UEM Sol To Exerc Chap 053
UEM Sol To Exerc Chap 053
1
1. Differentiate with respect to x: (a) 5x5 (b) 2.4x3.5 (c)
x
dy
(a) If y = 5x5 then = (5) ( 5 x 4 ) = 25x 4
dx
dy
(b) If y = 2.4x3.5 then = (2.4) ( 3.5 x3.5−1 ) = 8.4x 2.5
dx
1 dy 1
(c) If y = = x −1 then = −1 x −2 = −
x dx x2
−4
2. Differentiate with respect to x: (a) (b) 6 (c) 2x
x2
−4 dy 8
(a) If y = = −4x −2 then ( 4) ( −2 x −3 ) =
=− 8 x −3 or
x 2 dx x3
dy
(b) If y = 6 then =0
dx
dy
(c) If y = 2x then =2
dx
4
3. Differentiate with respect to x: (a) 2 x (b) 3 3 x5 (c)
x
1 dy 1 − 12 −
1
1 1
(a) If y = 2 x = 2 x 2 then = (2) x = x= 2 =
2
1
dx x2 x
5 dy 5 23 2
= (3)
(b) If y = 3 3 x5 = 3 x 3 then =
x 5 x 3 = 5 3 x2
dx 3
4 4 −
1
dy 1 − 32 −
3 2 2
(c) If y = = = 4x 2 then =−
(4) x =
−2 x − 3 =−
2 =
2
1
x x2 dx x2 x3
3 3 −
1
dy 1 − 43 −
4
1 1
(a) If y = − =
− =
−3x 3 then =( −3) − x =x 3 = =
3 1 4 3
x x3 d x 3 x3 x4
3
5. Differentiate with respect to x: (a) – 4 cos 2x (b) 2e6x (c)
e5 x
dy
(a) If y = –4 cos 2x then = (–4)(– 2 sin 2x) = 8 sin 2x
dx
dy
(b) If y = 2e6x then = (2) ( 6 e6 x ) = 12 e6 x
dx
3 dy 15
(c) If y = = 3e −5 x then (3) ( −5e −5 x ) =
= −15e −5 x = −
e5 x dx e5 x
e x − e− x 1− x
6. Differentiate with respect to x: (a) 4 ln 9x (b) (c)
2 x
dy 1 4
(a) If y = 4 ln 9x then = (4) =
dx x x
e x − e− x 1 x 1 − x dy 1 x 1 e x + e− x
) e x + e− x =
1 1
(b) If y = = e − e then = e − ( − e x=
2 2 2 dx 2 2 2 2 2
1− x 1 x 1
−1 −
1
(c) If y = = − = x −1 − x 2 = x −1 − x 2
x x x
dy 1 − 1 −1 1 1 −3 1 1 1 1
then =
− x −2 − − x 2 = − + x 2=− + 3 =− +
dx 2 x2 2 x2 2 x 2 x 2 2 x3
dy
If y= 2t 4 + 3t 3 − t + 4 , then gradient, = 8t 3 + 9t 2 − 1
dt
At (0, 4), t = 0, hence gradient = 8(0)3 + 9(0) 2 − 1 = – 1
8. Find the coordinates of the point on the graph y = 5x2 – 3x + 1 where the gradient is 2
dy
If y = 5 x 2 − 3 x + 1 , then gradient = = 10 x − 3
dx
1
When the gradient is 2, 10x – 3 = 2 i.e. 10x = 5 and x =
2
2
1 1 1 5 3 3
When x = , y = 5 − 3 +1 = − +1 =
2 2 2 4 2 4
1 3
Hence, the coordinates of the point where the gradient is 2 is ,
2 4
2 2
9. (a) Differentiate y = + 2 ln 2θ – 2(cos 5θ + 3 sin 2θ) –
θ 2 e3θ
dy π
(b) Evaluate when θ = , correct to 4 significant figures.
dθ 2
2 2
(a) y = + 2 ln 2θ − 2(cos 5θ + 3sin 2θ ) −
θ2 e3θ
= 2θ −2 + 2 ln 2θ − 2 cos 5θ − 6sin 2θ − 2e −3θ
dy 2
Hence, =−4θ −3 + − 2(−5sin 5θ ) − 6(2 cos 2θ ) − 2 ( −3e −3θ )
dθ θ
4 2 6
=− + + 10sin 5θ − 12 cos 2θ +
θ3 θ e3θ
π dy 4 2 5π 2π 6
(b) When θ = , =− + + 10sin − 12 cos + π
dθ π π
3
2 2 2 3
2 e 2
2
= –1.032049 + 1.2732395 + 10 + 12 + 0.0538997
ds π
10. Evaluate , correct to 3 significant figures, when t = given s = 3 sin t – 3 + t.
dt 6
1 ds 1 −1 1
t 3sin t − 3 + t 2 then = 3cos t − 0 + t=
If s = 3 sin t – 3 + = 2 3cos t +
dt 2 2 t
π ds π 1
When t ==, 3cos + = 3.29, correct to 3 significant figures
6 dt 6 2 (π / 6 )
11. A mass m is held by a spring with a stiffness constant k. The potential energy p of the system
1 2
is given by:=p kx − mgx where x is the displacement and g is acceleration due to gravity.
