0% found this document useful (0 votes)
59 views12 pages

Kamssa Applied Mathematics

This document contains a math exam paper with multiple questions covering topics such as probability, kinematics, integration, and trigonometry. The paper provides information, formulas, calculations and worked examples for each question.

Uploaded by

namatajenn692
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
59 views12 pages

Kamssa Applied Mathematics

This document contains a math exam paper with multiple questions covering topics such as probability, kinematics, integration, and trigonometry. The paper provides information, formulas, calculations and worked examples for each question.

Uploaded by

namatajenn692
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 12

KAMSSA 2022 MATH APPLIED

PAPER 2(P425/2)
SECTION A:40 MARKS
20.5−10
1 E(x)=0.4x25=10 Ƶ =
3.873
𝜎𝑥=√0.4 𝑥 0.6 𝑥 25 = 2.711
=√15 OR 3.873 (3d.p) ∴ p (Ƶ < 2.711) =0.5+0.4966
P ( ≤ 20 )= p (x ≤ 20.5) =0.9966

2 8
2 𝐹̃ m𝑎̃ = 500 ( ) =( )
−3 −12
1000 1000 8
=( )N Power developed =( ).( )
−1500 −1500 −12
From v = 𝑢̃ + 𝑎̃t = (26,000 watts )
0 2
= ( ) + ( )x4
0 −3
3(a)
X 10 15 20
Y 2.9 _ -0.1

𝑦−2.9 −0.1−2.9
=
15−10 20−10

Y = 1.4
3(b)
X 20 30 _
y - 0.1 - 2.9 - 3.2
𝑥−30 30−20
=
−3.2−−2.9 −2.9−−0.1

X = 31.07 or 31.1
4)
A

120cm
20N
α Ɵ
B Q C
50cm
For all forces drawn
120
tan 𝜃 =
50

𝜃 = 67.4°
∝ = 22.6°

̃ =∝ +−20 cos 22.6°


∓𝑅
0 −20 sin 22.6°
But 𝜃 + −20 cos 22.6° = 0
𝜃 = 18.462𝑵
5)
speed 20 - 30 30 - 40 40 - 60 60 - 80 80 - 100
f 2 7 20 16 5
F 2 9 29 45 50
40
i) 40th percentile is the x 50 =20thvalue
100

50𝑥40
−9
100
=40 +( ) 𝑥 20
20

20−9
=40 +( )x 20
20

=40 + 11
= 51
b) Number of vehicles whose speed > 45
60−45
16 + 5 + x 20
20

= 56
6) Range (max) = 0.12 x 1000
=120m
𝑢2
Range (max) = when 𝜃 = 45°
𝑔

𝑢2
120 =
9.8

U = 34.2929m/s

Or = 14√6𝑚/𝑠
b) from
𝑣 2 = 𝑢2 sin 2 𝜃 – 2gH
𝑂2 = 1176sin 2
45° - 2 x 9.8H
588𝑚
∴𝐻= or 30m
2 𝑥 9.8
7) By simple interoal arithmetic
2.55 𝑥 4.15
Min value = 6.225 – 3.15 - ( )
4.5

= 0.7233 (4dip).
2.45 𝑥 4.05
Max value= 6.235 – 3.05 - ( )
5.5

= 1.381
∴ 𝑀𝑎𝑥 𝑝0𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑟𝑟𝑜𝑟 = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟
1.381 – 0.7238
=
2

= 0.329 (3𝑠. 𝑓 𝑠 )
8)

6
a) +2y +y = 1
7

1 − 6⁄ =3y
7
1
Y= or 0.0476.
21
6
b) 3y + P(M∩N) =
7
6 3
P(M∩ 𝑁} = -
7 21
15 5
= or
21 7

𝑂𝑅 0.7143
SECTION B : 60 MARKS
9a)

500
500
Lion =L
5N
A
10ms-1
900 -(VT)
A
−𝑉0
𝑇 α
Ɵ (VT)
1500
10ms-1
L
6
sin 𝜃 =
10

