Lemh 201
Lemh 201
Chapter 7
INTEGRALS
7.1 Introduction
Differential Calculus is centred on the concept of the
derivative. The original motivation for the derivative was
the problem of defining tangent lines to the graphs of
functions and calculating the slope of such lines. Integral
Calculus is motivated by the problem of defining and
calculating the area of the region bounded by the graph of
the functions.
If a function f is differentiable in an interval I, i.e., its
derivative f ′exists at each point of I, then a natural question
arises that given f ′at each point of I, can we determine
the function? The functions that could possibly have given
function as a derivative are called anti derivatives (or G .W. Leibnitz
primitive) of the function. Further, the formula that gives (1646 -1716)
all these anti derivatives is called the indefinite integral of the function and such
process of finding anti derivatives is called integration. Such type of problems arise in
many practical situations. For instance, if we know the instantaneous velocity of an
object at any instant, then there arises a natural question, i.e., can we determine the
position of the object at any instant? There are several such practical and theoretical
situations where the process of integration is involved. The development of integral
calculus arises out of the efforts of solving the problems of the following types:
(a) the problem of finding a function whenever its derivative is given,
(b) the problem of finding the area bounded by the graph of a function under certain
conditions.
These two problems lead to the two forms of the integrals, e.g., indefinite and
definite integrals, which together constitute the Integral Calculus.
Reprint 2024-25
226 MATHEMATICS
Reprint 2024-25
INTEGRALS 227
Table 7.1
Symbols/Terms/Phrases Meaning
Reprint 2024-25
228 MATHEMATICS
We already know the formulae for the derivatives of many important functions.
From these formulae, we can write down immediately the corresponding formulae
(referred to as standard formulae) for the integrals of these functions, as listed below
which will be used to find integrals of other functions.
Derivatives Integrals (Anti derivatives)
d xn + 1 x n+1
=x ;
n
∫ x dx = + C , n ≠ –1
n
(i)
dx n + 1 n +1
Particularly, we note that
d
( x) = 1 ; ∫ dx = x + C
dx
d
(ii) ( sin x ) = cos x ; ∫ cos x dx = sin x + C
dx
d
(iii) ( – cos x ) = sin x ; ∫ sin x dx = – cos x + C
dx
d
(iv) ( tan x ) = sec2 x ; ∫ sec
2
x dx = tan x + C
dx
d
(v) ( – cot x ) = cosec2 x ; ∫ cosec
2
x dx = – cot x + C
dx
d
(vi) ( sec x ) = sec x tan x ; ∫ sec x tan x dx = sec x + C
dx
d
(vii) ( – cosec x ) = cosec x cot x ; ∫ cosec x cot x dx = – cosec x + C
dx
d
(
(viii) dx sin x =
–1 1
)
; ∫
dx
= sin – 1 x + C
1 – x2 1– x 2
d
(
(ix) dx – cos x =
–1 1
; ) ∫
dx
= – cos – 1 x + C
1 – x2 1– x 2
d
(
(x) dx tan x =
–1 1
)
1 + x2
;
dx
∫ 1 + x 2 = tan
–1
x+C
d x
(e ) = e x ; ∫ e dx = e +C
x x
(xi)
dx
Reprint 2024-25
INTEGRALS 229
d 1 1
(xii) ( log | x |) = ; ∫ x dx = log | x | +C
dx x
d ax ax
=a ; ∫ a dx =
x
(xiii)
x
+C
dx log a log a
A Note In practice, we normally do not mention the interval over which the various
functions are defined. However, in any specific problem one has to keep it in mind.
7.2.1 Some properties of indefinite integral
In this sub section, we shall derive some properties of indefinite integrals.
(I) The process of differentiation and integration are inverses of each other in the
sense of the following results :
d
dx ∫
f (x) dx = f (x)
d
= F (x ) = f (x)
dx
Similarly, we note that
d
f ′(x) = f (x)
dx
Reprint 2024-25
230 MATHEMATICS
d d
∫ dx ∫
f (x) dx = g (x ) dx
dx
d
f (x) dx – ∫ g (x ) dx = 0
dx ∫
or
or ∫ f (x) dx = ∫ g (x) dx + C
So the families of curves {∫ f (x) dx + C , C ∈ R}
1 1
Reprint 2024-25
INTEGRALS 231
d
dx ∫
Proof By the Property (I), k f (x) dx = k f (x) .
d d
Also
dx
k ∫ f (x) dx = k
dx ∫ f (x) dx = k f (x)
Reprint 2024-25
232 MATHEMATICS
x
(ii)
∫ (x 3 + 1) dx x
Solution
(i) We have
x3 – 1
∫ x2 dx = ∫ x dx – ∫ x dx
–2
(by Property V)
x1 + 1 x– 2 + 1
= + C1 – + C 2 ; C , C are constants of integration
1+1 – 2 +1 1 2
x2 x– 1 x2 1
= + C1 – – C2 = + + C1 – C 2
2 –1 2 x
x2 1
= + + C , where C = C1 – C2 is another constant of integration.
2 x
A Note From now onwards, we shall write only one constant of integration in the
final answer.
(ii) We have
2 2
∫ (x 3 + 1) dx = ∫ x 3 dx + ∫ dx
2
+1
5
x3
= 2 + x + C = 3 x3 + x + C
+1 5
3
Reprint 2024-25
INTEGRALS 233
3 3
1 1
∫ + 2 e – ) dx = ∫ x 2 dx + ∫ 2 e x dx – ∫ dx
x
(iii) We have (x 2
x x
3
+1
x2
= 3 + 2 e x – log x + C
+1
2
5
2
= x 2 + 2 e x – log x + C
5
Example 3 Find the following integrals:
(i) ∫ (sin x + cos x) dx (ii) ∫ cosec x (cosec x + cot x) dx
1 – sin x
(iii) ∫ cos2 x
dx
Solution
(i) We have
∫ (sin x + cos x) dx = ∫ sin x dx + ∫ cos x dx
= – cos x + sin x + C
(ii) We have
= – cot x – cosec x + C
(iii) We have
1 – sin x 1 sin x
∫ 2
cos x
dx = ∫ 2
cos x
dx – ∫
cos 2 x
dx
= tan x – sec x + C
Example 4 Find the anti derivative F of f defined by f (x) = 4x3 – 6, where F (0) = 3
Solution One anti derivative of f (x) is x4 – 6x since
d 4
(x – 6 x ) = 4x3 – 6
dx
Therefore, the anti derivative F is given by
F(x) = x4 – 6x + C, where C is constant.
Reprint 2024-25
234 MATHEMATICS
3 = 0 – 6 × 0 + C or C = 3
Hence, the required anti derivative is the unique function F defined by
F(x) = x4 – 6x + 3.
Remarks
(i) We see that if F is an anti derivative of f, then so is F + C, where C is any
constant. Thus, if we know one anti derivative F of a function f, we can write
down an infinite number of anti derivatives of f by adding any constant to F
expressed by F(x) + C, C ∈ R. In applications, it is often necessary to satisfy an
additional condition which then determines a specific value of C giving unique
anti derivative of the given function.
(ii) Sometimes, F is not expressible in terms of elementary functions viz., polynomial,
logarithmic, exponential, trigonometric functions and their inverses etc. We are
therefore blocked for finding ∫ f (x) dx . For example, it is not possible to find
∫e
– x2 2
dx by inspection since we can not find a function whose derivative is e – x
(iii) When the variable of integration is denoted by a variable other than x, the integral
formulae are modified accordingly. For instance
y4 + 1 1
∫ y dy = + C = y5 + C
4
4 +1 5
EXERCISE 7.1
Find an anti derivative (or integral) of the following functions by the method of inspection.
1. sin 2x 2. cos 3x 3. e 2x
2 3x
4. (ax + b) 5. sin 2x – 4 e
Find the following integrals in Exercises 6 to 20:
1
∫ (4 e ∫x ∫ (ax
2
6.
3x
+ 1) dx 7. (1 – ) dx 8.
2
+ bx + c ) dx
x2
2
1 x3 + 5x 2 – 4
∫ (2 x + e ) dx 10. ∫ x – ∫
2 x
9. dx 11. dx
x x2
x3 + 3x + 4 x3 − x 2 + x – 1
12. ∫ x
dx 13. ∫ x –1
dx 14. ∫ (1 – x) x dx
Reprint 2024-25
INTEGRALS 235
∫ x ( 3x + 2 x + 3) dx ∫ (2 x – 3cos x + e ) dx
2 x
15. 16.
sec 2 x 2 – 3sin x
19. ∫ cosec2 x dx 20. ∫
cos2 x
dx.