2
dp
The system is in equilibrium if = 0 . Determine the expression for x for system equilibrium.
dx
1 2 dp
=
If p kx − mgx then = kx − mg
2 dx
dp mg
If = 0 then kx – mg = 0 i.e. kx = mg and displacement, x =
dx k
12. The current i flowing in an inductor of inductance 100 mH is given by: i = 5 sin 100t amperes,
di
where t is the time t in seconds. The voltage v across the inductor is given by: v = L volts.
dt
di
If i = 5 sin 100t=
then =
(5)(100 cos t ) 500 cos100t
dt
di
Voltage across inductor, v = L = ( L)(500 cos100t )
dt
When L = 100 mH and t = 10 ms, voltage, v = (100 ×10−3 )( 500 cos(100 ×10 ×103 ) )
dy
=
If y = x sin x, then ( x )( cos x ) + ( sin x )(1)
dx
= x cos x + sin x
dy
If y = x 2 e 2 x ,=
then ( x 2 )( 2 e2 x ) + ( e2 x )( 2 x )
dx
= 2 x 2 e 2 x + 2 x e 2 x or 2 x e 2 x ( x + 1)
( x 2 )
dy 1
=
If y = x 2 ln x , then + ( ln x )( 2 x )
dx x
= x + 2x ln x or x(1 + 2 ln x)
dy
If y = 2 x 3 cos 3 x , then =( 2 x3 )( −3sin 3 x ) + ( cos 3 x )( 6 x 2 )
dx
= −6 x3 sin 3 x + 6 x 2 cos 3 x = 6 x 2 ( cos 3 x − x sin 3 x )
3 d y 3 1 3 1
If y = = x 2 + ( ln 3 x ) x 2
x3 ln 3x = x 2 ln 3 x , then
d x x 2
3
−1 3 1 1
3 1
= x2 + x 2 ln 3x =
x 2 + x 2 ln 3x
2 2
1
3 3
= x 2 1 + ln 3 x = x 1 + ln 3 x
2 2
dy
If y = e3t sin 4=
t , then ( e3t )( 4 cos 4t ) + ( sin 4t )( 3e3t )
dt
= e3t ( 4 cos 4t + 3sin 4t )
( e4θ )
dy 1
If y = e4θ ln 3θ, then
= + ( ln 3θ )( 4 e )
4θ
dθ θ
1
= e 4θ + 4 ln 3θ
θ
( et ln t )( − sin t ) + ( cos t ) ( et )
dy 1
If y = et ln t cos t , then = + ( ln t )( e )
t
dt t
cos t
= et − ln t sin t + + cos t ln t
t
1
= et + ln t cos t − ln t sin t
t
di
9. Evaluate , correct to 4 significant figures, when t = 0.1, and i = 15 t sin 3t
dt
di
Since i = 15t sin=
3t, then (15t )(3cos 3t ) + (sin 3t )(15)
dt
= 45t cos 3t + 15 sin 3t
di
When t = 0.1, = 45(0.1) cos 0.3 + 15 sin 0.3 (note 0.3 is radians)
dt
= 4.2990 + 4.4328
= 8.732, correct to 4 significant figures
dz
10. Evaluate , correct to 4 significant figures, when t = 0.5, given that z = 2e3t sin 2t
dt
dz
When t = 0.5, = 4 e1.5 cos1 + 6 e1.5 sin1 (note 1 is 1 radian)
dt
= 9.68587 + 22.62727
sin x
1. Differentiate with respect to x:
x
x cos x − sin x
=
x2
2 cos 3x
2. Differentiate with respect to x:
x3
=
If y =
2 cos 3x
, then
dy (=
x 3 )( −6sin 3x ) − ( 2 cos 3 x )( 3 x 2 ) −6 x 2 ( x sin 3x + cos 3x )
( x3 )
2
x3 dx x6
2x
3. Differentiate with respect to x:
x2 + 1
If y =
2x
,=
then
dy ( x 2 + 1)( 2=) − ( 2 x )( 2 x ) 2 x2 + 2 − 4 x2
=
2 − 2 x2
x +1 ( x 2 + 1) ( x 2 + 1) ( x 2 + 1)
2 2 2
2 dx
2(1 − x 2 )
=
( x 2 + 1)
2
x
4. Differentiate with respect to x:
cos x
x x
1
2 dy
( cos x )
