Question:
Let f (x) be a real-valued function such that:
dn
[ n f (x)] = sin(n)
dx
x=0
Evaluate:
π csc 1
∫ f (x)dx
(Proposed by Miracle Invoker ඞ)
Solution:
Using Maclaurin Series:
∞
xn
g(x) = ∑ g
(n)
(0)
n=0
n!
Therefore,
∞
xn
f (x) = ∑ sin(n)
n=0
n!
Using Euler’s Formula for sin(x),
ein − e−in
sin(n) =
2i
∞ n ∞ n
1 ( e i x) 1 (e−i x)
f (x) = ∑ − ∑
2i 2i
n! n!
n=0 n=0
Recalling the Infinite Series for ex :
∞
xn
e =∑ x
n!
n=0
i −i
ee x − ee x
f (x) =
2i
Using Euler’s Formula:
eix = cos x + i sin x
ei = cos 1 + i sin 1
e−i = cos 1 − i sin 1
Now,
e(cos 1+i sin 1)x − e(cos 1−i sin 1)x
f (x) =
2i
ex cos 1 eix sin 1 − ex cos 1 e−ix sin 1
f (x) =
2i
eix sin 1 − e−ix sin 1
f (x) = ex cos 1 ( )
2i
Using Euler’s Formula for sin(x):
f (x) = sin (x sin 1) ex cos 1
Applying Integration By Parts Twice results in:
∫ ex cos 1 sin (x sin 1) dx = −ex cos 1 sin (1 − x sin 1) + C
Hence,
π csc 1
∫ f (x)dx = sin (1) (1 + eπ cot 1 )