KAMSSA 2022 MATH APPLIED
PAPER 2(P425/2)
SECTION A:40 MARKS
                                                                         20.5−10
1 E(x)=0.4x25=10                                                   Ƶ =
                                                                          3.873
  𝜎𝑥=√0.4 𝑥 0.6 𝑥 25                                                 = 2.711
       =√15 OR 3.873 (3d.p)                                    ∴ p (Ƶ < 2.711) =0.5+0.4966
     P ( ≤ 20 )= p (x ≤ 20.5)                                                 =0.9966
                 2                                                          8
2 𝐹̃ m𝑎̃ = 500 ( )                                                    =(       )
                −3                                                         −12
                       1000                                                        1000     8
                =(           )N                              Power developed =(         ).(   )
                       −1500                                                       −1500 −12
      From v = 𝑢̃ + 𝑎̃t                                                    = (26,000 watts )
                   0     2
                = ( ) + ( )x4
                   0     −3
3(a)
X               10              15           20
Y               2.9             _            -0.1
       𝑦−2.9         −0.1−2.9
                   =
       15−10           20−10
          Y = 1.4
3(b)
X              20            30          _
y              - 0.1         - 2.9       - 3.2
         𝑥−30                   30−20
                         =
       −3.2−−2.9             −2.9−−0.1
X = 31.07 or 31.1
4)
                        A
               120cm
                                        20N
                                    α               Ɵ
                        B                     Q          C
                                                  50cm
For all forces drawn
          120
tan 𝜃 =
          50
𝜃 = 67.4°
∝ = 22.6°
̃ =∝ +−20 cos 22.6°
∓𝑅
   0 −20 sin 22.6°
But 𝜃 + −20 cos 22.6° = 0
𝜃 = 18.462𝑵
5)
 speed               20 - 30         30 - 40       40 - 60   60 - 80   80 - 100
 f                   2               7             20        16        5
 F                   2               9             29        45        50
                                    40
   i)         40th percentile is the x 50 =20thvalue
                                             100
                  50𝑥40
                        −9
                   100
     =40 +(                     ) 𝑥 20
                       20
          20−9
=40 +(            )x 20
             20
=40 + 11
= 51
b) Number of vehicles whose speed > 45
              60−45
16 + 5 +                x 20
                  20
= 56
6) Range (max) = 0.12 x 1000
=120m
                            𝑢2
Range (max) =                    when 𝜃 = 45°
                            𝑔
        𝑢2
120 =
        9.8
U = 34.2929m/s
Or = 14√6𝑚/𝑠
b) from
𝑣 2 = 𝑢2 sin 2 𝜃 – 2gH
𝑂2 = 1176sin            2
                            45° - 2 x 9.8H
         588𝑚
∴𝐻=                    or 30m
        2 𝑥 9.8
7) By simple interoal arithmetic
                                         2.55 𝑥 4.15
Min value = 6.225 – 3.15 - (                       )
                                            4.5
               = 0.7233 (4dip).
                                         2.45 𝑥 4.05
Max value= 6.235 – 3.05 - (                            )
                                             5.5
               = 1.381
 ∴ 𝑀𝑎𝑥 𝑝0𝑠𝑠𝑖𝑏𝑙𝑒 𝑒𝑟𝑟𝑜𝑟 = 𝑎𝑏𝑠𝑜𝑙𝑢𝑡𝑒 𝑒𝑟𝑟𝑜𝑟
              1.381 – 0.7238
          =
                    2
          = 0.329 (3𝑠. 𝑓 𝑠 )
8)
     6
a) +2y +y = 1
     7
1 − 6⁄ =3y
      7
      1
Y=        or 0.0476.
     21
                                 6
b)        3y + P(M∩N) =
                                 7
                            6    3
          P(M∩ 𝑁} = -
                            7   21
                          15         5
                        =       or
                          21         7
          𝑂𝑅 0.7143
                                               SECTION B : 60 MARKS
9a)
           500
          500
          Lion =L
       5N
                                     A
                                                 10ms-1
                                   900           -(VT)
                 A
−𝑉0
 𝑇 α
    Ɵ                                            (VT)
            1500
                                                 10ms-1
  L
            6
  sin 𝜃 =
            10
  𝜃 = 36.9°
  → ∝= 180° - 90° − 36.9° = 53.1°
  ∴ 𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑟 𝑏𝑒𝑎𝑟𝑖𝑛𝑔𝑠 𝑖𝑠
  180° - 53.1° = 126.9°
  b)    Closest or best distance occurs at A.
