number
2. (a) For himself = 100
20
× 250 = 50
Left for sale =250 − 50 = 200
sold for $6.50 = 115 × 6.50
= $747.50 M1
Left for sale = 200 − 115 = 85
sold for $5.00 = 85 × 5.00
= $425.00 M1
selling price (sp) = 747.50 + 425
= $1172.50
cost price (cp)= $1000.00
profit (p) =selling price−cost price
= 1172.50 − 1000.00
= $172.50
profit percent= costprof it
price
× 100
172.50
= 1000 × 100 M1
profit percent = 17.25% A1

(b) Let x = remaining interior angles


Number of size of polygon n = 3 + x M1
Sum of interior angle = (n − 2)180
3 × 160 + 120x = ((3 + x) − 2)180 M1
480 + 120x = 180 + 180x
480 − 180 = 180x − 120x M1
300 = 60x
x = 360
60
x=5
n=x+3=5+3
The polygon has 8 sides A1
Total 8 marks
Question Details Marks
Number
3. (a) ∠QSR = ∠QP R = 40o
∠T P S + ∠SP R + ∠QP R = 180o
74o + 40o + ∠SP R = 180o M1
∠SP R = 180o − 114o
∠SP R = 66o M1
∠SP R = ∠SQR = 66o
∠U QR + ∠SQR + ∠SQP = 180o
68o + 66o + ∠SQP = 180o M1
∠SQP = 180o − 134o
∠SQP = 46o
∠SQP = ∠P RS = 46o A1

(b) i. y = xy22 −y1


−x1
(x − x1 ) + y1
−6−3
y = 2−(−4) (x − (−4)) + 3 M1
y = −96
(x + 4) + 3
−3
y = 2 (x + 4) + 3
2y = −3(x + 4) + 6
2y = −3x − 12 + 6
2y + 3x + 6 = 0 A1

ii.
p
Q| = (y2 − y1 )2 + (x2 − x1 )2
|P p
= √ (−6 − 3)2 + (2 − (−4))2 M1
= 117 A1
Total 8 marks
Question Details Marks
Number

4(a)

B2

|BF |
tan 42o = |BP |
o |BF |
tan 42 = 180
180 tan 42o = |BF |
|BF | = 162.07m M1
|BF |
tan θ = |BQ|
tan θ = 162.07
45
θ = tan−1 162.07
45
θ = 74.48
The angle of elevation of the top of the A1
flagpole from Q is 74.50

(b) R  S13
R = Sk3 M1
9 = 3k3
9×3=k
k = 243 M1
R = 243
S3
243
64
= 243
S3
M1
3 243×64
S = 243
S 3 = 64
S 3 = 43
S=4 A1
Total 8 marks
Question Details Marks
Number
5(a) Let x = elder sister’s age
Ama’s age = 23 x
4 years ago sister’s age = x − 4 M1
and Ama’s age = 23 x − 4
2
3
x − 4 = 12 (x − 4) M1
6 × 23 x − 6 × 4 = 6 × 21 (x − 4)
4x − 24 = 3x − 12 M1
4x − 3x = −12 + 24
x = 12
The sister is 12 years old A1
M1
(b) 4415 = 4(5)2 + 4(5)1 + 1(5)0
= 100 + 20 + 1
= 121 M1
B N R
4 121
4 30 1
B1
4 7 2
4 1 3
4 0 1
4415 = 13214 A1
Total 8 marks
Question Details Marks
Number
6. (a) Let x = radius
|OB|2 = |OA|2 + |AB|2
(x + 8)2 = x2 + 122 M1
(x + 8)(x + 8) = x2 + 144
x2 + 8x + 8x + 64 = x2 + 144
x2 − x2 + 16x = 144 − 64 M1
16x = 80
x = 80
16
x=5 A1
Radius of the circle is 5cm