1 −1
2
x 2 −
( x ) ( − sin x )
If y = = , then =
( cos x )
2
cos x cos x dx
cos x
+ x sin x
= 2 x
cos 2 x
( 2sin 2θ )
9 1 3
3 θ 2 − 3θ 2 ( 4 cos 2θ )
3 θ3 3θ 2 dy 2
If y = = , then =
2sin 2θ 2sin 2θ dθ ( 2sin 2θ )
2
3 θ { 3sin 2θ − 4θ cos 2θ }
1 3
9 θ 2 sin 2θ − 12 θ 2 cos 2θ
= =
4sin 2 2θ 4sin 2 2θ
ln 2t
6. Differentiate with respect to t:
t
1 1 1 1
= 3
1 − ln 2t = 1 − ln 2t
t2 2 t3 2
2 xe 4 x
7. Differentiate with respect to x:
sin x
=
2 e4 x
sin 2 x
{(1 + 4 x ) sin x − x cos x}
2x
8. Find the gradient of the curve y = at the point (2, –4)
x −5
2
If y =
2x
then =
gradient,
dy ( x 2 − 5) (2)
=
− (2 x)(2 x) 2 x 2 − 10 − 4 x 2 −10 − 2 x 2
=
x −5 ( x 2 − 5) ( x 2 − 5) ( x 2 − 5)
2 2 2
2 dx
( ln 2 x ) (4 x) − (2 x 2 + 3)
1
2x + 3
If y =
2
then
dy
= x
( ln 2 x )
2
ln 2 x dx
( ln 5) (10) − [2(2.5)2 + 3]
1
=
When x = 2.5,
dy
= 2.5 16.09438 − 6.2 = 3.82, correct to 3
( ln 5)
2
dx 2.59029
significant figures
( 2 x − 1)
6
1. Differentiate with respect to x:
dy dy
If y = ( 2 x − 1) then = 6 ( 2 x − 1) ( 2 ) i.e. = 12 ( 2 x − 1)
6 5 5
dx dx
dy
If y = ( 2 x3 − 5 x ) then 5 ( 2 x3 − 5 x ) ( 6 x 2 − 5)
5 4
=
dx
= 2 ( cos ( 3θ − 2 ) ) ( 3)
dy dy
If y = 2 sin(3θ – 2) then = 6 cos ( 3θ − 2 )
i.e.
dθ dθ
dy dy
If y = 2 cos5 α=
then (2) ( 5cos 4 α )( − sin α ) i.e. = −10 cos 4 α sin α
dα dα
1
5. Differentiate with respect to x:
( x − 2 x + 1)5
3
1 dy −5 ( 3 x 2 − 2 )
= ( x3 − 2 x + 1) −5 ( x3 − 2 x + 1) ( 3 x 2 − 2 ) =
−5 −6
If y = then =
( x3 − 2 x + 1) ( x3 − 2 x + 1)
5 6
dx
5 ( 2 − 3x 2 )
=
( x3 − 2 x + 1)
6
dy dy
If y = 5e2t+1 then = (5) ( e 2t +1 )( 2 ) i.e. = 10 e 2t +1
dt dt
cos x
If y = cot x = then
sin x
dy
Thus, if y = 2 cot ( 5t 2 + 3) , then ( 2 ) − cos ec 2 ( 5t 2 + 3) (10t ) = −20t cosec2 ( 5t 2 + 3)
=
dt
dθ dθ
If θ = 6 tan(3y + 1) =
then (6) ( sec 2 ( 3 y + 1) ) ( 3) =
i.e. 18sec 2 ( 3 y + 1)
dy dy
dy
If y = 2 e tan θ , then = ( 2e tan θ ) sec 2 θ = 2sec 2 θ e tan θ
dθ
π
10. Differentiate: θ sin(θ – ) with respect to θ, and evaluate, correct to 3 significant figures, when
3
π
θ=
2
π π π
(θ ) cos θ −
dy
If y = θ sin θ − then = + sin θ − (1)
3 dθ 3 3
π d y π π π π π π π π
When θ = , = cos − + sin − = cos + sin
2 dθ 2 2 3 2 3 2 6 6
= 1.360 + 0.5 = 1.86, correct to 3
significant figures
dx
If x = 0.54 cos(0.3t – 0.15) + 3.2 then = (0.54) [– sin(0.3t – 0.15)](0.3) + 0
dt
dx
(a) When t = 0, speed of spring, = –0.162 sin(–0.15) = 0.02421 m/s = 24.21 mm/s
dt
dx
(b) When t = 2 s, speed of spring, = –0.162 sin(0.45) = –0.07046 m/s = –70.46 mm/s
dt
d2 y d3 y
1. If y = 3x4 + 2x3 – 3x + 2 find (a) (b)
d x2 d x3
dy d2 y
(a) If y = 3x4 + 2x3 – 3x + 2 then = 12 x3 + 6 x 2 − 3 and = 36 x 2 + 12 x