Reprint 2024-25
236 MATHEMATICS
Consider I= ∫ f (x) dx
dx
Put x = g(t) so that = g′(t).
dt
We write dx = g′(t) dt
Thus I= ∫ f ( x) dx = ∫ f ( g (t )) g′(t ) dt
This change of variable formula is one of the important tools available to us in the
name of integration by substitution. It is often important to guess what will be the useful
substitution. Usually, we make a substitution for a function whose derivative also occurs
in the integrand as illustrated in the following examples.
Example 5 Integrate the following functions w.r.t. x:
(i) sin mx (ii) 2x sin (x2 + 1)
Solution
(i) We know that derivative of mx is m. Thus, we make the substitution
mx = t so that mdx = dt.
1 1 1
Therefore, ∫ sin mx dx = m ∫ sin t dt = – m cos t + C = – m cos mx + C
(ii) Derivative of x2 + 1 is 2x. Thus, we use the substitution x2 + 1 = t so that
2x dx = dt.
∫ 2 x sin (x + 1) dx = ∫ sin t dt = – cos t + C = – cos (x2 + 1) + C
2
Therefore,
1
1 –2 1
(iii) Derivative of x is x = . Thus, we use the substitution
2 2 x
1
x = t so that dx = dt giving dx = 2t dt.
2 x
Reprint 2024-25
INTEGRALS 237
u5
Therefore, 2 ∫ tan 4t sec 2t dt = 2 ∫ u 4 du = 2 +C
5
2
= tan 5 t + C (since u = tan t)
5
2
= tan x + C (since t = x )
5
5
tan 4 x sec 2 x 2
Hence, ∫ x
dx =
5
tan 5 x +C
cos x
We have ∫ cot x dx = ∫ sin x dx
Reprint 2024-25
238 MATHEMATICS
Solution
(i) We have
Reprint 2024-25
INTEGRALS 239
t3 t 5
= – ∫ (t – t ) dt = – – + C
2 4
3 5
1 1
= – cos x + cos x + C
3 5
3 5
sin x
Hence, ∫ sin (x + a) dx = x cos a – sin a log |sin (x + a)| + C,
where, C = – C1 sin a + a cos a, is another arbitrary constant.
dx cos x dx
(iii) ∫ 1 + tan x = ∫ cos x + sin x
1 (cos x + sin x + cos x – sin x) dx
=
2 ∫ cos x + sin x
1 1 cos x – sin x
= 2 ∫ dx + 2 ∫ cos x + sin x dx
x C1 1 cos x – sin x
2 2 2 ∫ cos x + sin x
= + + dx ... (1)
Reprint 2024-25
240 MATHEMATICS
cos x – sin x
Now, consider I = ∫ dx
cos x + sin x
Put cos x + sin x = t so that (cos x – sin x) dx = dt
dt
Therefore I=∫
= log t + C2 = log cos x + sin x + C2
t
Putting it in (1), we get
dx x C1 1 C
∫ 1 + tan x = 2 + + log cos x + sin x + 2
2 2 2
x 1 C C
= + log cos x + sin x + 1 + 2
2 2 2 2
x 1 C C
= + log cos x + sin x + C, C = 1 + 2
2 2 2 2
EXERCISE 7.2
Integrate the functions in Exercises 1 to 37:
1.
2x
2.
( log x )2 3.
1
1 + x2 x x + x log x
4. sin x sin (cos x) 5. sin (ax + b) cos (ax + b)
6. ax + b 7. x x + 2 8. x 1 + 2 x 2
1 x
9. (4 x + 2) x 2 + x + 1 10. x – x 11. ,x>0
x+4
3
1
5
x2 1
12. (x – 1) 3 x 13. 14. , x > 0, m ≠ 1
(2 + 3x 3 )3 x (log x ) m
x x
15. 16. e2 x + 3 17. 2
9 – 4 x2 ex
–1
etan x e2x – 1 e2 x – e – 2 x
18. 19. 20.
1 + x2 e2 x + 1 e2 x + e – 2 x
Reprint 2024-25
INTEGRALS 241
sin – 1 x
21. tan2 (2x – 3) 22. sec2 (7 – 4x) 23.
1 – x2
sin x sin x 1
30. 31. 32.
1 + cos x (1 + cos x ) 2
1 + cot x
33.
1
34.
tan x
35.
(1 + log x)2
1 – tan x sin x cos x x
36.
(x + 1) ( x + log x )
2
37.
(
x 3sin tan – 1 x 4 )
8
x 1+ x
Choose the correct answer in Exercises 38 and 39.
10 x 9 + 10 x log e 10 dx
38. ∫ x10 + 10 x
equals
Reprint 2024-25
242 MATHEMATICS
Solution
(i) Recall the identity cos 2x = 2 cos2 x – 1, which gives
1 + cos 2 x
cos2 x =
2
1 1 1
Therefore, =
2 ∫ (1 + cos 2x ) dx = ∫ dx + ∫ cos 2 x dx
2 2
x 1
= + sin 2 x + C
2 4
1
(ii) Recall the identity sin x cos y = [sin (x + y) + sin (x – y)] (Why?)
2
Then =
1 1
=
2 – 5 cos 5 x + cos x + C
1 1
cos 5 x + cos x + C
= –
10 2
(iii) From the identity sin 3x = 3 sin x – 4 sin3 x, we find that
3sin x – sin 3x
sin3 x =
4
3 1
∫ sin ∫ sin x dx – ∫ sin 3x dx
3
Therefore, x dx =
4 4
3 1
= – cos x + cos 3 x + C
4 12
1
= – cos x +
cos3 x + C
3
Remark It can be shown using trigonometric identities that both answers are equivalent.
Reprint 2024-25
INTEGRALS 243
EXERCISE 7.3
Find the integrals of the functions in Exercises 1 to 22:
1. sin2 (2x + 5) 2. sin 3x cos 4x 3. cos 2x cos 4x cos 6x
3 3 3
4. sin (2x + 1) 5. sin x cos x 6. sin x sin 2x sin 3x
1 – cos x cos x
7. sin 4x sin 8x 8. 9.
1 + cos x 1 + cos x
sin 2 x
10. sin4 x 11. cos4 2x 12.
1 + cos x
cos 2 x – cos 2α cos x – sin x
13. 14. 15. tan3 2x sec 2x
cos x – cos α 1 + sin 2 x
4
sin 3 x + cos3 x cos 2 x + 2sin 2 x
16. tan x 17. 18.
sin 2 x cos 2 x cos 2 x
1 cos 2 x
19. 20. 21. sin – 1 (cos x)
sin x cos3 x ( cos x + sin x )2
1
22.
cos (x – a ) cos (x – b)
Choose the correct answer in Exercises 23 and 24.
sin 2 x − cos 2 x
23. ∫ sin 2 x cos 2 x dx is equal to
(A) tan x + cot x + C (B) tan x + cosec x + C
(C) – tan x + cot x + C (D) tan x + sec x + C
e x (1 + x)
24. ∫ cos2 (e x x) dx equals
(A) – cot (exx) + C (B) tan (xex) + C
(C) tan (ex) + C (D) cot (ex) + C
7.4 Integrals of Some Particular Functions
In this section, we mention below some important formulae of integrals and apply them
for integrating many other related standard integrals:
dx 1 x–a
(1) ∫ 2 2
= log +C
x –a 2 a x +a
Reprint 2024-25
244 MATHEMATICS
dx 1 a+x
(2) ∫ a 2 – x 2 = 2a log a–x
+C
dx 1 x
∫ x 2 + a 2 = a tan
–1
(3) +C
a
dx
(4) ∫ x –a2 2
= log x + x 2 – a 2 + C
dx x
(5) ∫ a2 – x2
= sin – 1
a
+C
dx
(6) ∫ x +a2 2
= log x + x 2 + a 2 + C
1 1
(1) We have =
x –a22
(x – a ) (x + a )
1 (x + a) – (x – a) 1 1 1
= –
2a (x – a) (x + a) 2a x – a x + a
=
dx 1 dx dx
Therefore, ∫ x2 – a 2 = 2a ∫ x – a – ∫ x + a
1
= [log | (x – a)| – log | (x + a)|] + C
2a
1 x–a
= log +C
2a x+a
Reprint 2024-25
INTEGRALS 245
dx 1 dx dx
Therefore, ∫ a2 – x2 = ∫
2a a − x
+∫
a + x
1
= [ − log | a − x | + log | a + x |] + C
2a
1 a+ x
= log +C
2a a−x
x x2
= log + – 1 + C1
a a2
= log x + x – a − log a + C1
2 2
Reprint 2024-25
246 MATHEMATICS
x x2
= log + + 1 + C1
a a2
2
= log x + x + a − log | a | + C1
2
2
= log x + x + a + C, where C = C1 – log |a|
2
Applying these standard formulae, we now obtain some more formulae which
are useful from applications point of view and can be applied directly to evaluate
other integrals.
dx
(7) To find the integral ∫ ax 2 + bx + c , we write
2 b c b c b2
2
2 a
ax + bx + c = x + x + = a x + + –
a a 2a a 4a 2
b c b2
= t so that dx = dt and writing – 2 = ± k . We find the
2
Now, put x +
2a a 4a
1 dt c b2
integral reduced to the form ∫ 2 depending upon the sign of – 2
a t ± k2 a 4a
and hence can be evaluated.