𝜃 = 36.9°
→ ∝= 180° - 90° − 36.9° = 53.1°
∴ 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑟 𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑠 𝑖𝑠
180° - 53.1° = 126.9°
b) Closest or best distance occurs at A.
A
900

T
T
β 100m

L
𝛽 = 50° − 36.9° = 13.1°
∴ 𝑙𝑒𝑎𝑠𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
AT = 100sin 13. 1° = 22.6651m (4𝑑. 𝑝)
Time to reach the closest distance A.
𝐴𝐿
t=
| 𝐿𝑉𝑇 |

𝑉𝑇
| 𝐿 ~ | = √102 − 62
= 8𝑀𝑆 −1
AL = 100cos 13.1° = 97.3976m (4𝑑𝑝)
97.3976
Time t =
8

= 12.1747 seconds
4−0
10a) ℎ= = 0.8
5

X 0 0.8 1.6 2.4 3.2 4.0


𝑓(𝑥) 1 5.7995 33.6347 195.0662 1131.2954 6561

4 1
∴ ∫0 32𝑥 dx = 𝑥 0.8 (6562 + 2𝑥1365.7958)
2

= 3717.44
b) let U = 32𝑋
In U = 2x in 3
1 𝑑𝑢
= 2 in 3
𝑈 𝑑𝑥
𝑑𝑢
dx =
2 𝑖𝑛 3𝑥4

𝑑𝑢 𝑢 32𝑥 4
∫ 𝑈 . 2𝑢 𝑖𝑛 3 = |
2 𝑖𝑛 3 2 𝑖𝑛 3 0
38 − 1
=
2 𝑖𝑛 3 2 𝑖𝑛 3

= 2985.58
c)|𝑒𝑟𝑟𝑜𝑟 | = |2985.58 − 3717.44|
= 731.86
∴ 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟
731 . 86
=
2985.58

= 0.245
= 0.25(2𝑑. 𝑝)
Comment: By increasing sub interrals or ordinates or reducing the width of strips.

500𝑚
11 (a) x = = 5m OR 8 x 103 ug
100

OR 2 X 103 ug
U=0
From 𝑉 2 = 𝑈 2 + 2ax
𝑉 2 = 𝑂2 + 2 X 10 X 5 = 100
10𝑚
∴𝑉=
𝑠

OR P.E = K.E =8 𝑋 103 X 10 X 5


1
= 𝑋 8 𝑋 103 𝑋 𝑈 2
2

=𝑉 2 = 100
=V = 10m/s
d) Initial total mom = 8 x 103 x 10 = 8 x 104 ng m/s
let 𝑉1 be the common speed
final total mom = ( 8 + 2 ) x 103 x 𝑉1
But 104 𝑉1 = 8 X 104
∴ 𝑉1= 8m/s
c)

R1=106N

W = (8 + 2) x 103 𝑥 10 = 105 𝑁
By Newton’s 2nd law downwards
105 - 106 = ( 8 + 2) x 103 𝑎
a = −90 𝑚/𝑠 2
Let h be distance penetrated.
From 𝑉 2 = 42 + 2ax
𝑂0 = 82 + 2 𝑥 ( −90) 𝑥 ℎ
64
h= m
180
32
or m
90
16
or m
45

or 0.3556m.
12a) P( x > 200) = P( Ƶ > Ƶ1 ) = 0.63
Ƶ1 = −0.332
200−𝑁
⇒ −0.332 = … … … … … (𝑖)
𝜎

P( X < 250) = p ( Ƶ <Ƶ2 ) = 054


Ƶ2 = 0.101 ,0R = 0.10, OR = 0.11
250−𝑁
⇒ 0.101 = … … … … . . (𝑖𝑖)
𝜎

i – ii
− 0.433𝜎
= -50
𝜎

= 115.4734 OR 113.1738
Put 𝜎 𝑖𝑛 (𝑖) 𝜑 = 200 + 0.332 x 115.4734
= 238.3372
OR = 237.5504
b) P( x > 195)
195−238.3372
Ƶ=
115.4734

