0% found this document useful (0 votes)
73 views17 pages

UEM Sol To Exerc Chap 053

Uploaded by

saidsolaiman87
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
73 views17 pages

UEM Sol To Exerc Chap 053

Uploaded by

saidsolaiman87
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 17

CHAPTER 53 METHODS OF DIFFERENTIATION

EXERCISE 225 Page 617

1
1. Differentiate with respect to x: (a) 5x5 (b) 2.4x3.5 (c)
x

dy
(a) If y = 5x5 then = (5) ( 5 x 4 ) = 25x 4
dx

dy
(b) If y = 2.4x3.5 then = (2.4) ( 3.5 x3.5−1 ) = 8.4x 2.5
dx

1 dy 1
(c) If y = = x −1 then = −1 x −2 = −
x dx x2

−4
2. Differentiate with respect to x: (a) (b) 6 (c) 2x
x2

−4 dy 8
(a) If y = = −4x −2 then ( 4) ( −2 x −3 ) =
=− 8 x −3 or
x 2 dx x3
dy
(b) If y = 6 then =0
dx
dy
(c) If y = 2x then =2
dx

4
3. Differentiate with respect to x: (a) 2 x (b) 3 3 x5 (c)
x

1 dy  1 − 12  −
1
1 1
(a) If y = 2 x = 2 x 2 then = (2)  x =  x= 2 =
2 
1
dx x2 x
5 dy  5 23  2
= (3)
(b) If y = 3 3 x5 = 3 x 3 then =
 x  5 x 3 = 5 3 x2
dx  3 
4 4 −
1
dy  1 − 32  −
3 2 2
(c) If y = = = 4x 2 then =−
(4)  x  =
−2 x − 3 =−
2 =
 2 
1
x x2 dx x2 x3

911 © 2014, John Bird


−3
4. Differentiate with respect to x: (a) 3
(b) (x – 1)2 (c) 2 sin 3x
x

3 3 −
1
dy  1 − 43  −
4
1 1
(a) If y = − =
− =
−3x 3 then =( −3)  − x  =x 3 = =
 
3 1 4 3
x x3 d x 3 x3 x4

(b) If y = (x – 1)2 = (x – 1)(x – 1) = x 2 − x − x + 1 = x 2 − 2 x + 1


dy
then = 2x – 2 or 2(x – 1)
dx
dy
(c) If y = 2 sin 3x then = (2)(3 cos 3x) = 6 cos 3x
dx

3
5. Differentiate with respect to x: (a) – 4 cos 2x (b) 2e6x (c)
e5 x

dy
(a) If y = –4 cos 2x then = (–4)(– 2 sin 2x) = 8 sin 2x
dx
dy
(b) If y = 2e6x then = (2) ( 6 e6 x ) = 12 e6 x
dx

3 dy 15
(c) If y = = 3e −5 x then (3) ( −5e −5 x ) =
= −15e −5 x = −
e5 x dx e5 x

e x − e− x 1− x
6. Differentiate with respect to x: (a) 4 ln 9x (b) (c)
2 x

dy 1 4
(a) If y = 4 ln 9x then = (4)   =
dx x x

e x − e− x 1 x 1 − x dy 1 x 1 e x + e− x
)   e x +   e− x =
1 1
(b) If y = = e − e then =   e −   ( − e x=
2 2 2 dx 2 2 2 2 2

1− x 1 x 1
−1 −
1
(c) If y = = − = x −1 − x 2 = x −1 − x 2
x x x

dy  1 − 1 −1  1 1 −3 1 1 1 1
then =
− x −2 −  − x 2  = − + x 2=− + 3 =− +
dx  2  x2 2 x2 2 x 2 x 2 2 x3

912 © 2014, John Bird


7. Find the gradient of the curve y = 2t4 + 3t3 – t + 4 at the points (0, 4) and (1, 8)

dy
If y= 2t 4 + 3t 3 − t + 4 , then gradient, = 8t 3 + 9t 2 − 1
dt
At (0, 4), t = 0, hence gradient = 8(0)3 + 9(0) 2 − 1 = – 1