Reprint 2024-25
INTEGRALS 247
( px + q) dx
(10) For the evaluation of the integral of the type
ax 2 + bx + c
∫ , we proceed
(ii)
= sin (x – 1) + C
–1
dx 1
So, ∫ x2 − 6 x + 13 = ∫ ( x – 3)2 + 22 dx
Let x – 3 = t. Then dx = dt
dx dt 1 t
∫ x2 − 6 x + 13 = ∫ t 2 + 22 = 2 tan +C
–1
Therefore, [by 7.4 (3)]
2
1 x–3
= tan – 1 +C
2 2
Reprint 2024-25
248 MATHEMATICS
(ii) The given integral is of the form 7.4 (7). We write the denominator of the integrand,
2 13x 10
3 x 2 + 13x – 10 = 3 x + –
3 3
13 17
2 2
dx 1 dx
Thus ∫ 3x 2 + 13x − 10 = ∫
3 2
13 17
2
x + −
6 6
13
Put x + = t . Then dx = dt.
6
dx 1 dt
∫ 3x 2 + 13x − 10 3∫
Therefore, = 2
17
t2 −
6
17
t–
1 6 +C
= log 1 [by 7.4 (i)]
17 17
3× 2× t+
6 6
13 17
x+
–
1 6 6 +C
= log 1
17 13 17
x+ +
6 6
1 6x − 4
= log + C1
17 6 x + 30
1 3x − 2 1 1
= log + C1 + log
17 x+5 17 3
1 3x − 2 1 1
= log + C , where C = C1 + log
17 x+5 17 3
Reprint 2024-25
INTEGRALS 249
dx dx
(iii) We have ∫ 2
5x − 2 x
=∫
2x
5 x2 –
5
1 dx
=
5
∫ 2 2
(completing the square)
1 1
x– –
5 5
1
Put x – = t . Then dx = dt.
5
dx 1 dt
Therefore, ∫ 5x2 − 2 x
=
5
∫ 2
1
t2 –
5
2
1 1
= log t + t 2 – +C [by 7.4 (4)]
5 5
1 1 2x
= log x – + x2 – +C
5 5 5
Solution
(i) Using the formula 7.4 (9), we express
x+2= A
d
dx
( )
2 x 2 + 6 x + 5 + B = A (4 x + 6) + B
Equating the coefficients of x and the constant terms from both sides, we get
1 1
4A = 1 and 6A + B = 2 or A= and B = .
4 2
x+2 1 4x + 6 1 dx
Therefore, ∫ 2x2 + 6x + 5 = ∫ 2
4 2x + 6x + 5
dx + ∫ 2
2 2x + 6 x + 5
1 1
= I1 + I2 (say) ... (1)
4 2
Reprint 2024-25
250 MATHEMATICS
= log | 2 x + 6 x + 5 | + C1
2
... (2)
dx 1 dx
and I2 = ∫ 2x2 + 6x + 5 = 2 ∫ 5
x 2 + 3x +
2
1 dx
= ∫
2 2
3 1
2
x + +
2 2
3
Put x + = t , so that dx = dt, we get
2
1 dt 1
I2 =
2 ∫ 1
2 =
1
tan –1 2t + C 2 [by 7.4 (3)]
t2 + 2×
2 2
–1 3
= tan 2 x + + C2 = tan ( 2 x + 3 ) + C 2
–1
... (3)
2
Using (2) and (3) in (1), we get
x+2 1 1
∫ 2 x 2 + 6 x + 5 dx = 4 log 2 x
2
+ 6x + 5 + tan – 1 ( 2 x + 3) + C
2
C1 C2
where, C=+
4 2
(ii) This integral is of the form given in 7.4 (10). Let us express
d
x+3= A (5 – 4 x – x 2 ) + B = A (– 4 – 2x) + B
dx
Equating the coefficients of x and the constant terms from both sides, we get
1
– 2A = 1 and – 4 A + B = 3, i.e., A = – and B = 1
2
Reprint 2024-25
INTEGRALS 251
x+3 1 ( – 4 – 2 x ) dx + dx
Therefore, ∫ dx = –
2 ∫ 5 − 4 x − x2
∫ 5 − 4 x − x2
5 − 4x − x2
1
= – I +I ... (1)
2 1 2
In I1, put 5 – 4x – x2 = t, so that (– 4 – 2x) dx = dt.
( – 4 − 2 x ) dx = dt
Therefore, I1 = ∫ 5 − 4x − x 2 ∫ t
= 2 t + C1
= 2 5 – 4 x – x 2 + C1 ... (2)
dx dx
Now consider I2 = ∫ 5 − 4x − x 2
=∫
9 – (x + 2) 2
Put x + 2 = t, so that dx = dt.
dt t
Therefore, I2 = ∫ 3 −t
2
= sin – 1 + C 2
2 3
[by 7.4 (5)]
x+2
= sin
–1
+ C2 ... (3)
3
Substituting (2) and (3) in (1), we obtain
x+3 x+2 C
∫ 5 – 4x – x2
= – 5 – 4x – x 2 + sin – 1
3
+ C , where C = C2 – 1
2
EXERCISE 7.4
Integrate the functions in Exercises 1 to 23.
3x 2 1 1
1. 2. 3.
x6 + 1 1 + 4x 2
(2 – x)
2
+1
1 3x x2
4. 5. 6.
9 – 25 x 2 1 + 2x4 1 − x6
x –1 x2 sec 2 x
7. 8. 9.
x2 – 1 x6 + a6 tan 2 x + 4
Reprint 2024-25
252 MATHEMATICS
1 1 1
10. 11. 12.
x + 2x + 2
2 9x + 6x + 5
2
7 – 6 x – x2
1 1 1
13. 14. 15.
( x – 1)( x – 2 ) 8 + 3x – x 2
( x – a )( x – b )
4x + 1 x+2 5x − 2
16. 17. 18.
2x + x – 3
2 2
x –1 1 + 2x + 3x2
6x + 7 x+2 x+2
19. 20. 21.
( x – 5 )( x – 4 ) 4x – x 2
x + 2x + 3
2
x+3 5x + 3
22. 23. .
x – 2x − 5
2
x + 4 x + 10
2
1 –1 9 x − 8 1 8x − 9
(A) sin +C (B) sin –1 +C
9 8 2 9
1 –1 9 x − 8 1 9x − 8
(C) sin +C (D) sin –1 +C
3 8 2 9
Reprint 2024-25
INTEGRALS 253
P1 (x)
where T(x) is a polynomial in x and is a proper rational function. As we know
Q(x)
how to integrate polynomials, the integration of any rational function is reduced to the
integration of a proper rational function. The rational functions which we shall consider
here for integration purposes will be those whose denominators can be factorised into
P(x ) P(x)
linear and quadratic factors. Assume that we want to evaluate ∫ Q(x) dx , where Q(x)
is proper rational function. It is always possible to write the integrand as a sum of
simpler rational functions by a method called partial fraction decomposition. After this,
the integration can be carried out easily using the already known methods. The following
Table 7.2 indicates the types of simpler partial fractions that are to be associated with
various kind of rational functions.
Table 7.2
S.No. Form of the rational function Form of the partial fraction
px + q A
+
B
1. ,a≠b
(x –a) (x –b) x–a x–b
px + q A B
2. +
(x – a ) 2 x – a ( x – a )2
px 2 + qx + r A B C
3. + +
(x – a) (x – b) (x – c) x –a x –b x –c
px 2 + qx + r A B C
4. + 2
+
(x – a) 2 (x – b) x – a (x – a) x–b
px 2 + qx + r A Bx + C ,
5. + 2
(x – a) (x 2 + bx + c) x – a x + bx + c
where x2 + bx + c cannot be factorised further
In the above table, A, B and C are real numbers to be determined suitably.
Reprint 2024-25
254 MATHEMATICS
dx
Example 11 Find ∫ (x + 1) (x + 2)
Solution The integrand is a proper rational function. Therefore, by using the form of
partial fraction [Table 7.2 (i)], we write
1 A B
= + ... (1)
(x + 1) (x + 2) x +1 x + 2
where, real numbers A and B are to be determined suitably. This gives
1 = A (x + 2) + B (x + 1).
Equating the coefficients of x and the constant term, we get
A+B=0
and 2A + B = 1
Solving these equations, we get A =1 and B = – 1.