(b) B1
2 2 2
|P Q| =√|QR| − |P R|
|P Q| = √132 − 52
|P Q| = 144
|P Q| = 12 M1
5
sin y = 13 , cos y = 12
13
, tan y = 5
12
3( 12 )−2( 5 )
3 cos y−2 sin y
6 tan y
= 136( 5 ) 13 M1
12
[ 36
13
− 10
13
] ÷ 5
2
= 26
13
÷ 25 = 2× 2
5
= 4
5
A1
(c) Un = ar n−1
U3 = ar U8 = ar7
2

ar2 = 4 · · · (1) M1
1
ar7 = 256 · · · (2) M1
7
(2) ÷ (1) : ar
ar2
1
= 256 ÷4
5 1
r =q 1024
r = 5 1024 1
= 14 A1
Put r = 14 in (1)
a( 14 )2 = 4
a = 4 × 16 = 64 A1
U2 = 64( 14 ) = 16
U1 + U2 = 64 + 16 = 80 A1
Total 12 marks
Question Details Marks
Number

7(a)(i)

B2

p
|XZ| = √ |XY |2 + |Y Z|2
|XZ| = √51202 + 4482 M1
|XZ| = 26415104
|XZ| = 5139.56
|XZ| ≈ 5140 km A1
|Y Z|
(ii) tan θ = |XY |
448
tan θ = 5120 M1
θ = tan−1 5120448

θ=5 M1
The bearing of Z from X is 345 + 5 = 350o A1
(iii) Speed= timetaken
distance

Distance it took to sail from X to Z through


Y = 5120 + 448 = 5568
120 = 5568t
M1
5140km
t = 120kmh −1

t = 46.4
Time taken to sail from X to Z through Y is A1
46 hours.
∗ 1 3 5 6
1 4 6 1 2
(b) 3 6 1 3 4 B3
5 1 3 5 6
6 2 4 6 0
Total 12 marks
Question Details Marks
Number
8 (a)
x 0o 30o 60o 90o 120o 150o 180o
y 1 0 -2 -3 -2 0 1 B2

x 0o 30o 60o 90o 120o 150o 180o


y -2 -1.8 -1.7 -1.5 -1.3 -1.2 -1 B2

(b)

Correct labeling of x− axes B 12


Correct labeling of y− axes B 12
Correct plotting and drawing of y = 2 cos 2x−1 B3
Correct plotting and drawing of y = 180
1
(x−360) B2
(d)(i) x = 30 ± 3 or x = 150 ±3
o o
A1
(ii) x = 57 ± 3 or x = 123 ±3 A1
Total 12 marks
Question Details Marks
Number
9.(a) P (K) = 10 9
P (K) = 10 1
M1
P (Y ) = 45 P (Y ) = 15 M1
P (A) = x P (A) = 1 − x M1
P (only one passing) =
P (K Y A) + (Y K A) + (A K Y )
9
50
9
= [ 10 × 15 × (1 − x)] + [ 10
1
× 54 × (1 − x)] + M1
1 1
[ 10 × 5 × x]
9 9 2 1
50
= [ 50 (1 − x)] + [ 25 (1 − x)] + [ 50 x]
9 = 9(1 − x) + 4(1 − x) + x M1
9 = 9 − 9x + 4 − 4x + x
12x = 4
4
x = 12
x= 3 1
A1
(b) (α) 2x + 3x + 4x − 1 + x + x + 2 + x − 3 = 42 M1
12x − 6 = 42
12x = 48
x = 4812
x=4 A1
Age(x) Freq (f) f(x)
7 8 56
8 12 96
9 15 135
(β) B2
10 4 40
11 2 22
12 P 1 P 12
P
x = 42 f (x) = 361
Mean x = P f f (x)

x = 361
42
M1
x = 8.595
The mean age is 9 years A1
Total 12 marks
Question Details Marks
Number
10 (a) p  k + q12
p = k + kq21 M1
−1 = k + k121
k + k1 = −1 · · · (1) M1
2 = k + k221
4k + k1 = 8 · · · (2) M1
(2) − (1) : 3k = 9
k = 93 = 3 M1
Put k = 3 into (1)
3 + k1 = −1
k1 = −4 M1
p = 3 − q42
2 34 = 3 − q42 M1
11
4
= 3 − q42
11q 2 = 12q 2 − 16
16 =√12q 2 − 11q 2
q = 16
q=4 A1