                                     A
                                  900
                                         T
                                             T
                           β 100m
                 L
                     𝛽 = 50° − 36.9° = 13.1°
        ∴ 𝑙𝑒𝑎𝑠𝑡 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
        AT = 100sin 13. 1° = 22.6651m (4𝑑. 𝑝)
        Time to reach the closest distance A.
                          𝐴𝐿
                     t=
                       | 𝐿𝑉𝑇 |
            𝑉𝑇
        | 𝐿 ~ | = √102 − 62
        = 8𝑀𝑆 −1
        AL = 100cos 13.1° = 97.3976m (4𝑑𝑝)
                       97.3976
        Time t =
                           8
                     = 12.1747 seconds
              4−0
10a) ℎ=             = 0.8
               5
 X              0                0.8    1.6     2.4      3.2       4.0
     𝑓(𝑥)       1                5.7995 33.6347 195.0662 1131.2954 6561
     4                    1
∴ ∫0 32𝑥 dx           = 𝑥 0.8 (6562 + 2𝑥1365.7958)
                          2
                     = 3717.44
b) let U = 32𝑋
            In U = 2x in 3
            1 𝑑𝑢
                   = 2 in 3
            𝑈 𝑑𝑥
                      𝑑𝑢
            dx =
                    2 𝑖𝑛 3𝑥4
                     𝑑𝑢                    𝑢         32𝑥         4
            ∫ 𝑈 . 2𝑢 𝑖𝑛 3           =                        |
                                        2 𝑖𝑛 3      2 𝑖𝑛 3       0
                               38      −       1
                     =
                              2 𝑖𝑛 3       2 𝑖𝑛 3
                     = 2985.58
c)|𝑒𝑟𝑟𝑜𝑟 | = |2985.58 − 3717.44|
               = 731.86
     ∴ 𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 𝑒𝑟𝑟𝑜𝑟
        731 . 86
     =
        2985.58
                                    = 0.245
                                    = 0.25(2𝑑. 𝑝)
Comment: By increasing sub interrals or ordinates or reducing the width of strips.
                   500𝑚
11 (a) x =                    = 5m OR 8 x 103 ug
                    100
                                    OR 2 X 103 ug
                     U=0
From                  𝑉 2 = 𝑈 2 + 2ax
                     𝑉 2 = 𝑂2 + 2 X 10 X 5 = 100
                          10𝑚
               ∴𝑉=
                             𝑠
OR             P.E = K.E =8 𝑋 103 X 10 X 5
                             1
                          = 𝑋 8 𝑋 103 𝑋 𝑈 2
                             2
                          =𝑉 2 = 100
                          =V = 10m/s
d) Initial total mom = 8 x 103 x 10 = 8 x 104 ng m/s
     let 𝑉1 be the common speed
     final total mom = ( 8 + 2 ) x 103 x 𝑉1
        But 104 𝑉1 = 8 X 104
∴ 𝑉1= 8m/s
c)
        R1=106N
W = (8 + 2) x 103 𝑥 10 = 105 𝑁
By Newton’s 2nd law downwards
105 - 106 = ( 8 + 2) x 103 𝑎
        a = −90 𝑚/𝑠 2
Let h be distance penetrated.
        From 𝑉 2 = 42 + 2ax
               𝑂0 = 82 + 2 𝑥 ( −90) 𝑥 ℎ
                     64
               h=            m
                     180
                    32
               or        m
                    90
                    16
               or        m
                    45
               or 0.3556m.