At (1, 8), t = 1, hence gradient = 8(1)3 + 9(1) 2 − 1 = 16

8. Find the coordinates of the point on the graph y = 5x2 – 3x + 1 where the gradient is 2

dy
If y = 5 x 2 − 3 x + 1 , then gradient = = 10 x − 3
dx
1
When the gradient is 2, 10x – 3 = 2 i.e. 10x = 5 and x =
2
2
1 1 1 5 3 3
When x = , y = 5  − 3  +1 = − +1 =
2 2 2 4 2 4

1 3
Hence, the coordinates of the point where the gradient is 2 is  , 
2 4

2 2
9. (a) Differentiate y = + 2 ln 2θ – 2(cos 5θ + 3 sin 2θ) –
θ 2 e3θ

dy π
(b) Evaluate when θ = , correct to 4 significant figures.
dθ 2

2 2
(a) y = + 2 ln 2θ − 2(cos 5θ + 3sin 2θ ) −
θ2 e3θ
= 2θ −2 + 2 ln 2θ − 2 cos 5θ − 6sin 2θ − 2e −3θ
dy 2
Hence, =−4θ −3 + − 2(−5sin 5θ ) − 6(2 cos 2θ ) − 2 ( −3e −3θ )
dθ θ
4 2 6
=− + + 10sin 5θ − 12 cos 2θ +
θ3 θ e3θ
π dy 4 2 5π 2π 6
(b) When θ = , =− + + 10sin − 12 cos + π 
dθ π  π 
3
2 2 2 3 
   2  e 2
2
= –1.032049 + 1.2732395 + 10 + 12 + 0.0538997

913 © 2014, John Bird


= 22.30, correct to 4 significant figures

ds π
10. Evaluate , correct to 3 significant figures, when t = given s = 3 sin t – 3 + t.
dt 6

1 ds 1 −1 1
t 3sin t − 3 + t 2 then = 3cos t − 0 + t=
If s = 3 sin t – 3 + = 2 3cos t +
dt 2 2 t

π ds π  1
When t ==, 3cos   + = 3.29, correct to 3 significant figures
6 dt 6 2 (π / 6 )

11. A mass m is held by a spring with a stiffness constant k. The potential energy p of the system
1 2
is given by:=p kx − mgx where x is the displacement and g is acceleration due to gravity.
2
dp
The system is in equilibrium if = 0 . Determine the expression for x for system equilibrium.
dx

1 2 dp
=
If p kx − mgx then = kx − mg
2 dx

dp mg
If = 0 then kx – mg = 0 i.e. kx = mg and displacement, x =
dx k

12. The current i flowing in an inductor of inductance 100 mH is given by: i = 5 sin 100t amperes,

di
where t is the time t in seconds. The voltage v across the inductor is given by: v = L volts.
dt

Determine the voltage when t = 10 ms.

di
If i = 5 sin 100t=
then =
(5)(100 cos t ) 500 cos100t
dt

di
Voltage across inductor, v = L = ( L)(500 cos100t )
dt

When L = 100 mH and t = 10 ms, voltage, v = (100 ×10−3 )( 500 cos(100 ×10 ×103 ) )

= 50 cos 1 = 27.0 volts

914 © 2014, John Bird


EXERCISE 226 Page 618

1. Differentiate with respect to x: x sin x

dy
=
If y = x sin x, then ( x )( cos x ) + ( sin x )(1)
dx
= x cos x + sin x

2. Differentiate with respect to x: x 2 e 2 x

dy
If y = x 2 e 2 x ,=
then ( x 2 )( 2 e2 x ) + ( e2 x )( 2 x )
dx
= 2 x 2 e 2 x + 2 x e 2 x or 2 x e 2 x ( x + 1)

3. Differentiate with respect to x: x 2 ln x

( x 2 ) 
dy 1
=
If y = x 2 ln x , then  + ( ln x )( 2 x )
dx x
= x + 2x ln x or x(1 + 2 ln x)

4. Differentiate with respect to x: 2x3 cos 3x

dy
If y = 2 x 3 cos 3 x , then =( 2 x3 )( −3sin 3 x ) + ( cos 3 x )( 6 x 2 )
dx
= −6 x3 sin 3 x + 6 x 2 cos 3 x = 6 x 2 ( cos 3 x − x sin 3 x )