= - 0.375
P( Ƶ > −0.375 ) = 0.5 + 0. 1462 (or = 0.465)
= 0.6462 or 0.6465
∴ % 𝑎𝑔𝑒 = 0.6462 𝑥 100
= 64.62
13a)
P
R
Ɵ
---

------ Mg cos 300


-

------
--

-
---

µR Mg
----

300

Resolve parallel to the plane


𝑚𝑔
Pcos 𝜃 𝜇ℛ + mgsin 30° =𝜇ℛ + ……………….(i)
2

√3
Resolve ∴ 𝑅 + 𝑃 sin 𝜃 = mgcos 30° = mg…….(2)
2

√3
R= mg - Psin 𝜃.
2
√3 𝑚𝑔
From (1) and (2) Pcos 𝜃 = 𝜇( 𝑚𝑔 − 𝑃 sin 𝜃) +
2 2
sin 𝜆
For equilibrium , 𝑡 𝑎𝑛𝑑 𝜆 =
cos 𝜆

sin 𝜆 √3 𝑚𝑔
Pcos 𝜃 = ( 𝑚𝑔 − sin 𝜃) +
cos 𝜆 2 2

√3 𝑚𝑔
Pcos 𝜃 cos 𝜆 = mg sin 𝜆 - P sin 𝜃 sin 𝜆 + cos 𝜆
2 2
𝑚𝑔
P(cos 𝜃 sin 𝜆 + sin 𝜃 sin 𝜆) = (√3 sin 𝜆 + cos 𝜆)
2

For 𝑃𝑚𝑖𝑛 , cos(𝜃 − 𝜆) = + 1


𝑚𝑔
∴ 𝑃𝑚𝑖𝑛 = (√3 sin 𝜆 + cos 𝜆)
2

13b)
P1
R1 µR1
Ɵ

mg
300
For all forces
𝜇ℛ1 = mgsin 30° + 𝑃1 cos 𝜃
𝑚𝑔
= + 𝑃1 cos 𝜃 ……………….(1)
2

ℛ1 = 𝑃1 sin 𝜃 + mgcos 30°


√3
= 𝑃1 sin 𝜃 + mg ………………….(2)
2

From (1) and (2)


√3 𝑚𝑔
𝜇 (𝑃1 sin 𝜃 + 𝑚𝑔) = 𝑥 𝑃1 cos 𝜃
2 2
sin 𝜆
For equilibrium,𝜇 = tan 𝜆 = .
cos 𝜆

sin 𝜆 √3 𝑚𝑔
(𝑃1 sin 𝜃 + 𝑚𝑔) = + 𝑃1 cos 𝜃
cos 𝜆 2 2

√3 𝑚𝑔
𝑃1 (sin 𝜃 sin 𝜆 + 𝑚𝑔 sin 𝜆) = cos 𝜆 + 𝑃1 cos 𝜃 cos 𝜆
2 2
𝑚𝑔
(√3 sin 7 − cos 𝜆) = 𝑃1 (cos 𝜃 cos 𝜆 − sin 𝜃 sin 𝜆)
2

=𝑃1 cos(𝜃 + 𝜆)
For 𝑃𝑚𝑖𝑛 cos(𝜃 + 𝜆) = + 1
NO 14a
14b)
x 82 78 86 72 91 80 95 72 89 74
y 75 80 93 65 87 71 98 68 84 77
ℛ𝑥 5 7 4 9.5 2 6 1 9.5 3 8
ℛ𝑦 7 5 2 10 3 8 1 9 4 6
𝐷2 4 4 4 0.25 1 4 0 0.25 1 4
∑ 𝑑2 =
22.5
6 𝑥 22.5
𝑃 = 1−
10(102 −1)