12a) P( x > 200) = P( Ƶ > Ƶ1 ) = 0.63
          Ƶ1 = −0.332
                 200−𝑁
⇒ −0.332 =               … … … … … (𝑖)
                   𝜎
P( X < 250) = p ( Ƶ <Ƶ2 ) = 054
          Ƶ2 = 0.101 ,0R = 0.10, OR = 0.11
                  250−𝑁
⇒ 0.101 =                 … … … … . . (𝑖𝑖)
                     𝜎
i – ii
          − 0.433𝜎
                     = -50
             𝜎
                   = 115.4734 OR 113.1738
Put 𝜎 𝑖𝑛 (𝑖) 𝜑 = 200 + 0.332 x 115.4734
                   = 238.3372
          OR       = 237.5504
b) P( x > 195)
                         195−238.3372
                  Ƶ=
                           115.4734
                   = - 0.375
P( Ƶ > −0.375 ) = 0.5 + 0. 1462 (or = 0.465)
                   = 0.6462 or 0.6465
∴ % 𝑎𝑔𝑒 = 0.6462 𝑥 100
          = 64.62
13a)
                 P
 R
              Ɵ
 ---
             ------ Mg cos 300
    -
                   ------
     --
                         -
       ---
          µR Mg
          ----
         300
Resolve parallel to the plane
                                                  𝑚𝑔
          Pcos 𝜃 𝜇ℛ + mgsin 30° =𝜇ℛ +                  ……………….(i)
                                                   2
                                                            √3
Resolve          ∴ 𝑅 + 𝑃 sin 𝜃 =              mgcos 30° =        mg…….(2)
                                                            2
                          √3
                   R=          mg - Psin 𝜃.
                          2
                                                √3                                 𝑚𝑔
From (1) and (2) Pcos 𝜃 = 𝜇(                          𝑚𝑔 − 𝑃 sin 𝜃) +
                                                2                                      2
                                              sin 𝜆
For equilibrium , 𝑡 𝑎𝑛𝑑 𝜆 =
                                              cos 𝜆
               sin 𝜆       √3                             𝑚𝑔
Pcos 𝜃 =               (        𝑚𝑔 − sin 𝜃) +
               cos 𝜆        2                             2
                       √3                                                 𝑚𝑔
Pcos 𝜃 cos 𝜆 =              mg sin 𝜆 - P sin 𝜃 sin 𝜆 +                         cos 𝜆
                        2                                                 2
                                               𝑚𝑔
P(cos 𝜃 sin 𝜆 + sin 𝜃 sin 𝜆) =                        (√3 sin 𝜆 + cos 𝜆)
                                                2
For       𝑃𝑚𝑖𝑛 , cos(𝜃 − 𝜆) = + 1
                𝑚𝑔
∴ 𝑃𝑚𝑖𝑛 =               (√3 sin 𝜆 + cos 𝜆)
                  2
13b)
                  P1
R1                              µR1
                   Ɵ
                      mg
         300
For all forces
𝜇ℛ1 = mgsin 30° + 𝑃1 cos 𝜃
    𝑚𝑔
=        + 𝑃1 cos 𝜃 ……………….(1)
     2
ℛ1 = 𝑃1 sin 𝜃 + mgcos 30°
                  √3
= 𝑃1 sin 𝜃 +           mg ………………….(2)
                  2
          From (1) and (2)
                                  √3                𝑚𝑔
           𝜇 (𝑃1 sin 𝜃 +                𝑚𝑔) =                 𝑥 𝑃1 cos 𝜃
                                   2                  2
                                                              sin 𝜆
          For equilibrium,𝜇 = tan 𝜆 =                                 .
                                                              cos 𝜆
          sin 𝜆                        √3             𝑚𝑔
                  (𝑃1 sin 𝜃 +               𝑚𝑔) =             + 𝑃1 cos 𝜃
          cos 𝜆                        2                  2
                                       √3                         𝑚𝑔
          𝑃1 (sin 𝜃 sin 𝜆 +                 𝑚𝑔 sin 𝜆) =                   cos 𝜆 + 𝑃1 cos 𝜃 cos 𝜆
                                       2                              2
          𝑚𝑔
               (√3 sin 7 − cos 𝜆) = 𝑃1 (cos 𝜃 cos 𝜆 − sin 𝜃 sin 𝜆)
           2
                                            =𝑃1 cos(𝜃 + 𝜆)
          For 𝑃𝑚𝑖𝑛 cos(𝜃 + 𝜆) = + 1
                                            NO 14a
14b)
      x       82            78             86       72     91   80   95   72     89     74
      y       75            80             93       65     87   71   98   68     84     77