5. Differentiate with respect to x: x3 ln 3x

3 d y  3  1  3 1
If y = =  x 2    + ( ln 3 x )  x 2 
x3 ln 3x = x 2 ln 3 x , then
d x   x  2 
3
−1 3 1 1
3 1
= x2 + x 2 ln 3x =
x 2 + x 2 ln 3x
2 2
1
 3   3 
= x 2 1 + ln 3 x  = x 1 + ln 3 x 
 2   2 

915 © 2014, John Bird


6. Differentiate with respect to x: e3t sin 4t

dy
If y = e3t sin 4=
t , then ( e3t )( 4 cos 4t ) + ( sin 4t )( 3e3t )
dt
= e3t ( 4 cos 4t + 3sin 4t )

7. Differentiate with respect to θ: e4θ ln 3θ

( e4θ ) 
dy 1
If y = e4θ ln 3θ, then
=  + ( ln 3θ )( 4 e )

dθ θ 
1 
= e 4θ  + 4 ln 3θ 
θ 

8. Differentiate with respect to t: et ln t cos t

 
( et ln t )( − sin t ) + ( cos t ) ( et ) 
dy 1
If y = et ln t cos t , then =  + ( ln t )( e ) 
t
dt  t  
 cos t 
= et − ln t sin t + + cos t ln t 
 t 
 1  
= et  + ln t  cos t − ln t sin t 
 t  

di
9. Evaluate , correct to 4 significant figures, when t = 0.1, and i = 15 t sin 3t
dt

di
Since i = 15t sin=
3t, then (15t )(3cos 3t ) + (sin 3t )(15)
dt
= 45t cos 3t + 15 sin 3t
di
When t = 0.1, = 45(0.1) cos 0.3 + 15 sin 0.3 (note 0.3 is radians)
dt
= 4.2990 + 4.4328
= 8.732, correct to 4 significant figures

dz
10. Evaluate , correct to 4 significant figures, when t = 0.5, given that z = 2e3t sin 2t
dt

916 © 2014, John Bird


dz
=
Since z = 2e3t sin 2t, then (2 e3t )(2 cos 2t ) + (sin 2t )(6 e3t )
dt

= 4 e3t cos 2t + 6 e3t sin 2t

dz
When t = 0.5, = 4 e1.5 cos1 + 6 e1.5 sin1 (note 1 is 1 radian)
dt

= 9.68587 + 22.62727

= 32.31, correct to 4 significant figures

917 © 2014, John Bird


EXERCISE 227 Page 620

sin x
1. Differentiate with respect to x:
x

sin x d y ( x )( cos x ) − ( sin x )(1)


If y = , then =
( x)
2
x dx

x cos x − sin x
=
x2

2 cos 3x
2. Differentiate with respect to x:
x3

=
If y =
2 cos 3x
, then
dy (=
x 3 )( −6sin 3x ) − ( 2 cos 3 x )( 3 x 2 ) −6 x 2 ( x sin 3x + cos 3x )
( x3 )
2
x3 dx x6

−6( x sin 3 x + cos 3 x) −6


= or ( x sin 3x + cos 3x )
x4 x4

2x
3. Differentiate with respect to x:
x2 + 1

If y =
2x
,=
then
dy ( x 2 + 1)( 2=) − ( 2 x )( 2 x ) 2 x2 + 2 − 4 x2
=
2 − 2 x2
x +1 ( x 2 + 1) ( x 2 + 1) ( x 2 + 1)
2 2 2
2 dx

2(1 − x 2 )
=
( x 2 + 1)
2

x
4. Differentiate with respect to x:
cos x

x x
1
2 dy
( cos x ) 
1 −1 
2
x 2 −

( x ) ( − sin x )
If y = = , then =
( cos x )
2
cos x cos x dx

cos x
+ x sin x
= 2 x
cos 2 x

918 © 2014, John Bird


3 θ3
5. Differentiate with respect to θ:
2sin 2θ

( 2sin 2θ ) 
9 1  3
3 θ 2  −  3θ 2  ( 4 cos 2θ )
3 θ3 3θ 2 dy 2   
If y = = , then =
2sin 2θ 2sin 2θ dθ ( 2sin 2θ )
2

3 θ { 3sin 2θ − 4θ cos 2θ }
1 3
9 θ 2 sin 2θ − 12 θ 2 cos 2θ
= =
4sin 2 2θ 4sin 2 2θ

ln 2t
6. Differentiate with respect to t:
t

( t )  1t  − ( ln 2t )  12 t 


1
− −
1
1 −1
2
t 2 − t 2 ln 2t −
1
ln 2t dy 2 = t 2  1 
If y = ,= = 1 − ln 2t 
( t)  2 
2
t dt t t