dx d x2
d3 y
(b) = 72 x + 12
d x3
2 2 1 3
2. (a) Given f(t) = t – + – t + 1 determine f ´´(t)
5 t3 t
1
2 2 1 3 2 2 −3
(a) f(t) = t − + − t +=
1 t − t + 3t −1 − t 2 + 1
5 t3 t 5
4 1 −1
f ′(t) = t + 3t −4 − 3t −2 − t 2
5 2
4 1 −3 4 12 6 1
f ′′(t) = − 12t −5 + 6t −3 + t 2 = − + +
5 4 5 t 5 t 3
4 t3
4 12 6 1 4 1
(b) When t = 1, f ′′(t) = − + + = − 12 + 6 + = –4.95
5 (1) (1) 4 1
5 3 3 5 4
t
−
3. The charge q on the plates of a capacitor is given by q = CV e CR , where t is the time, C is the
capacitance and R the resistance. Determine (a) the rate of change of charge, which is given by
dq d2 q
, (b) the rate of change of current, which is given by
dt d t2
−
t dq 1 − CRt V − t
(a) If q = CV e CR ,= (CV ) − e = − e CR
dt CR R
dq V − t d 2 q V 1 − t V − t
(b) If = − e CR , = − − e CR = e CR
dt R d t 2 R CR CR 2
dy
(a) If y = 3 sin 2t + cos t then = (3)(2 cos 2t ) − sin=
t 6 cos 2t − sin t
dx
d2 y
and = (6)(– 2 sin 2t) – cos t = – 12 sin 2t – cos t or –(12 sin 2t + cos t)
d x2
dy 1 2
(b) If y = 2 ln 4θ then = (2) = = 2θ
−1
dx θ θ
d2 y 2
and = −2θ −2 = −
dx 2 θ2
dy
(a) If y = 2 cos 2 x , =
4 cos x(− sin x) =
−4sin x cos x
dx
d2 y
and =
(−4sin x)(− sin x) + (cos x)(−4 cos x) =
4sin 2 x − 4 cos 2 x
d x2
= 4 ( sin 2 x − cos 2 x )
dy
(b) If y = ( 2 x − 3) ,
4
=4(2 x − 3)3 (2) =8(2 x − 3)3
dx
d2 y
= 24(2 x − 3) 2 (2) = 48 ( 2 x − 3)
2
and
d x2
dy
If y = xe2x then =( x)(2 e 2 x ) + (e 2 x )(1) =2 x e 2 x + e 2 x
dx
d2 y
and = (2 x)(2 e 2 x ) + (e 2 x )(2) + 2 e 2 x = 4 x e 2 x + 4 e 2 x
d x2
d2 y dy
–4 + 4y = ( 4 xe 2 x + 4e 2 x ) – 4( 2 x e 2 x + e 2 x ) + 4(xe2x)
dx 2 dx
= 4 xe 2 x + 4e 2 x – 8 x e 2 x − 4 e 2 x + 4xe2x
=0
d2 y dy
8. Show that, if P and Q are constants and y = P cos(ln t) + Q sin(ln t), then t 2 +t +y=0
dt 2 dt
y = P cos(ln t) + Q sin(ln t)
dy P Q − P sin(ln t ) + Q cos(ln t )
=
− sin(ln t ) + cos(ln t ) =
dt t t t
− P cos(ln t ) Q sin(ln t )
d y
2
(t )
t
−
t − [ − P sin(ln t ) + Q cos(ln t ) ] (1)
=
d t2 t2
− P sin(ln t ) + Q cos(ln t )
+ (t) + P cos(ln t) + Q sin(ln t)
t
+ P cos(ln t) + Q sin(ln t)
=0
ds
If s= (1 + t ) e−ω t (1 t ) ( −ω e −ωt ) + (e −ωt )(1) =
=+ −ω e −ωt − ωt e −ωt + e −ωt
dt
d2 y
and +ω 2 e − ωt − [(ωt ) ( −ω e − ωt ) + ( e −ωt ) (ω )] − ω e −ωt
=
d x2
= ω 2 e − ωt + ( ω 2 t e − ωt ) − ( ω e − ωt ) − ω e − ωt
= ω 2 e − ωt + (ω 2t e − ωt ) − 2ω e −ωt
Hence,
d2 s ds
+ 2ω ω 2 e − ωt + (ω 2t e − ωt ) − 2ω e −ωt + 2ω[−ω e −ωt − ωt e −ωt + e −ωt ] + ω 2 [(1 + t ) e −ωt ]
+ ω 2s =
dt 2 dt
= ω 2 e − ωt + ω 2te −ωt − 2ω e −ωt − 2ω 2 e −ωt − 2ω 2te −ωt + 2ω e −ωt + ω 2 e −ωt + ω 2te −ωt
=0