(b)
p
|M 2 2
√N | = p (x2 − x1 ) + (y2 − y1 )
3 √10 = (−4 p − x)2 + (3 − 6)2 M1
(3 10)2 = ( (−4 − x)2 + (3 − 6)2 )2
90 = (−4 − x)(−4 − x) + 9
90 = 16 + 4x + 4x + x2 + 9 M1
x2 + 8x + 25 − 90 = 0
x2 + 8x − 65 = 0 M1
x2 − 5x + 13x − 65 = 0 M1
x(x − 5) + 13(x − 5) = 0
(x − 5)(x + 13) = 0
Eitherx − 5 = 0 or x + 13 = 0
x = 5 or x = −13 A1
Total 12 marks
Question Details Marks
Number
Amount to Rate of tax Tax (GH¢)
be taxed
(GH)¢
3000 300 Nil
11(a) 2700 5
100
× 240 12 M4
2460 7.5
100
× 480 36
1980 10
100
× 480 48
1500 12.5
100
× 960 120
540 Total Tax 216
(i) Tax paid by Mr Owusu is GH¢216.00 A1
(ii) % of income pay √ as tax= 3000
216
× 100 = 7.2% A1
(b) log5 (5 2x+1
−√20 5) = 2x
(52x+1
− 20 √ 5) = 52x M1
52x × 51 − 20 5 = √ 52x
5(52x ) − 52x = 20 5 √ M1
Let 52x √ = y: 5y − y = 20 5
4y = 20 √
5
y= √ 20 5
4
M1
y=5 √ 5
2x
5 =5 5 M1
1
52x = 51 × 5 2
1
52x = 51+ 2
2x = 1 + 12 M1
4x = 2 + 1
x = 34 A1
Total 12 marks
Question Details Marks
Number
12. y = ax2 + bx + c = 0
(a)
(0, 5); 5 = a(0)2 + b(0) + c
c=5 M1
(1, 0); 0 = a(1)2 + b(1) + c
0=a+b+c
Put c = 5 in a + b + c = 0
a+b+5=0
a + b = −5 · · · (1)
(3, −4); −4 = a(3)2 + b(3) + c
−4 = 9a + 3b + c
Put c = 5 in 9a + 3b + c = −4
9a + 3b + 5 = −4
9a + 3b = −9 · · · (2)
a + b = −5 · · · (1) M1
9a + 3b = −9 · · · (2)
Make a the subject in (1)
a = −5 − b
Put a = −5 − b
9(−5 − b) + 3b = −9
−45 − 9b + 3b = −9
−6b = −9 + 45
36
b = −6
b = −6 M1
Put b = −6 in (1)
a − 6 = −5
a=1 M1
y = x2 − 6x + 5
x -1 0 1 2 3 4 5 6 7
(b) B2
y 12 5 0 -3 -4 -3 0 5 12
Total 12 marks
Question Details Marks
Number

(c)

B3

(d) 3<x≤7 A1
(d) Minimum coordinates are (3, −4) A1
(e) 1<x<5 A1
Total 12 marks
Question Details Marks
Number
13. (a) )Let ∠M SN = x and ∠QN P = y

B2
132 + y + y = 180 M1
2y = 180 − 132
2y = 48
y = 48
2
= 24 M1
∠N P Q = 2(24) = 48o and ∠P N Q = 24o
∠QN P + ∠N P Q + ∠N QP = 180o
y + 2y + ∠N QP = 180o
∠N QP = 180o − 3y
∠N QP = 180o − 3(24)
∠N QP = 108o
∠SQN = 180o − 108o = 72o M1
∠SM N +∠M SQ+∠SQN +∠M N Q = 360
x + 2x + 72 + 132 = 360 M1
3x = 360 − 204
x = 156
3
x = 52o p A1
(b)(i) |AC| = √ |AB|2 + |BC|2
|AC| = √242 + 72 M1
|AC| = 625
|AC| = 25cm ∴ Radius = 12.5cm A1
(ii) Area = πr − 2 bh
2 1

= (3.142 × 12.52 ) − ( 12 × 7 × 24) M1


= 490.9375 − 84 M1
= 406.9375 − 84
Area of the shaded portion is = 407cm2 A1
Total 12 marks

You might also like