Thus, the integrand is given by
1 1 –1
= +
(x + 1) (x + 2) x +1 x + 2
dx dx dx
Therefore, ∫ (x + 1) (x + 2) = ∫ x + 1 – ∫ x + 2
= log x + 1 − log x + 2 + C
x +1
= log +C
x+2
Remark The equation (1) above is an identity, i.e. a statement true for all (permissible)
values of x. Some authors use the symbol ‘≡’ to indicate that the statement is an
identity and use the symbol ‘=’ to indicate that the statement is an equation, i.e., to
indicate that the statement is true only for certain values of x.
x2 + 1
Example 12 Find ∫ x 2 − 5x + 6 dx
x2 + 1
Solution Here the integrand 2 is not proper rational function, so we divide
x – 5x + 6
x2 + 1 by x2 – 5x + 6 and find that
Reprint 2024-25
INTEGRALS 255
x2 + 1 5x – 5 5x – 5
= 1+ 2 =1+
x – 5x + 6
2 x – 5x + 6 (x – 2) (x – 3)
5x – 5 A B
Let = +
(x – 2) (x – 3) x–2 x–3
So that 5x – 5 = A (x – 3) + B (x – 2)
Equating the coefficients of x and constant terms on both sides, we get A + B = 5
and 3A + 2B = 5. Solving these equations, we get A = – 5 and B = 10
x2 + 1 5 10
Thus, = 1− +
x – 5x + 6
2
x –2 x –3
x2 + 1 1 dx
Therefore, ∫ x 2 – 5 x + 6 dx = ∫ dx − 5 ∫ x – 2 dx + 10∫ x – 3
= x – 5 log | x – 2 | + 10 log | x – 3 | + C.
3x − 2
Example 13 Find ∫ dx
(x + 1)2 (x + 3)
Solution The integrand is of the type as given in Table 7.2 (4). We write
3x – 2 A B C
= + +
(x + 1) (x + 3)
2
x + 1 (x + 1) 2
x+3
So that 3x – 2 = A (x + 1) (x + 3) + B (x + 3) + C (x + 1)2
= A (x2 + 4x + 3) + B (x + 3) + C (x2 + 2x + 1 )
Comparing coefficient of x 2 , x and constant term on both sides, we get
A + C = 0, 4A + B + 2C = 3 and 3A + 3B + C = – 2. Solving these equations, we get
11 –5 –11 . Thus the integrand is given by
A= ,B = and C =
4 2 4
3x − 2 11 5 11
= 4 (x + 1) – –
4 (x + 3)
(x + 1) (x + 3)
2
2 (x + 1) 2
3x − 2 11 dx 5 dx 11 dx
Therefore, ∫ (x + 1)2 (x + 3) = ∫ – ∫
4 x + 1 2 (x + 1) 2
− ∫
4 x+3
11 5 11
= log x +1 + − log x + 3 + C
4 2 (x + 1) 4
11 x +1 5
= log + +C
4 x + 3 2 (x + 1)
Reprint 2024-25
256 MATHEMATICS
x2
Example 14 Find ∫ (x2 + 1) (x 2 + 4) dx
x2
Solution Consider 2 and put x2 = y.
( x + 1) ( x 2 + 4)
x2 y
Then =
(x + 1) (x + 4)
2 2
(y + 1) (y + 4)
y A B
Write = +
(y + 1) (y + 4) y +1 y + 4
So that y = A (y + 4) + B (y + 1)
Comparing coefficients of y and constant terms on both sides, we get A + B = 1
and 4A + B = 0, which give
1 4
A= − and B =
3 3
x2 1 4
Thus, = – +
(x + 1) (x + 4)
2 2
3 (x + 1) 3 (x + 4)
2 2
x 2 dx 1 dx 4 dx
Therefore, ∫ (x2 + 1) (x 2 + 4) = – 3 ∫ x 2 + 1 + 3 ∫ x2 + 4
1 –1 4 1 –1 x
= – tan x + × tan +C
3 3 2 2
1 –1 2 –1 x
= – tan x + tan +C
3 3 2
In the above example, the substitution was made only for the partial fraction part
and not for the integration part. Now, we consider an example, where the integration
involves a combination of the substitution method and the partial fraction method.
( 3 sin φ – 2 ) cos φ
Example 15 Find ∫ 5 – cos2 φ – 4 sin φ d φ
Solution Let y = sinφ
Then dy = cosφ dφ
Reprint 2024-25
INTEGRALS 257
1
= 3 log y − 2 + 4 – +C
y−2
4
= 3 log sin φ − 2 + +C
2 – sin φ
4
= 3 log (2 − sin φ) + + C (since, 2 – sin φ is always positive)
2 − sin φ
x 2 + x + 1 dx
Example 16 Find ∫
(x + 2) (x 2 + 1)
Solution The integrand is a proper rational function. Decompose the rational function
into partial fraction [Table 2.2(5)]. Write
x2 + x + 1 A Bx + C
= + 2
(x + 1) (x + 2)
2
x + 2 (x + 1)
Therefore, x2 + x + 1 = A (x2 + 1) + (Bx + C) (x + 2)
Reprint 2024-25
258 MATHEMATICS
Equating the coefficients of x2, x and of constant term of both sides, we get
A + B =1, 2B + C = 1 and A + 2C = 1. Solving these equations, we get
3 2 1
A = , B = and C =
5 5 5
Thus, the integrand is given by
2 1
x+
x2 + x + 1 3 3 1 2x + 1
= + 2 5 =
5 + 2
(x + 1) (x + 2)
2
5 (x + 2) x + 1 5 (x + 2) 5 x + 1
x2 + x + 1 3 dx 1 2x 1 1
Therefore, ∫ (x2 +1) (x + 2) dx = 5 ∫ x + 2 + 5 ∫ x2 + 1 dx + 5 ∫ x2 + 1 dx
3 1 1
= log x + 2 + log x 2 + 1 + tan –1 x + C
5 5 5
EXERCISE 7.5
Integrate the rational functions in Exercises 1 to 21.
x 1 3x – 1
1. 2. 3.
(x + 1) (x + 2) 2
x –9 (x – 1) (x – 2) (x – 3)
x 2x 1 – x2
4. 5. 2 6.
(x – 1) (x – 2) (x – 3) x + 3x + 2 x (1 – 2 x)
x x 3x + 5
7. 8. 9.
(x + 1) (x – 1)
2
(x – 1) (x + 2)
2
x – x2 − x + 1
3
2x − 3 5x x3 + x + 1
10. 11. 12.
(x – 1) (2x + 3)
2
(x + 1) (x 2 − 4) x2 − 1
2 3x – 1 1
13. 14. 15.
(1 − x) (1 + x 2 ) (x + 2) 2 x −1
4
1
16. [Hint: multiply numerator and denominator by x n – 1 and put xn = t ]
x (x n + 1)
cos x
17. [Hint : Put sin x = t]
(1 – sin x) (2 – sin x)
Reprint 2024-25
INTEGRALS 259
(x 2 + 1) (x 2 + 2) 2x 1
18. 19. 20.
(x 2 + 3) (x 2 + 4) (x + 1) (x 2 + 3)
2
x (x 4 – 1)
1
21. x [Hint : Put ex = t]
(e – 1)
Choose the correct answer in each of the Exercises 22 and 23.
x dx
22. ∫ equals
( x − 1) ( x − 2)
( x − 1)2 ( x − 2) 2
(A) log +C (B) log +C
x−2 x −1
2
x −1
(C) log +C (D) log ( x − 1) ( x − 2) + C
x−2
dx
23. ∫ x ( x 2 + 1) equals
1 1
(A) log x − log (x +1) + C (B) log x + log (x +1) + C
2 2
2 2
1 1
(D) log x + log (x +1) + C
2
(C) − log x + log (x 2 +1) + C
2 2
7.6 Integration by Parts
In this section, we describe one more method of integration, that is found quite useful in
integrating products of functions.
If u and v are any two differentiable functions of a single variable x (say). Then, by
the product rule of differentiation, we have
d dv du
(uv ) = u + v
dx dx dx
Integrating both sides, we get
dv du
uv = ∫ u dx + ∫ v dx
dx dx
dv du
or ∫ u dx dx = uv – ∫ v dx dx ... (1)
dv
Let u = f (x) and = g (x). Then
dx
du
= f ′(x) and v = ∫ g (x ) dx
dx
Reprint 2024-25
260 MATHEMATICS
Reprint 2024-25
INTEGRALS 261
= x (sin x + k ) − ∫ (sin x dx − ∫ k dx
Solution Take first function as x and second function as ex. The integral of the second
function is ex.
∫ x e dx = x e x − ∫1 ⋅ e x dx = xex – ex + C.
x
Therefore,
x sin – 1 x
Example 20 Find ∫ 1 − x2
dx
x
Solution Let first function be sin – 1x and second function be .
