0% found this document useful (0 votes)
29 views5 pages

Assignment 1

Assignment

Uploaded by

vasanthvv301506
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
29 views5 pages

Assignment 1

Assignment

Uploaded by

vasanthvv301506
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

M.

Vasanth

Besant Technology, Indiranagar

### STOCK PREDICTION

## The change in price of the stock overtime

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

import seaborn as sns

sns.set_style('whitegrid')

plt.style.use("fivethirtyeight")

%matplotlib inline

df=pd.read_csv(r"C:\Users\Vasanth\Documents\HistoricalQuotes.csv")

df

import yfinance as yf

## For time stamps

from datetime import datetime

## The tech stocks we'll use for this analysis

tech_list = ['AAPL', 'GOOG', 'MSFT', 'AMZN']

# Set up End and Start times for data grab


tech_list = ['AAPL', 'GOOG', 'MSFT', 'AMZN']

end = datetime.now()

start = datetime(end.year - 1, end.month, end.day)

for stock in tech_list:

globals()[stock] = yf.download(stock, start, end)

company_list = [AAPL, GOOG, MSFT, AMZN]

company_name = ["APPLE", "GOOGLE", "MICROSOFT", "AMAZON"]

for company, com_name in zip(company_list, company_name):

company["company_name"] = com_name

df = pd.concat(company_list, axis=0)

df.tail(10)

AAPL.describe()

AAPL.info()

## view of the closing price

plt.figure(figsize=(15, 10))

plt.subplots_adjust(top=1.25, bottom=1.2)

for i, company in enumerate(company_list, 1):

plt.subplot(2, 2, i)

company['Adj Close'].plot()

plt.ylabel('Adj Close')

plt.xlabel(None)
plt.title(f"Closing Price of {tech_list[i - 1]}")

plt.tight_layout()

## 2) What was the moving average of the various stocks?

ma_day = [10, 20, 50]

for ma in ma_day:

for company in company_list:

column_name = f"MA for {ma} days"

company[column_name] = company['Adj Close'].rolling(ma).mean()

fig, axes = plt.subplots(nrows=2, ncols=2)

fig.set_figheight(10)

fig.set_figwidth(15)

AAPL[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[0,0])

axes[0,0].set_title('APPLE')

GOOG[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[0,1])

axes[0,1].set_title('GOOGLE')

MSFT[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[1,0])

axes[1,0].set_title('MICROSOFT')

AMZN[['Adj Close', 'MA for 10 days', 'MA for 20 days', 'MA for 50 days']].plot(ax=axes[1,1])

axes[1,1].set_title('AMAZON')
fig.tight_layout()

###6. Predicting the closing price stock price of APPLE inc:

# Get the stock quote

df

from sklearn.model_selection import train_test_split

##train and test the data

data = df.filter(['Close'])

# Convert the dataframe to a numpy array

dataset = data.values

# Get the number of rows to train the model on

training_data_len = int(np.ceil( len(dataset) * .95 ))

training_data_len

# Create the training data set

train_data = scaled_data[0:int(training_data_len), :]

# Split the data into x_train and y_train data sets

x_train = []

y_train = []

for i in range(60, len(train_data)):

x_train.append(train_data[i-60:i, 0])

y_train.append(train_data[i, 0])

if i<= 61:

print(x_train)

print(y_train)

print()
# Convert the x_train and y_train to numpy arrays

# x_train.shape

x_train, y_train = np.array(x_train), np.array(y_train)

## Reshape the data

x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1], 1))

You might also like