1 1  1  1 
= 3 
1 − ln 2t  =  1 − ln 2t 
t2  2  t3  2 

2 xe 4 x
7. Differentiate with respect to x:
sin x

2 x e4 x d y ( sin x ) ( 2 x )( 4 e 4 x ) + ( e 4 x )( 2 )  − ( 2 x e 4 x )( cos x )


If y = , then =
( sin x )
2
sin x dx

8 x e 4 x sin x + 2 e 4 x sin x − 2 x e 4 x cos x


=
sin 2 x

=
2 e4 x
sin 2 x
{(1 + 4 x ) sin x − x cos x}

2x
8. Find the gradient of the curve y = at the point (2, –4)
x −5
2

If y =
2x
then =
gradient,
dy ( x 2 − 5) (2)
=
− (2 x)(2 x) 2 x 2 − 10 − 4 x 2 −10 − 2 x 2
=
x −5 ( x 2 − 5) ( x 2 − 5) ( x 2 − 5)
2 2 2
2 dx

−10 − 2(2) 2 −10 − 8 −18


At the point (2, –4), x = 2, hence gradient = = = = –18
( 22 − 5 ) (4 − 5) 2
2
1

919 © 2014, John Bird


dy 2x2 + 3
9. Evaluate at x = 2.5, correct to 3 significant figures, given y =
dx ln 2 x

( ln 2 x ) (4 x) − (2 x 2 + 3) 
1
2x + 3 
If y =
2
then
dy
= x
( ln 2 x )
2
ln 2 x dx

( ln 5) (10) − [2(2.5)2 + 3] 
1 

=
When x = 2.5,
dy
=  2.5  16.09438 − 6.2 = 3.82, correct to 3
( ln 5)
2
dx 2.59029
significant figures

920 © 2014, John Bird


EXERCISE 228 Page 621

( 2 x − 1)
6
1. Differentiate with respect to x:

dy dy
If y = ( 2 x − 1) then = 6 ( 2 x − 1) ( 2 ) i.e. = 12 ( 2 x − 1)
6 5 5

dx dx

2. Differentiate with respect to x: (2x3 – 5x)5

dy
If y = ( 2 x3 − 5 x ) then 5 ( 2 x3 − 5 x ) ( 6 x 2 − 5)
5 4
=
dx

3. Differentiate with respect to θ: 2 sin(3θ – 2)

= 2 ( cos ( 3θ − 2 ) ) ( 3)
dy dy
If y = 2 sin(3θ – 2) then = 6 cos ( 3θ − 2 )
i.e.
dθ dθ

4. Differentiate with respect to α: 2 cos5 α

dy dy
If y = 2 cos5 α=
then (2) ( 5cos 4 α )( − sin α ) i.e. = −10 cos 4 α sin α
dα dα

1
5. Differentiate with respect to x:
( x − 2 x + 1)5
3

1 dy −5 ( 3 x 2 − 2 )
= ( x3 − 2 x + 1) −5 ( x3 − 2 x + 1) ( 3 x 2 − 2 ) =
−5 −6
If y = then =
( x3 − 2 x + 1) ( x3 − 2 x + 1)
5 6
dx

5 ( 2 − 3x 2 )
=
( x3 − 2 x + 1)
6

6. Differentiate with respect to t: 5e2t+1

dy dy
If y = 5e2t+1 then = (5) ( e 2t +1 )( 2 ) i.e. = 10 e 2t +1
dt dt

921 © 2014, John Bird


7. Differentiate with respect to t: 2 cot(5t2 + 3)

cos x
If y = cot x = then
sin x

d y (sin x)(− sin x) − (cos x)(cos x) − ( sin 2 x + cos 2 x ) −1


= = = = − cosec 2 x
dx sin 2 x sin 2 x sin 2 x

dy
Thus, if y = 2 cot ( 5t 2 + 3) , then ( 2 )  − cos ec 2 ( 5t 2 + 3) (10t ) = −20t cosec2 ( 5t 2 + 3)
=
dt