= 0.86
Comment : At 1% level of significance there is reasonable for much significant of math’s on
Economics
15 a) 𝑓(0) = 0+0-1 = -1
𝑓(1) = 1 +2 -1 = 2 OR
X 0 1
𝑓(𝑋) - 2
1

Since 𝑓 (0) x 𝑓 (1) < 0


or a change in sign of 𝑓(x), there in a real root between x=0 and x= 1
b)
𝑥 0 𝑥0 1

𝑓(𝑥) -1 0 2

𝑥0 −0 1−0
=
0− − 1 2− − 1
1
𝑥0 = ≈ 0.3
3

c) 𝑓 1(𝑥) = 3𝑥 2 + 2 , (𝑁𝑜𝑡 𝑓 1(𝑥𝑛 ) = 3𝑥𝑛2 + 2)


(0.3)3 + (2 𝑥 𝑜.3)−1
𝑋1 = 0.3 - = 0.464
3𝑥 (0.3)2 +1

(0.464)3 +2 (0.464)2 −2
𝑋2 = 0.464 -
3 𝑥 (0.464)2 +2

= 0.453
(0.453)3 +2 𝑋 0.453−1
𝑋3 = 0.453 -
3𝑋(0.453)2 +2

= 0.453
=|0.453 − 0.453|
∴ 𝑅𝑜𝑜𝑡 = 0. 45
16a) for 𝑓(𝑋 ) < 0 , 𝑓 (𝑋 ) = 0
For 0 ≤ 𝑥 ≤ 1
𝑋
𝑓 (𝑋 ) = 0 + ∫0 𝐾𝑥 (1 − 𝑋 2 ) 𝑑𝑋

(1 − 𝑋 2 ) 2 | 𝑋
−𝑘
=
4 0
−𝐾 𝐾
𝑓 (𝑋 ) = (1 − 𝑋 2 )2
4 4
𝐾 𝐾
𝑓 (1) = 0 + =
4 4

0 , 𝑥 < 0 0𝑟 𝑥 ≤ 0
𝐾 2 2 𝐾
∴ 𝑓 (𝑋 ) = | 4 − 4 (1 − 𝑋 ) ; 0 ≤ 𝑋 ≤ 1
𝐾
; 𝑥 ≥ 1 𝑜𝑟 𝑥 ≥ 1
4

b (i)
𝐾
=1
4

𝐾=4
𝐾 𝐾 𝑚 1
(ii) − (1 − 𝑋 2 )2 | =
4 4 𝑜 2
4 4 4 4 1
(ii) − (1 − 𝑚2 )2 + − =
4 4 4 4 2
1
1 − -(1 − 𝑚2 )2 =0
2

−𝑚4 + 2𝑚2 − 1 = 0
1
+𝑚2 − 2𝑚2 + =0
2

√16−8 4 ±2√2
𝑚2 = 4 ± =
4 4

√2
M = √1 − =√0.2929
2

= 0.5412
c) 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑥

1
E(X) = ∫0 𝑥 . 𝑘 𝑥 (1 − 𝑋 2 ) 𝑑x
1
=∫0 𝑘 (𝑥 2 − 𝑥 4 )𝑑 x
𝑋3 𝑋5 1
=𝐾 ( − )|
3 5 0
1 1
=4 ( − ) = 0
3 5
8
= OR 0.5333
15

END

1
Area of 1st triangle = x 30 x 45
2
= 675 𝑠𝑞 . 𝑢𝑛𝑖𝑡𝑠
1
Area of 2nd triangle = x 60 x 25
2

= 750 𝑠𝑞. 𝑢𝑛𝑖𝑡𝑠


1
Area of a trapezium = ℎ (𝑎 + 𝑏 )
2
1
= x 60 (45 + 65)
2

= 3150 𝑠𝑞 . 𝑢𝑛𝑖𝑡𝑠
Total are = 675 + 750 + 3150
= 4575𝑠𝑞 . 𝑢𝑛𝑖𝑡𝑠
END

You might also like