1 − x2
x dx
First we find the integral of the second function, i.e., ∫ 1 − x2
.
Reprint 2024-25
262 MATHEMATICS
x dx 1 dt
∫ ∫ = – t = − 1− x
2
Therefore, = –
1− x 2 2 t
Hence, ∫
x sin – 1 x
1− x 2
–1 2
(
dx = (sin x ) – 1 − x − ∫ ) 1
1− x 2
( – 1 − x 2 ) dx
−1 −1
= – 1 − x sin x + x + C = x – 1 − x sin x + C
2 2
Alternatively, this integral can also be worked out by making substitution sin–1 x = θ and
then integrating by parts.
∫e
x
Example 21 Find sin x dx
Solution Take ex as the first function and sin x as second function. Then, integrating
by parts, we have
∫e [ f (x) + f ′ (x )] dx
x
7.6.1 Integral of the type
∫ f ′(x) e dx + C
x
integrating it by parts, we have I1 = f (x) ex –
Substituting I1 in (1), we get
I = e f (x) − ∫ f ′(x) e dx + ∫ e f ′(x) dx + C = ex f (x) + C
x x x
Reprint 2024-25
INTEGRALS 263
∫e [ f ( x ) + f ′( x )] dx = e x f ( x ) + C
x
Thus,
1 (x 2 + 1) e x
Example 22 Find (i) ∫ e x (tan – 1 x +
1 + x2
) dx (ii) ∫ (x + 1)2 dx
Solution
1
(i) We have I = ∫ e (tan x +
x –1
) dx
1 + x2
1
Consider f (x) = tan– 1x, then f ′(x) =
1 + x2
Thus, the given integrand is of the form ex [ f (x) + f ′(x)].
1
Therefore, I = ∫ e x (tan – 1 x + ) dx = ex tan– 1x + C
1 + x2
(x 2 + 1) e x 2
x x – 1 + 1+1)
(ii) We have I = ∫ dx = ∫ e [ ] dx
(x + 1) 2 (x + 1)2
x2 – 1 2 x –1 2
= ∫ ex [ 2
+ 2
] dx = ∫ e x [ + ] dx
(x + 1) (x +1) x + 1 (x+1) 2
x −1 2
Consider f (x ) = , then f ′(x ) =
x +1 (x + 1) 2
Thus, the given integrand is of the form ex [f (x) + f ′(x)].
x2 + 1 x x −1 x
Therefore, ∫ (x + 1)2 e dx = x + 1 e + C
EXERCISE 7.6
Integrate the functions in Exercises 1 to 22.
1. x sin x 2. x sin 3x 3. x2 ex 4. x log x
5. x log 2x 6. x2 log x 7. x sin– 1x 8. x tan–1 x
–1 –1 2
x cos−1 x
9. x cos x 10. (sin x) 11. 12. x sec2 x
1 − x2
13. tan –1x 14. x (log x)2 15. (x2 + 1) log x
Reprint 2024-25
264 MATHEMATICS
x ex x 1 + sin x
x
16. e (sinx + cosx) 17. 18. e 1 + cos x
(1 + x) 2
x 1 1 (x − 3) e x
19. e – 2 20. 21. e2x sin x
x x (x − 1)3
– 1 2x
22. sin 2
1+ x
Choose the correct answer in Exercises 23 and 24.
∫x e
2 x3
23. dx equals
1 x3 1 x2
(A) e +C (B) e +C
3 3
1 x3 1 x2
(C) e +C (D) e +C
2 2
(i)
∫ x 2 − a 2 dx (ii) ∫ x 2 + a 2 dx (iii) ∫ a 2 − x2 dx
Let I = ∫ x − a dx
2 2
(i)
Taking constant function 1 as the second function and integrating by parts, we
have
1 2x
I = x x −a −∫
2 2
x dx
2 x2 − a 2
x2 x2 − a 2 + a2
dx = x x − a − ∫
2 2
= x x −a −∫
2 2 dx
x2 − a 2 x 2 − a2
Reprint 2024-25
INTEGRALS 265
dx
= x x − a − ∫ x − a dx − a ∫
2 2 2 2 2
x2 − a2
dx
= x x −a −I−a ∫
2 2 2
x2 − a 2
dx
2I = x x − a − a ∫
2 2 2
or
x − a2
2
x a2
∫
2 2
or I= x 2 – a 2 dx =
x – a – log x + x 2 – a 2 + C
2 2
Similarly, integrating other two integrals by parts, taking constant function 1 as the
second function, we get
1 a2
(ii) ∫ x 2 + a 2 dx =
2
x x2 + a2 +
2
log x + x 2 + a 2 + C
(iii)
Alternatively, integrals (i), (ii) and (iii) can also be found by making trigonometric
substitution x = a secθ in (i), x = a tanθ in (ii) and x = a sinθ in (iii) respectively.
Example 23 Find ∫ x 2 + 2 x + 5 dx
∫ x 2 + 2 x + 5 dx = ∫ (x + 1)2 + 4 dx
Put x + 1 = y, so that dx = dy. Then
∫ x 2 + 2 x + 5 dx = ∫ y 2 + 22 dy
1 4
= y y2 + 4 + log y + y 2 + 4 + C [using 7.6.2 (ii)]
2 2
1
= (x + 1) x 2 + 2 x + 5 + 2 log x + 1 + x 2 + 2 x + 5 + C
2
Example 24 Find ∫ 3 − 2x − x 2 dx
Reprint 2024-25
266 MATHEMATICS
EXERCISE 7.7
Integrate the functions in Exercises 1 to 9.
1. 4 − x2 2. 1 − 4x 2 3. x2 + 4 x + 6
4. x2 + 4x + 1 5. 1 − 4x − x 2 6. x2 + 4 x − 5
x2
7. 1 + 3x − x 2 8. x + 3x
2 9. 1+
9
Choose the correct answer in Exercises 10 to 11.
10. ∫ 1 + x 2 dx is equal to
(A)
x
2
1
(
1 + x 2 + log x + 1 + x 2
2
) +C
3 3
2 2
(B) (1 + x 2 ) 2 + C (C) x (1 + x 2 ) 2 + C
3 3
x2 1
(D) 1 + x 2 + x 2 log x + 1 + x 2 + C
2 2
11. ∫ x 2 − 8 x + 7 dx is equal to
1
(A) ( x − 4) x 2 − 8 x + 7 + 9log x − 4 + x 2 − 8 x + 7 + C
2
1
(B) ( x + 4) x 2 − 8 x + 7 + 9log x + 4 + x 2 − 8 x + 7 + C
2
1
(C) ( x − 4) x 2 − 8 x + 7 − 3 2 log x − 4 + x 2 − 8 x + 7 + C
2
1 9
(D) ( x − 4) x 2 − 8x + 7 − log x − 4 + x 2 − 8 x + 7 + C
2 2
Reprint 2024-25
INTEGRALS 267
Reprint 2024-25
268 MATHEMATICS
Remarks
b
(i) In words, the Theorem 2 tells us that ∫ a f ( x) dx = (value of the anti derivative F
of f at the upper limit b – value of the same anti derivative at the lower limit a).
(ii) This theorem is very useful, because it gives us a method of calculating the
definite integral more easily, without calculating the limit of a sum.
(iii) The crucial operation in evaluating a definite integral is that of finding a function
whose derivative is equal to the integrand. This strengthens the relationship
between differentiation and integration.
b
(iv) In ∫ a f ( x) dx , the function f needs to be well defined and continuous in [a, b].
1
3
∫ − 2 x( x
2
For instance, the consideration of definite integral – 1) 2 dx is erroneous
1
2
since the function f expressed by f (x) = x( x – 1) 2 is not defined in a portion
– 1 < x < 1 of the closed interval [– 2, 3].
b
Steps for calculating ∫ a f ( x) dx .
(i) Find the indefinite integral ∫ f ( x ) dx . Let this be F(x). There is no need to keep
integration constant C because if we consider F(x) + C instead of F(x), we get
b
∫ a f ( x) dx = [F ( x) + C] a = [F(b) + C] – [F(a) + C] = F(b) – F(a) .
b
Thus, the arbitrary constant disappears in evaluating the value of the definite
integral.
b
∫ a f ( x) dx .
b
(ii) Evaluate F(b) – F(a) = [F ( x)] a , which is the value of
We now consider some examples
Reprint 2024-25
INTEGRALS 269
Solution
3 x3
(i) Let I = ∫ 2 x dx . Since ∫ x dx =
2
= F ( x) ,
2
3
Therefore, by the second fundamental theorem, we get
27 8 19
I = F (3) – F (2) = – =
3 3 3
9 x
(ii) Let I = ∫ 3
dx . We first find the anti derivative of the integrand.
