0% found this document useful (0 votes)
19 views3 pages

Practical 4

Uploaded by

william makarius
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
19 views3 pages

Practical 4

Uploaded by

william makarius
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 3

CS 323

CLASSICAL CONTROL SYSTEMS ENGINEERING

Practical 4: Systems Stability – Root Locus

Question 1
!"#
A plant to be controlled is described by a transfer function 𝐺 (𝑠) = !!"$!"%#
Obtain a root locus plot using MATLAB

question1.m
num = [1 5];
den = [1 7 25];
rlocus(num, den);

Output

Question 2
%! ! "#!"&
Plot a root locus for a system with a transfer function 𝐺 (𝑠 ) = ! ! "%!"'
Question2.m
sys = tf([2 5 1],[1 2 3]);
rlocus(sys)

Output
Question 3
Use rlocus method to extract the closed-loop poles and associated feedback gain for
'! ! "&
the transfer function. 𝐺 (𝑠) = (!
" !"$! "#!")
Question3.m
sys = tf([3 0 1],[9 7 5 6]);
[r,k] = rlocus(sys);
disp(r);
disp(k);

Output

r = 3×53 complex
102 ×

-0.0094 + 0.0000i -0.0104 + 0.0000i -0.0105 + 0.0000i -0.0106 +


0.0000i -0.0107 + 0.0000i -0.0108 + 0.0000i -0.0109 + 0.0000i -0.0111
+ 0.0000i -0.0112 + 0.0000i -0.0113 + 0.0000i -0.0115 + 0.0000i -
0.0117 + 0.0000i -0.0119 + 0.0000i -0.0121 + 0.0000i -0.0124 + 0.0000i
-0.0126 + 0.0000i -0.0129 + 0.0000i -0.0132 + 0.0000i -0.0135 + 0.0000i
-0.0139 + 0.0000i -0.0143 + 0.0000i -0.0148 + 0.0000i -0.0152 + 0.0000i
-0.0158 + 0.0000i -0.0163 + 0.0000i -0.0170 + 0.0000i -0.0177 + 0.0000i
-0.0184 + 0.0000i -0.0192 + 0.0000i -0.0201 + 0.0000i -0.0211 + 0.0000i
-0.0222 + 0.0000i -0.0233 + 0.0000i -0.0246 + 0.0000i -0.0259 + 0.0000i
-0.0274 + 0.0000i -0.0290 + 0.0000i -0.0307 + 0.0000i -0.0326 + 0.0000i
-0.0346 + 0.0000i -0.0368 + 0.0000i -0.0392 + 0.0000i -0.0418 + 0.0000i
-0.0446 + 0.0000i -0.0476 + 0.0000i -0.0508 + 0.0000i -0.0543 + 0.0000i
-0.0582 + 0.0000i -0.0623 + 0.0000i -0.0667 + 0.0000i
0.0008 + 0.0084i 0.0006 + 0.0083i 0.0006 + 0.0082i 0.0006 +
0.0082i 0.0006 + 0.0082i 0.0006 + 0.0082i 0.0005 + 0.0082i 0.0005
+ 0.0082i 0.0005 + 0.0082i 0.0005 + 0.0081i 0.0005 + 0.0081i
0.0004 + 0.0081i 0.0004 + 0.0081i 0.0004 + 0.0080i 0.0004 + 0.0080i
0.0003 + 0.0080i 0.0003 + 0.0080i 0.0003 + 0.0079i 0.0002 + 0.0079i
0.0002 + 0.0078i 0.0002 + 0.0078i 0.0002 + 0.0078i 0.0001 + 0.0077i
0.0001 + 0.0077i 0.0001 + 0.0076i 0.0000 + 0.0076i 0.0000 + 0.0075i
-0.0000 + 0.0074i -0.0000 + 0.0074i -0.0000 + 0.0073i -0.0001 + 0.0073i
-0.0001 + 0.0072i -0.0001 + 0.0071i -0.0001 + 0.0071i -0.0001 + 0.0070i
-0.0001 + 0.0070i -0.0001 + 0.0069i -0.0001 + 0.0068i -0.0001 + 0.0068i
-0.0001 + 0.0067i -0.0001 + 0.0067i -0.0001 + 0.0066i -0.0001 + 0.0066i
-0.0001 + 0.0065i -0.0001 + 0.0065i -0.0001 + 0.0064i -0.0001 + 0.0064i
-0.0001 + 0.0064i -0.0001 + 0.0063i -0.0001 + 0.0063i
0.0008 - 0.0084i 0.0006 - 0.0083i 0.0006 - 0.0082i 0.0006 -
0.0082i 0.0006 - 0.0082i 0.0006 - 0.0082i 0.0005 - 0.0082i 0.0005
- 0.0082i 0.0005 - 0.0082i 0.0005 - 0.0081i 0.0005 - 0.0081i
0.0004 - 0.0081i 0.0004 - 0.0081i 0.0004 - 0.0080i 0.0004 - 0.0080i
0.0003 - 0.0080i 0.0003 - 0.0080i 0.0003 - 0.0079i 0.0002 - 0.0079i
0.0002 - 0.0078i 0.0002 - 0.0078i 0.0002 - 0.0078i 0.0001 - 0.0077i
0.0001 - 0.0077i 0.0001 - 0.0076i 0.0000 - 0.0076i 0.0000 - 0.0075i
-0.0000 - 0.0074i -0.0000 - 0.0074i -0.0000 - 0.0073i -0.0001 - 0.0073i
-0.0001 - 0.0072i -0.0001 - 0.0071i -0.0001 - 0.0071i -0.0001 - 0.0070i
-0.0001 - 0.0070i -0.0001 - 0.0069i -0.0001 - 0.0068i -0.0001 - 0.0068i
-0.0001 - 0.0067i -0.0001 - 0.0067i -0.0001 - 0.0066i -0.0001 - 0.0066i
-0.0001 - 0.0065i -0.0001 - 0.0065i -0.0001 - 0.0064i -0.0001 - 0.0064i
-0.0001 - 0.0064i -0.0001 - 0.0063i -0.0001 - 0.0063i

k = 1×53

0 0.4201 0.4542 0.4911 0.5309 0.5740 0.6205


0.6709 0.7253 0.7841 0.8477 0.9165 0.9908 1.0712
1.1581 1.2521 1.3536 1.4634 1.5822 1.7105 1.8493
1.9993 2.1614 2.3368 2.5263 2.7313 2.9529 3.1924
3.4514 3.7313 4.0340 4.3613 4.7151 5.0975 5.5111
5.9581 6.4415 6.9640 7.5289 8.1397 8.8000 9.5138
10.2856 11.1200 12.0220 12.9973 14.0516 15.1915 16.4238
17.7561

Question 4
Consider an open loop system with the following transfer function. 𝐺 (𝑠) =
!"$
!(!"#)(!"&#)(!"%,)

Question4.m
num=[1 7];
den=conv(conv([1 0],[1 5]),conv([1 15],[1 20]));
rlocus(num,den)
axis([-22 3 -15 15])

Output

You might also like