8. Differentiate with respect to y: 6 tan(3y + 1)

dθ dθ
If θ = 6 tan(3y + 1) =
then (6) ( sec 2 ( 3 y + 1) ) ( 3) =
i.e. 18sec 2 ( 3 y + 1)
dy dy

9. Differentiate with respect to x: 2etan θ

dy
If y = 2 e tan θ , then = ( 2e tan θ ) sec 2 θ = 2sec 2 θ e tan θ

π
10. Differentiate: θ sin(θ – ) with respect to θ, and evaluate, correct to 3 significant figures, when
3
π
θ=
2

 π π π
(θ ) cos  θ − 
dy
If y = θ sin  θ −  then =  + sin  θ −  (1)
 3 dθ  3  3
π d y π  π π  π π  π π π
When θ = , =   cos  −  + sin  − = cos + sin
2 dθ  2  2 3 2 3 2 6 6
= 1.360 + 0.5 = 1.86, correct to 3
significant figures

922 © 2014, John Bird


11. The extension, x metres, of an undamped vibrating spring after t seconds is given by:

x = 0.54 cos(0.3t – 0.15) + 3.2


dx
Calculate the speed of the spring, given by , when (a) t = 0, (b) t = 2 s
dt

dx
If x = 0.54 cos(0.3t – 0.15) + 3.2 then = (0.54) [– sin(0.3t – 0.15)](0.3) + 0
dt

= –0.162 sin(0.3t – 0.15)

dx
(a) When t = 0, speed of spring, = –0.162 sin(–0.15) = 0.02421 m/s = 24.21 mm/s
dt

dx
(b) When t = 2 s, speed of spring, = –0.162 sin(0.45) = –0.07046 m/s = –70.46 mm/s
dt

923 © 2014, John Bird


EXERCISE 229 Page 622

d2 y d3 y
1. If y = 3x4 + 2x3 – 3x + 2 find (a) (b)
d x2 d x3

dy d2 y
(a) If y = 3x4 + 2x3 – 3x + 2 then = 12 x3 + 6 x 2 − 3 and = 36 x 2 + 12 x
dx d x2

d3 y
(b) = 72 x + 12
d x3

2 2 1 3
2. (a) Given f(t) = t – + – t + 1 determine f ´´(t)
5 t3 t

(b) Evaluate f ´´(t) when t = 1

1
2 2 1 3 2 2 −3
(a) f(t) = t − + − t +=
1 t − t + 3t −1 − t 2 + 1
5 t3 t 5
4 1 −1
f ′(t) = t + 3t −4 − 3t −2 − t 2
5 2
4 1 −3 4 12 6 1
f ′′(t) = − 12t −5 + 6t −3 + t 2 = − + +
5 4 5 t 5 t 3
4 t3
4 12 6 1 4 1
(b) When t = 1, f ′′(t) = − + + = − 12 + 6 + = –4.95
5 (1) (1) 4 1
5 3 3 5 4

t

3. The charge q on the plates of a capacitor is given by q = CV e CR , where t is the time, C is the

capacitance and R the resistance. Determine (a) the rate of change of charge, which is given by

dq d2 q
, (b) the rate of change of current, which is given by
dt d t2


t dq  1 − CRt  V − t
(a) If q = CV e CR ,= (CV )  − e  = − e CR
dt  CR  R

dq V − t d 2 q  V  1 − t  V − t
(b) If = − e CR , = −  − e CR  = e CR
dt R d t 2  R  CR  CR 2

924 © 2014, John Bird


4. Find the second differential coefficient with respect to the variable:

(a) 3 sin 2t + cos t (b) 2 ln 4θ

dy
(a) If y = 3 sin 2t + cos t then = (3)(2 cos 2t ) − sin=
t 6 cos 2t − sin t
dx
d2 y
and = (6)(– 2 sin 2t) – cos t = – 12 sin 2t – cos t or –(12 sin 2t + cos t)
d x2

dy 1 2
(b) If y = 2 ln 4θ then = (2)  = = 2θ
−1
dx θ  θ
d2 y 2
and = −2θ −2 = −
dx 2 θ2