4
(30 – x 2 )2
3
3 2
Put 30 – x2 = t. Then – x dx = dt or x dx = – dt
2 3
x 2 dt 2 1 2 1
Thus, ∫ dx = – ∫ 2 = = 3
= F ( x)
3
3 t 3 t 3
(30 – x 2 ) 2 (30 – x 2 )
Therefore, by the second fundamental theorem of calculus, we have
9
2 1
I = F(9) – F(4) = 3
3
(30 – x 2 )
4
2 1 1 2 1 1 19
− − =
3 (30 – 27) 30 – 8 3 3 22 99
= =
2 x dx
(iii) Let I = ∫
1 ( x + 1) ( x + 2)
Reprint 2024-25
270 MATHEMATICS
x –1 2
Using partial fraction, we get = +
( x + 1) ( x + 2) x + 1 x + 2
x dx
So ∫ ( x + 1) ( x + 2) = – log x + 1 + 2log x + 2 = F( x)
1
Put sin 2t = u so that 2 cos 2t dt = du or cos 2t dt = du
2
1 3
∫ sin 2∫
3
So 2t cos 2t dt = u du
1 4 1 4
= [u ] = sin 2t = F (t ) say
8 8
Therefore, by the second fundamental theorem of integral calculus
π 1 π 1
I = F ( ) – F (0) = [sin 4 – sin 4 0] =
4 8 2 8
EXERCISE 7.8
Evaluate the definite integrals in Exercises 1 to 20.
1 31 2
∫ −1 ( x + 1) dx ∫ 2 x dx ∫ 1 (4 x – 5 x2 + 6 x + 9) dx
3
1. 2. 3.
π π π
5 x
∫ 0 sin 2 x dx ∫ 0 cos 2 x dx ∫ 4 e dx ∫
4 2 4
4. 5. 6. 7. tan x dx
0
π
1 dx 1 dx 3 dx
8. ∫
4
π
cosec x dx 9. ∫0 10. ∫ 0 1 + x2 11. ∫ 2 x2 − 1
6 1 – x2
Reprint 2024-25
INTEGRALS 271
π 3 x dx 1 2x + 3 1
12. ∫ 2
0
cos 2 x dx 13. ∫ 2 x2 + 1 14. ∫ 0 5 x 2 + 1 dx 15. ∫0x e
x2
dx
π
2 5x 2 π x x
∫1 ∫ ∫ 0 (sin
2
16. 17. 4
(2sec2 x + x 3 + 2) dx 18. – cos2 ) dx
x 2 + 4x + 3 0 2 2
2 6x + 3 πx 1
∫ 0 x2 + 4 dx ∫ 0 (x e + sin
x
19. 20. ) dx
4
Choose the correct answer in Exercises 21 and 22.
3 dx
21. ∫1 1 + x2
equals
π 2π π π
(A) (B) (C) (D)
3 3 6 12
2
dx
22. ∫ 0
3
4 + 9x2
equals
π π π π
(A) (B) (C) (D)
6 12 24 4
Reprint 2024-25
272 MATHEMATICS
2 5
3 3
(
= (1 + 1) 2 – (– 1) + 1 2
3
5
)
2 2
3 3
2 4 2
= 2 − 0 2 = (2 2) =
3 3 3
Alternatively, first we transform the integral and then evaluate the transformed integral
with new limits.
Let t = x5 + 1. Then dt = 5 x4 dx.
Note that, when x = – 1, t = 0 and when x = 1, t = 2
Thus, as x varies from – 1 to 1, t varies from 0 to 2
1 2
∫ −15x x5 + 1 dx = ∫0
4
Therefore t dt
2
2 2 2 2
3 3 3
2 4 2
= t = 2 – 0 2
= (2 2) =
3 3 3 3
0
1 tan – 1 x
Example 27 Evaluate ∫0 1 + x2
dx
Reprint 2024-25
INTEGRALS 273
1
Solution Let t = tan – 1x, then dt = dx . The new limits are, when x = 0, t = 0 and
1 + x2
π π
when x = 1, t = . Thus, as x varies from 0 to 1, t varies from 0 to .
4 4
π
π
1 tan x–1 t2 4 1 π2 π2
Therefore ∫0 1 + x2
dx = ∫ 0
4
t dt =
2
0 2
16
– 0 =
32
EXERCISE 7.9
Evaluate the integrals in Exercises 1 to 8 using substitution.
π
1x 1 –1 2x
1. ∫ 0 x2 + 1 dx 2. ∫ 0
2
sin φ cos5 φ d φ 3. ∫ 0 sin
1+ x
2 dx
π
2 sin x
4. ∫ 0 x x + 2 (Put x + 2 = t2) 5. ∫ 2
0 1 + cos 2 x
dx
2 dx 1 dx 2 1 1
∫ 0 x + 4 – x2 ∫ −1 x2 + 2 x + 5 ∫ 1 x – 2 x2 e
2x
6. 7. 8. dx
Reprint 2024-25
274 MATHEMATICS
b b
P3 : ∫ a f ( x) dx = ∫ a f (a + b − x) dx
a a
P4 : ∫0 f ( x) dx = ∫ f ( a − x) dx
0
2a a
P6 : ∫0 f ( x) dx = 2 ∫ f ( x) dx, if f (2a − x) = f ( x) and
0
0 if f (2a – x) = – f (x)
a a
P7 : (i) ∫ −a f ( x) dx = 2 ∫ 0 f ( x ) dx , if f is an even function, i.e., if f (– x) = f (x).
a
(ii) ∫ −a f ( x) dx = 0 , if f is an odd function, i.e., if f (– x) = – f (x).
We give the proofs of these properties one by one.
Proof of P0 It follows directly by making the substitution x = t.
Proof of P1 Let F be anti derivative of f. Then, by the second fundamental theorem of
b a
calculus, we have ∫ a f ( x) dx = F (b) – F (a) = – [F (a) − F (b)] = −∫ b f ( x ) dx
a
Here, we observe that, if a = b, then ∫ a f ( x) dx = 0 .
Proof of P2 Let F be anti derivative of f. Then
b
∫ a f ( x) dx = F(b) – F(a) ... (1)
c
∫ a f ( x) dx = F(c) – F(a) ... (2)
b
and ∫c f ( x ) dx = F(b) – F(c) ... (3)
c b b
Adding (2) and (3), we get ∫ a f ( x) dx + ∫ c f ( x ) dx = F(b) – F( a) = ∫ f ( x) dx
a
This proves the property P2.
Proof of P3 Let t = a + b – x. Then dt = – dx. When x = a, t = b and when x = b, t = a.
Therefore
b a
∫a f ( x) dx = − ∫ f ( a + b – t ) dt
b
Reprint 2024-25
INTEGRALS 275
b
= ∫ a f (a + b – t ) dt (by P1)
b
= ∫ a f (a + b – x) dx by P 0
2a a a
Hence ∫0 f ( x) dx = ∫0 f ( x) dx + ∫ f (2a − x) dx
0
2a a a
Proof of P6 Using P5, we have ∫0 f ( x) dx = ∫ f ( x ) dx + ∫ f (2a − x) dx
0 0
... (1)
Now, if f (2a – x) = f (x), then (1) becomes
2a a a a
∫0 f ( x) dx = ∫0 f ( x) dx + ∫ f ( x) dx = 2∫ f ( x) dx,
0 0
a a
= ∫0 f (– x) dx + ∫ f ( x) dx
0
(by P0) ... (1)
Reprint 2024-25
276 MATHEMATICS
(i) Now, if f is an even function, then f (–x) = f (x) and so (1) becomes
a a a a
∫ −a f ( x) dx = ∫ 0 f ( x) dx + ∫ f ( x ) dx = 2 ∫ f ( x ) dx
0 0
2
Example 28 Evaluate ∫ −1 x 3 – x dx
0 1 2
= ∫ −1 ( x 3 – x) dx + ∫ ( x – x 3 ) dx + ∫ ( x 3 – x) dx
0 1
0 1 2
x4 x2 x2 x4 x4 x2
= – + – + –
4 2 – 1 2 4 0 4 2 1
1 1 1 1 1 1
= – – + – + ( 4 – 2) – –
4 2 2 4 4 2
1 1 1 1 1 1 3 3 11
= – + + − +2− + = − +2=
4 2 2 4 4 2 2 4 4
π
∫ sin 2
4
Example 29 Evaluate –π
x dx
4
∫
4
–π
sin 2 x dx = 2 ∫ 4 sin 2 x dx
0
4
π π
(1 − cos 2 x )
= 2∫
0
4
2
dx = ∫ 0
4
(1 − cos 2 x ) dx
Reprint 2024-25
INTEGRALS 277
π
1 4 π 1 π π 1
= x – sin 2 x = – sin – 0 = –
2 0 4 2 2 4 2
π x sin x
Example 30 Evaluate ∫ 0 1 + cos 2 x dx
π x sin x
Solution Let I = ∫ 0 1 + cos2 x dx . Then, by P , we have 4
π (π − x ) sin (π − x) dx
I= ∫0 1 + cos2 (π − x)
π (π − x ) sin x dx π sin x dx
= ∫0 1 + cos x
2 = π∫
0 1 + cos 2 x
−I
π sin x dx
or 2 I = π ∫0
1 + cos2 x
π π sin x dx
or I=
2 ∫ 0 1 + cos 2 x
Put cos x = t so that – sin x dx = dt. When x = 0, t = 1 and when x = π, t = – 1.
