0% found this document useful (0 votes)
54 views5 pages

Trigonometric Ratios

T

Uploaded by

reddydevi785
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
54 views5 pages

Trigonometric Ratios

T

Uploaded by

reddydevi785
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

www.sakshieducation.

com

TRIGONOMETRIC RATIOS
SYNOPSIS AND FORMULAE

π
1. One right angle = radians = 90o.
2

π radians = 2 right angles = 180o

1o = 601, 11 = 6011

1o = 0.01745 radians.

1c = 57o1714511 (approx)

2. Relations:

i) sin θ cosec θ = 1

ii) cos θ sec θ = 1

iii) tan θ cot θ = 1

iv) sin2 θ + cos2 θ = 1

v) 1 + tan2 θ = sec2 θ

→ (sec θ + tan θ) (sec θ – tan θ) = 1.

1
→ sec θ + tan θ = =1
sec θ − tan θ

vi) 1 + cot2 θ = cosec2 θ

→ (cosec θ + cot θ) (cosec θ – cot θ) = 1

1
→ cosec θ + cot θ =
cosec θ − cot θ

vii) sec2 θ + cosec2 θ = sec2 θ . cosec2 θ

viii) tan2 θ – sin2 θ = tan2 θ . sin2 θ;

www.sakshieducation.com
www.sakshieducation.com

cot2 θ – cos2 θ = cot2 θ . cos2 θ

ix) sin2 θ + cos4 θ = 1 – sin2 θ cos2 θ

= sin4 θ + cos2 θ

x) sin4 θ + cos4 θ = 1 – 2sin2 θ cos2 θ

xi) sin6 θ + cos6 θ = 1 – 3sin2 θ cos2 θ

xii) sin2 x + cosec2 x ≥ 2

xiii) cos2 x + sec2 x ≥ 2

xiv) tan2 x + cot2 x ≥ 2.

3. Values of trigonometric ratios of certain angles


angle
↓ 0o π/6 π/4 π/3 π/2

ratio
sin 0 1/2 1/ 2 3/2 1
cos 1 3/2 1/ 2 1/2 0
tan 0 1/ 3 1 3 undefined
cot undefined 3 1 1/ 3 0
cosec undefined 2 2 2/ 3 1
sec 1 2/ 3 2 2 undefined

4. Signs of Trigonometric Ratios: If θ lies in I, II, III, IV quadrants then the signs of
trigonometric ratios are as follows.

II I
90o < θ < 180o 0o < θ < 90o

Sin θ and cosec θ all the ratios

III IV
180o < θ < 270o 270o < θ < 360o

tan θ and cot θ cos θ and sec θ

Note: i) 0o, 90o, 180o, 270o. 360o, 450o, ….. etc. are called quadrant angles.

ii) With “ALL SILVER TEA CUPS” symbol we can remember the signs of trigonometric
ratios.
www.sakshieducation.com
www.sakshieducation.com

5. Increasing and Decreasing Behavior of Trigonometrical Ratios:

In Q1: sin θ, tan θ, sec θ are increasing functions and cos θ, cot θ, cosec θ are decreasing
functions.

In Q2: sin θ, cos θ, cot θ are decreasing functions and tan θ , sec θ, cosec θ are increasing.

In Q3: sin θ, cot θ, sec θ are decreasing functions and tan θ, cos θ, cosec θ are increasing
functions.

In Q4: sin θ, cos θ, tan θ are increasing functions and cosec θ, sec θ, cot θ are decreasing
functions.

6. Coterminal Angles: If two angles differ by an integral multiples of 360o then two angles are
called coterminal angles.

Thus 30o, 390o, 750o, 330o etc., are coterminal angles.

Fn 90 ∓ θ 180 ∓ θ 270 ∓ θ 360 ∓ θ


sin θ cos θ ± sin θ − cos θ ∓ sin θ
cos θ ± sin θ − cos θ ∓ sin θ cos θ
tan θ ± cot θ ∓ tan θ ± cot θ ∓ tan θ
cosec θ sec θ ± cosec θ − sec θ ∓ cosec θ
sec θ ± cosec θ − sec θ ∓ cosec θ sec θ
cot θ ± tan θ ∓ cot θ ± tan θ ∓ cot θ

7. Sin (n. 360o + θ) = sin θ

Cos (n. 360o + θ) = cos θ

Tan (n. 360o + θ) = tan θ

Sin (n. 360o – θ) = sin (–θ) = –sin θ

Cos (n. 360o – θ) = cos (–θ) = cos θ

Tan (n. 360o - θ) = tan (–θ) = –tan θ

www.sakshieducation.com
www.sakshieducation.com

8. Complementary Angles: Two Angles A, B are said to complementary ⇒ A + B = 90o

1) sin A = cos B and cos A = sin B.

2) sin2 A + sin2 B = 1, and cos2 A = sin2 B.

3) tan A . tan B = 1 and cot A cot B = 1.

9. Supplementary angles: Two angles A, B are said to be supplementary ⇒ A + B = 180o.

1) sin A – sin B = 0

2) cos A + cos B = 0

3) tan A + tan B = 0

Note: 1) If A – B = 180o then i) cos A + cos B = 0

ii) sin A + sin B = 0

iii) tan A – tan B = 0

2) If A + B = 360o then i) sin A + sin B = 0

ii) cos A – cos B = 0

iii) tan A + tan B = 0

10.

Functons Domain Range


Sin R [−1,1]
Cos R [−1,1]
π
Tan R −{(2n+1) , n ∈ z} R
2
Cot R −{nπnn ∈ z} R
π
Sec R −{(2n+1) , n ∈ z} (−∞ −1]∪[1,∞)
2
Cosec R −{nπnn ∈ z} (−∞ −1]∪[1,∞)

Note: 1) If a cos θ + b sin θ = c then

a sin θ - b cos θ = ± a 2 + b 2 − c 2

www.sakshieducation.com
www.sakshieducation.com

2) If a cos θ - b sin θ = c then

a sin θ + b cos θ = ± a 2 + b2 − c2

11. sin θ + sin(π + θ) + sin (2π + θ) + ….. ….. + sin(nπ + θ) = 0, if n is odd

= sin θ, if n is even.

12. cos θ + cos(π + θ) + cos(2π + θ) + ….. + cos(nπ + θ) = 0, if n is odd

= cos θ, if n is even.

www.sakshieducation.com

You might also like