5. Find the second differential coefficient with respect to the variable:

(a) 2 cos2x (b) (2x – 3)4

dy
(a) If y = 2 cos 2 x , =
4 cos x(− sin x) =
−4sin x cos x
dx
d2 y
and =
(−4sin x)(− sin x) + (cos x)(−4 cos x) =
4sin 2 x − 4 cos 2 x
d x2
= 4 ( sin 2 x − cos 2 x )

dy
(b) If y = ( 2 x − 3) ,
4
=4(2 x − 3)3 (2) =8(2 x − 3)3
dx
d2 y
= 24(2 x − 3) 2 (2) = 48 ( 2 x − 3)
2
and
d x2

6. Evaluate f ´´(θ) when θ = 0 given f(θ) = 2 sec 3θ

If f(θ) = 2 sec 3θ, then f ′(θ) = 6 sec 3θ tan 3θ


and f ′′(θ) = ( 6sec 3θ )( 3sec 2 3θ ) + ( tan 3θ )(18sec 3θ tan 3θ )

= 18sec3 3θ + 18sec 3θ tan 2 3θ


18 18 tan 2 0 18 18(0)
When θ = 0, f ′′(0) = + = + = 18
cos3 0 cos 0 1 1

925 © 2014, John Bird


d2 y dy
7. Show that the differential equation –4 + 4y = 0 is satisfied when y = xe2x
dx 2 dx

dy
If y = xe2x then =( x)(2 e 2 x ) + (e 2 x )(1) =2 x e 2 x + e 2 x
dx
d2 y
and = (2 x)(2 e 2 x ) + (e 2 x )(2) + 2 e 2 x = 4 x e 2 x + 4 e 2 x
d x2
d2 y dy
–4 + 4y = ( 4 xe 2 x + 4e 2 x ) – 4( 2 x e 2 x + e 2 x ) + 4(xe2x)
dx 2 dx

= 4 xe 2 x + 4e 2 x – 8 x e 2 x − 4 e 2 x + 4xe2x

=0

d2 y dy
8. Show that, if P and Q are constants and y = P cos(ln t) + Q sin(ln t), then t 2 +t +y=0
dt 2 dt

y = P cos(ln t) + Q sin(ln t)

dy P Q − P sin(ln t ) + Q cos(ln t )
=
− sin(ln t ) + cos(ln t ) =
dt t t t

 − P cos(ln t ) Q sin(ln t ) 
d y
2
(t ) 
 t

t  − [ − P sin(ln t ) + Q cos(ln t ) ] (1)
=
d t2 t2

− P cos(ln t ) − Q sin(ln t ) + P sin(ln t ) − Q cos(ln t )


=
t2

d2 y dy − P cos(ln t ) − Q sin(ln t ) + P sin(ln t ) − Q cos(ln t )


Hence, t 2 +t + y = (t 2 )
dt 2 dt t2

− P sin(ln t ) + Q cos(ln t )
+ (t) + P cos(ln t) + Q sin(ln t)
t

= − P cos(ln t ) − Q sin(ln t ) + P sin(ln t ) − Q cos(ln t ) − P sin(ln t ) + Q cos(ln t )

+ P cos(ln t) + Q sin(ln t)

=0

926 © 2014, John Bird


9. The displacement s of a mass in a vibrating system is given by: s= (1 + t ) e−ω t where ω is the
d2 s ds
natural frequency of vibration. Show that: + 2ω + ω 2s =
0
dt 2 dt

ds
If s= (1 + t ) e−ω t (1 t ) ( −ω e −ωt ) + (e −ωt )(1) =
=+ −ω e −ωt − ωt e −ωt + e −ωt
dt

d2 y
and +ω 2 e − ωt − [(ωt ) ( −ω e − ωt ) + ( e −ωt ) (ω )] − ω e −ωt
=
d x2
= ω 2 e − ωt + ( ω 2 t e − ωt ) − ( ω e − ωt ) − ω e − ωt

= ω 2 e − ωt + (ω 2t e − ωt ) − 2ω e −ωt

Hence,

d2 s ds
+ 2ω ω 2 e − ωt + (ω 2t e − ωt ) − 2ω e −ωt + 2ω[−ω e −ωt − ωt e −ωt + e −ωt ] + ω 2 [(1 + t ) e −ωt ]
+ ω 2s =
dt 2 dt

= ω 2 e − ωt + ω 2te −ωt − 2ω e −ωt − 2ω 2 e −ωt − 2ω 2te −ωt + 2ω e −ωt + ω 2 e −ωt + ω 2te −ωt

=0

927 © 2014, John Bird

You might also like