Therefore, (by P1) we get
–π −1 dt π 1 dt
I=
2 ∫1 1+ t 2 =
2 ∫ −1 1 + t 2
1 dt 1
= π∫0 2 (by P7,
since is even function)
1+ t 1+ t2
π π
2
–1 1 −1
π tan t = π tan –1
1 – tan 0 = π – 0 =
4 4
= 0
1
∫ −1 sin
5
Example 31 Evaluate x cos 4 x dx
1
∫ −1sin
5
Solution Let I = x cos 4 x dx . Let f(x) = sin5 x cos4 x. Then
Reprint 2024-25
278 MATHEMATICS
π
sin 4 x
Example 32 Evaluate ∫ 0
2
sin 4 x + cos4 x
dx
π
sin 4 x
Solution Let I = ∫ 0
2
sin 4 x + cos4 x
dx ... (1)
Then, by P4
π
π sin 4 ( − x) π
2 cos 4 x
I =∫ ∫
2 2
dx = dx ... (2)
0 π π 0 cos4 x + sin 4 x
sin 4 ( − x ) + cos4 ( − x)
2 2
Adding (1) and (2), we get
π π π
sin 4 x + cos4 x π
2I = ∫ 0
2
sin x + cos x
4 4
dx = ∫ 2 dx = [ x] 2 =
0 0 2
π
Hence I=
4
π
dx
∫
3
Example 33 Evaluate π
6
1 + tan x
π π
dx cos x dx
∫ = ∫ π3
3
Solution Let I = π
... (1)
6
1+ tan x 6
cos x + sin x
π π
π cos + − x dx
3 6
∫
3
Then, by P3 I= π
π π π π
6 cos + − x + sin + − x
3 6 3 6
π
sin x
∫
3
= π
dx ... (2)
6
sin x + cos x
Adding (1) and (2), we get
π π
π π π
2I = ∫
3
π
dx = [ x] =
3
π
− = . Hence I = π
3 6 6 12
6 6
Reprint 2024-25
INTEGRALS 279
π
Example 34 Evaluate ∫ 0
2
log sin x dx
Solution Let I = ∫ 2
log sin x dx
0
Then, by P4
π π
π
∫ log sin 2 − x dx = ∫ 02 log cos x dx
I=
0
2
π
= ∫ ( log sin x cos x + log 2 − log 2) dx (by adding and subtracting log 2)
0
2
π π
= ∫ 0
2
log sin 2 x dx − ∫
0
2
log 2 dx (Why?)
π
Put 2x = t in the first integral. Then 2 dx = dt, when x = 0, t = 0 and when x = ,
2
t = π.
1 π π
Therefore 2I =
2 ∫ 0
log sin t dt − log 2
2
π
2 π
=
2 ∫ 0
2
log sin t dt −
2
log 2 [by P6 as sin (π – t) = sin t)
π
π
= ∫
0
2
log sin x dx −
2
log 2 (by changing variable t to x)
π
= I − log 2
2
π
–π
Hence ∫ 0
2
log sin x dx =
2
log 2 .
Reprint 2024-25
280 MATHEMATICS
EXERCISE 7.10
By using the properties of definite integrals, evaluate the integrals in Exercises 1 to 19.
3
π π π
sin x sin 2 x dx
1. ∫ 0
2
cos2 x dx 2. ∫ 0
2
sin x + cos x
dx 3. ∫ 0
2
3 3
sin 2 x + cos 2 x
π
cos5 x dx 5 8
4. ∫ 0
2
sin 5 x + cos5 x
5. ∫ −5 | x + 2 | dx 6. ∫2 x − 5 dx
π
1 2
∫ 0 x (1 − x) ∫ ∫0 x
n
7. dx 8. 4
log (1 + tan x ) dx 9. 2 − x dx
0
π π
∫ + x cos x + tan 5 x + 1) dx is
2
20. The value of −π
( x3
2
Reprint 2024-25
INTEGRALS 281
Miscellaneous Examples
x 4 dx
Example 37 Find ∫
( x − 1) ( x 2 + 1)
Solution We have
x4 1
= ( x + 1) + 3
( x − 1) ( x + 1)
2
x − x + x −1
2
1
= ( x + 1) + ... (1)
( x − 1) ( x 2 + 1)
1 A Bx + C
Now express = + 2 ... (2)
( x − 1)( x + 1)
2
( x − 1) ( x + 1)
Reprint 2024-25
282 MATHEMATICS
So 1 = A (x2 + 1) + (Bx + C) (x – 1)
= (A + B) x2 + (C – B) x + A – C
Equating coefficients on both sides, we get A + B = 0, C – B = 0 and A – C = 1,
1 1
which give A = , B = C = – . Substituting values of A, B and C in (2), we get
2 2
1 1 1 x 1
= − − ... (3)
( x − 1) ( x + 1)
2
2( x − 1) 2 ( x + 1) 2( x + 1)
2 2
Therefore
x4 x2 1 1 1
∫ ( x − 1) ( x 2 + x + 1) dx =
2
+ x + log x − 1 – log ( x 2 + 1) – tan – 1 x + C
2 4 2
1
Example 38 Find ∫ log (log x) + (log x)2 dx
1
Solution Let I = ∫ log (log x) + dx
(log x) 2
1
= ∫ log (log x) dx + ∫ dx
(log x) 2
In the first integral, let us take 1 as the second function. Then integrating it by
parts, we get
1 dx
I = x log (log x ) − ∫ x dx + ∫
x log x (log x ) 2
dx dx
= x log (log x ) − ∫ +∫ ... (1)
log x (log x ) 2
dx
Again, consider ∫ log x , take 1 as the second function and integrate it by parts,
dx x 1 1
we have ∫ log x = log x – ∫ x – (log x)2 x dx ... (2)
Reprint 2024-25
INTEGRALS 283
Solution We have
I= ∫
cot x + tan x dx = ∫ tan x (1 + cot x ) dx
Put tan x = t2, so that sec2 x dx = 2t dt
2t dt
or dx =
1 + t4
1 2t
Then I = ∫ t 1 + 2 dt
t (1 + t )
4
1 1
(t 2 + 1) 1 + 2 dt 1 + 2 dt
dt = 2 ∫
t
=2∫
t
= 2∫
t4 +1 2 1 1
2
t + t − + 2
t2 t
1 1
Put t − = y, so that 1 + 2 dt = dy. Then
t t
1
t −
dy y –1 t
I = 2∫ = 2 tan – 1 + C = 2 tan +C
( 2)
2
y2 + 2 2
t2 −1 – 1 tan x − 1
= 2 tan – 1 + C = 2 tan +C
2t 2 tan x
sin 2 x cos 2 x dx
Example 40 Find ∫ 9 – cos 4 (2 x)
sin 2 x cos 2 x
Solution Let I = ∫ dx
9 – cos 4 2 x
Reprint 2024-25
284 MATHEMATICS
1 dt 1 t 1 1
Therefore I=–
4 ∫ 9–t 2
=–
4
sin –1 + C = − sin − 1 cos 2 2 x + C
3 4 3
3
∫ −1 x sin (π x) dx
2
Example 41 Evaluate
x sin π x for − 1 ≤ x ≤ 1
Solution Here f (x) = | x sin πx | = 3
− x sin π x for 1 ≤ x ≤ 2
3 3
1
Therefore ∫ 2
−1
| x sin π x | dx = ∫ −1 x sin π x dx + ∫ 1
2
− x sin π x dx
3
1
= ∫ −1 x sin π x dx − ∫ 1
2 x sin π x dx
∫ 2
−1
| x sin π x | dx =
2 1 1 3 1
= − − − = +
π π2 π π π2
π x dx
Example 42 Evaluate ∫ 0 a 2 cos 2 x + b2 sin 2 x
π x dx π ( π − x ) dx
Solution Let I = ∫ 0 a 2 cos 2 x + b2 sin 2 x = ∫ 0 a2 cos 2 (π − x) + b2 sin 2 (π − x) (using P4)
π dx π x dx
= π∫ −∫ 2
0 a cos x + b sin x
2 2 22 0 a cos x + b 2 sin 2 x
2
π dx
= π ∫0 −I
a cos x + b 2 sin 2 x
2 2
π dx
Thus 2I = π ∫ 0
a cos x + b2 sin 2 x
2 2
Reprint 2024-25
INTEGRALS 285
π
π π dx π dx
or I=
2 ∫0 2 2 2 2
= ⋅2 ∫ 2 2
a cos x + b sin x 2 0 a cos x + b 2 sin 2 x
2 (using P6)
π π
dx dx
π ∫ 4 2 + ∫ π a2 cos2 x + b2 sin 2 x
2
= 0 a cos2 x + b2 sin 2 x
4
π π
4 sec 2 x dx 2
2 cosec x dx
= π ∫ + ∫ 2
0 a + b tan x π a cot x + b
2 2 2 2 2
4
1 dt 0 du
2 (
= π ∫ 2 − ∫ put tan x = t and cot x = u )
0 a +b t 1 a u +b
2 2 2 2
1 0
π –1 bt π –1 au π –1 b a
+ tan –1 = π
2
= ab tan a – ab tan b = tan
0 1 ab a b 2ab
1 1 1 1
4. 3 5. [Hint: = , put x = t6]
1 1 1 1 1
1
x 2 ( x 4 + 1) 4 x2 + x3 x2 + x3 x3 1 + x 6
x3 ex 1
12. 13. 14.