     ℛ𝑥       5             7              4        9.5    2    6    1    9.5    3      8
     ℛ𝑦       7             5              2        10     3    8    1    9      4      6
     𝐷2       4             4              4        0.25   1    4    0    0.25   1      4
                                                                                      ∑ 𝑑2 =
22.5
                                      6 𝑥 22.5
                    𝑃 = 1−
                                     10(102 −1)
                    = 0.86
Comment : At 1% level of significance there is reasonable for much significant of math’s on
Economics
15 a) 𝑓(0) = 0+0-1 = -1
          𝑓(1) = 1 +2 -1 = 2                          OR
 X          0 1
 𝑓(𝑋) - 2
      1
Since 𝑓 (0) x 𝑓 (1) < 0
or a change in sign of 𝑓(x), there in a real root between x=0 and x= 1
b)
      𝑥        0                     𝑥0      1
     𝑓(𝑥)      -1                0           2
          𝑥0 −0         1−0
                    =
          0− − 1        2− − 1
                   1
          𝑥0 =         ≈ 0.3
                   3
c) 𝑓 1(𝑥) = 3𝑥 2 + 2 , (𝑁𝑜𝑡 𝑓 1(𝑥𝑛 ) = 3𝑥𝑛2 + 2)
              (0.3)3 + (2 𝑥 𝑜.3)−1
𝑋1 = 0.3 -                                = 0.464
                    3𝑥 (0.3)2 +1
                    (0.464)3 +2 (0.464)2 −2
𝑋2 = 0.464 -
                         3 𝑥 (0.464)2 +2
                    = 0.453
                    (0.453)3 +2 𝑋 0.453−1
𝑋3 = 0.453 -
                         3𝑋(0.453)2 +2
          = 0.453
           =|0.453 − 0.453|
∴ 𝑅𝑜𝑜𝑡 = 0. 45
16a) for 𝑓(𝑋 ) < 0 , 𝑓 (𝑋 ) = 0
For 0 ≤ 𝑥 ≤ 1
                                                𝑋
           𝑓 (𝑋 ) = 0 + ∫0 𝐾𝑥 (1 − 𝑋 2 ) 𝑑𝑋
                       (1 − 𝑋 2 ) 2 | 𝑋
               −𝑘
           =
               4                      0
                                   −𝐾                       𝐾
           𝑓 (𝑋 ) =                     (1 − 𝑋 2 )2
                                   4                        4
                                            𝐾       𝐾
           𝑓 (1) = 0 +                          =
                                            4       4
                 0 , 𝑥 < 0 0𝑟 𝑥 ≤ 0
                       𝐾 2 2       𝐾
∴ 𝑓 (𝑋 ) = | 4 − 4 (1 − 𝑋 ) ; 0 ≤ 𝑋 ≤ 1
                  𝐾
                    ; 𝑥 ≥ 1 𝑜𝑟 𝑥 ≥ 1
                                   4
b (i)
                           𝐾
                                   =1
                               4
                           𝐾=4
       𝐾       𝐾                                𝑚 1
(ii)       −       (1 − 𝑋 2 )2 |                 =
       4       4                                𝑜 2
       4   4                                    4       4   1
(ii) − (1 − 𝑚2 )2 + − =
       4   4                                    4       4   2
       1
1 − -(1 − 𝑚2 )2 =0
       2
−𝑚4 + 2𝑚2 − 1 = 0
                                   1
+𝑚2 − 2𝑚2 +                            =0
                                   2
                √16−8                   4 ±2√2
𝑚2 = 4 ±                           =
                       4                    4
                    √2
M = √1 −                       =√0.2929
                       2
                       = 0.5412
c) 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑥
               1
E(X) = ∫0 𝑥 . 𝑘 𝑥 (1 − 𝑋 2 ) 𝑑x
                   1
           =∫0 𝑘 (𝑥 2 − 𝑥 4 )𝑑 x
                       𝑋3              𝑋5  1
           =𝐾 (                    −     )|
                           3           5   0
               1   1
      =4 ( − ) = 0
               3   5
          8
      =        OR 0.5333
          15
                                   END
                       1
Area of 1st triangle = x 30 x 45
                       2
               = 675 𝑠𝑞 . 𝑢𝑛𝑖𝑡𝑠
                        1
Area of 2nd triangle = x 60 x 25
                        2
               = 750 𝑠𝑞. 𝑢𝑛𝑖𝑡𝑠
                         1
Area of a trapezium =        ℎ (𝑎 + 𝑏 )
                         2
                   1
               =       x 60 (45 + 65)
                   2
             = 3150 𝑠𝑞 . 𝑢𝑛𝑖𝑡𝑠
Total are   = 675 + 750 + 3150
            = 4575𝑠𝑞 . 𝑢𝑛𝑖𝑡𝑠
                                          END