1 − x8 (1 + e x ) (2 + e x ) ( x + 1) ( x 2 + 4)
2
15. cos3 x elog sinx 16. e3 logx (x4 + 1)– 1 17. f ′ (ax + b) [f (ax + b)]n
Reprint 2024-25
286 MATHEMATICS
1 1− x 2 + sin 2 x x
18. 19. 20. e
sin x sin ( x + α )
3
1+ x 1 + cos 2 x
x2 + x + 1 –1 1− x
21. 22. tan
( x + 1) 2 ( x + 2) 1+ x
x 2 + 1 log ( x 2 + 1) − 2 log x
23.
x4
Evaluate the definite integrals in Exercises 24 to 31.
π π
π 1 − sin x sin x cos x cos 2 x dx
24. ∫π ex dx 25.
1 − cos x ∫ 0
4
cos4 x + sin 4 x
dx 26. ∫ 0
2
cos 2 x + 4 sin 2 x
2
π π
sin x + cos x 1 dx sin x + cos x
27. ∫
3
π
sin 2 x
dx 28. ∫0 1+ x − x
29. ∫ 0
4
9 + 16 sin 2 x
dx
6
π
30. ∫ 2
sin 2 x tan −1 (sin x) dx
0
4
31. ∫ 1 [| x −1| + | x − 2 | + | x − 3 |] dx
Prove the following (Exercises 32 to 37)
3 dx 2 2 1
∫ 1 x 2 ( x + 1) = 3 + log 3 ∫ 0 x e dx = 1
x
32. 33.
1 π
2
∫ −1 x cos 4 x dx = 0
17
34. 35. ∫ 0
2 sin 3 x dx =
3
π
1 −1 π
36. ∫ 0
4
2 tan 3 x dx = 1 − log 2 37. ∫ 0 sin x dx =
2
−1
Reprint 2024-25
INTEGRALS 287
–1
(A) +C (B) log |sin x + cos x | + C
sin x + cos x
1
(C) log |sin x − cos x | + C (D)
(sin x + cos x) 2
b
40. If f (a + b – x) = f (x), then ∫ a x f ( x) dx is equal to
a +b b a +b b
(A)
2 ∫ a f (b − x) dx (B)
2 ∫ a f (b + x) dx
b−a b a +b b
(C)
2 ∫a f ( x ) dx (D)
2 ∫ a f ( x) dx
Summary
® Integration is the inverse process of differentiation. In the differential calculus,
we are given a function and we have to find the derivative or differential of
this function, but in the integral calculus, we are to find a function whose
differential is given. Thus, integration is a process which is the inverse of
differentiation.
d
Let F( x) = f ( x ) . Then we write ∫ f ( x ) dx = F ( x ) + C . These integrals
dx
are called indefinite integrals or general integrals, C is called constant of
integration. All these integrals differ by a constant.
® Some properties of indefinite integrals are as follows:
1. ∫ [ f ( x) + g ( x)] dx = ∫ f ( x) dx + ∫ g ( x) dx
2. For any real number k, ∫k f ( x ) dx = k ∫ f ( x) dx
More generally, if f1, f2, f3, ... , fn are functions and k1, k2, ... ,kn are real
numbers. Then
∫ [k1 f1 ( x ) + k 2 f 2 ( x) + ... + k n f n ( x )] dx
= k1 ∫ f1 ( x ) dx + k 2 ∫ f 2 ( x) dx + ... + kn ∫ f n ( x) dx
® Some standard integrals
x n +1
∫ x dx = + C , n ≠ – 1. Particularly, ∫ dx = x + C
n
(i)
n +1
Reprint 2024-25
288 MATHEMATICS
dx dx
∫ = − cos − 1 x + C −1
(ix)
1− x 2 (x) ∫ 1 + x2 = tan x+C
dx −1
(xi) ∫ 1 + x2 = − cot x+C (xii) ∫ e dx = e
x x
+C
ax 1
(xiii) ∫ a dx = +C ∫ x dx = log | x | + C
x
(xiv)
log a
px + q A B
2. = +
( x − a )2 x − a ( x − a) 2
Reprint 2024-25
INTEGRALS 289
px 2 + qx + r A B C
3. = + +
( x − a ) ( x − b ) ( x − c) x − a x −b x −c
px 2 + qx + r A B C
4. = + +
( x − a ) 2 ( x − b) x − a ( x − a) 2
x −b
px 2 + qx + r A Bx + C
5. = +
( x − a) ( x 2 + bx + c ) x − a x 2 + bx + c
where x2 + bx + c can not be factorised further.
® Integration by substitution
A change in the variable of integration often reduces an integral to one of the
fundamental integrals. The method in which we change the variable to some
other variable is called the method of substitution. When the integrand involves
some trigonometric functions, we use some well known identities to find the
integrals. Using substitution technique, we obtain the following standard
integrals.
(i) ∫ tan x dx = log sec x + C (ii) ∫ cot x dx = log sin x + C
dx 1 a+ x dx 1 x
∫ a 2 − x 2 = 2a log
−1
(ii)
a−x
+C (iii) ∫ x 2 + a 2 = a tan a
+C
dx x
dx
∫ = sin − 1 +C
(iv) ∫ x2 − a 2
= log x + x 2 − a 2 + C (v)
a −x
2 2 a
dx
(vi) ∫ x +a
2 2
= log | x + x 2 + a 2 | + C
® Integration by parts
For given functions f1 and f2, we have
Reprint 2024-25
290 MATHEMATICS
, i.e., the
® ∫ e x [ f ( x) + f ′( x)] dx = ∫ e x f ( x) dx + C
® Some special types of integrals
x 2 a2
(i) ∫ x 2 − a 2 dx =
2
x − a 2 − log x + x 2 − a 2 + C
2
x 2 a2
(ii) ∫ x 2 + a 2 dx =
2
x + a 2 + log x + x 2 + a 2 + C
2
x 2 a2 x
(iii) ∫ a 2 − x 2 dx = a − x2 + sin −1 + C
2 2 a
dx dx
(iv) Integrals of the types ∫ ax2 + bx + c or ∫ ax + bx + c
2
can be
2 b c b c b2
2
2 a
ax + bx + c = x + x + = a x + + −
a a 2a a 4a 2
px + q dx px + q dx
(v) Integrals of the types ∫ ax2 + bx + c or ∫ ax 2 + bx + c
can be
transformed into standard form by expressing
d
px + q = A ( ax 2 + bx + c) + B = A (2ax + b) + B , where A and B are
dx
determined by comparing coefficients on both sides.
b
® We have defined ∫a f ( x) dx as the area of the region bounded by the curve
y = f (x), a ≤ x ≤ b, the x-axis and the ordinates x = a and x = b. Let x be a
Reprint 2024-25
INTEGRALS 291
x
given point in [a, b]. Then ∫a f ( x ) dx represents the Area function A (x).
This concept of area function leads to the Fundamental Theorems of Integral
Calculus.
® First fundamental theorem of integral calculus
x
Let the area function be defined by A(x) = ∫ a f ( x) dx for all x ≥ a, where
the function f is assumed to be continuous on [a, b]. Then A′ (x) = f (x) for all
x ∈ [a, b].
® Second fundamental theorem of integral calculus
Let f be a continuous function of x defined on the closed interval [a, b] and
d
let F be another function such that F( x ) = f ( x) for all x in the domain of
dx
b
∫ a f ( x) dx = [F( x) + C]a = F (b) − F (a) .
b
f, then
This is called the definite integral of f over the range [a, b], where a and b
are called the limits of integration, a being the lower limit and b the
upper limit.
—v—
Reprint 2024-25