0% found this document useful (0 votes)
58 views7 pages

Limits Today

Uploaded by

suhani
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
58 views7 pages

Limits Today

Uploaded by

suhani
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 7

111

[·: h ➔ O~¾ ➔ -~e ' ➔-~ ) h ➔ OJ


limits 2.13

IILLU■TIIATIDN :Z,45J [ILLU■TIIATIDN :Z,48]


If [x) denotes the greatest integer less than or equal to x, then Evaluate lim (-1)"- 1 sin(1rJ11 2 + 0.511 + t), where n eN
evaluate ......

}~m- ~3 ([1'x] 2
+ [2 x] + [3 x]
2
+ .•. + [n x]).
2
1
- l = (-l)"- limsin(irJn +0.5n+tj
2
......

l 2
[r x)
1
l 2 2
r x-{r x} = lim (-l)"- 1(-1}"- 1 sin(111r - 1rJn2 + !!.. + 1)
n-+• 2
- Wehave, ......
lim _n_
'" 3_ lim -'"-'-~--

l
• n-+• n3
where {· l denotes the fractional pan function

n(n+ 1)(2n + I)
I 2 l
. · l(n-FP)(n+FP)j
= n-+•
hmsm,r n J
n+ n2 + + I
X. •
= lim 3
6 - L~3 2
n-+• [ n r•I n

= -x hm

=
6n-+•

!_o
6
I )( 2+-
• ( I+-
n
I ) - hm
n
• • (r x}
n-+•r•I n
3
r-- 2

......

l l n
• nm,;,. ("2 -•2 -,-, ])
I
n I+ l + - + -2
2n n
I

(ILLU■TIIATIDN :Z,48)

If lim { -
x-+- x+I
2
x +
-t -(ax+ b)} • 0, then find the values of a and b.
lim sin,r
......

= lim sin,r[
l ~ n(t+ I+

-½- ]•
_!!.._,
2
I
211
I
+~)

sin(-!) • - ~
...... I I 4 v2
I+ l + - + -
2 2n n2
x +I }
- Wchave lim { ---(ax+b) =O
x-+• x+I
STANDARD FORMULA FOR LIMITS
2 Recall the binomial expansion for any rational index
. {x
hm - -(t-a)-x(a+b)+t-b}
'--'---'--'-- = 0
or
x-+• x+l •_ n(n-1) 2 n(n-l)(n-2) 3 where
( I+ x ) -1 +nx + - - -x + x ...,
21 31
Since the limit of the given expression is zero, the degree of
numerator is less than that of denominator. Denominator on L.H.S. lxl< I
is a polynomial ofdegree one. So, numerator must be a constant. For When x is infinitely small (approaching to zero), we can
this, we must have ignore higher powers of x,
coeff. of x2 = 0 and coeff. of x = 0 So, (I + x)" = I + nx (approximately)
or 1-a=Oanda+b=O xn - a"
Let us use this fact to find the value of lim - - -
or a= l,b=-1 x-+a x-a
Let x=a+h
hLLU■TIIATIDN :Z,471 xn -a" (a+h)"-an
lim - - - - lim -'---'--
nP sin 2 (n 1) x-+a x-a h-+0 a+h-a
Evaluate lim • , where O< p < I.
n-+• n+ I

-Wehave
= lim
. nP sin 2 (n!) h-,O h
I,m---'----'-
n+I
{t+n..!!}-t
• 2( I) = a" lim a
= lim sm n.
h-,O h
n➔•,,i-p(I+~)
= some number between Oand I =
0 (asO<p< I)
-xi
lim xn - a" = nan-I (x+ 2)5/J - (a+ 2)5/J
r
x-+u x- a = .~ (x+2)-(a+2)
lim (l+x)" -I =n l/J -bl/J
Also. Y
• lim---, wherex+ 2 • yanda +2 •b
X-+0 X r•h y-b
[LLU■TIIATIDN 2,!!J = ! bl/J - I ! c bm = ! (a + 2)2/J
3 3 3
. x 10 -I024
Evaluate !~ xl _
32 [ILLU■TIIATIDN 2,53]

- . x -102410
h m5- - - -
x➔lx -32

.
10 210

x10 -210
hm---
"" .,...2 x-2
. Xl -25
hm--
x10 - i'o
---
lim .::........:.__ = lim ____!.=1..._
x➔2 x 5 - 25 x➔2 x 5 -2 5

IOx 210-1
5X 2l-l
x-2
. Jex+ 7) - 3J(2x- 3)
Eva Iuatc I1m -',.-==--~~---·
x➔2 ~(x + 6) - 2~(3x - S)

r ~-3~
-Wehavel= .~ ~{x+6)-2~{3x-5)
Let x - 2 = I such that when x -+ 2, I -+ 0. Then
I I
(or. )
0 onn

,l'.... 2 x-2
r (1+9)2 -3(21+1)2
l= ,~ ! !
-64 (I +8)l - 2(3/ + l)l

l!,LLU■TIIATIDN Z,5Dl
( 1+:.)½-(21+1)½
-2"xn
If lim-- • 80 and II e N, then find the value of 11. s I2 lim ~ -9~! - - - -I
t-+0
x-+2 x-2
(1+i)3-(31+1)3
x" -2"
- We have lim - - =80
.r-+2 x-2 .!.:._(2/).!. _.!.__,
or n2•- 80 1= = Ilim 29 2 I.!!_=~
2 t➔0 :__!._(3I)_!. 2 ...!__ 1 23
or n2•- 1 = S x 21--1 83 3 24
or n= S
tlLLU■TIIATIDN 2,54)
[LLU■TIIATIDN z.:!.!)
I
. (4x-l)l +a+bx I
Evaluate lim J; + lfx + .Jffx + .fJJj; - 4 . If hm - - - - - = - then find the values of a and b.
x➔O X )
x-+I x-1
I
3_+_a_+_b_x
. ---'-(l_-_4--'x)'-- I
. fx+ffx+Wx +J./ffx-4
hm----~--~---
We have I1m
x➔O X 3
.r ➔I X-J
-
- . x"2 + xii• + xus + x1116 - 4 -[1-ix]+a+bx
3
= hm-------- lim I
.r➔I x-1 .r➔O X 3
112 114 118 1116
. (-
= hm x -- + I x- - - I
+x ---1+x ---I)
(a-l)+(i+b)x I
x➔I X - I X - I X- I X - I 3
lim =-
.r-+O X 3
= .!+!.+.!.+_.!._ = 8+4+2+1 = ~
2 4 8 16 16 16 For limit to exist, a - I = 0 or a = I
l1LLU■T11U1.T1aN z.sz)
. (i+b)x I
513
. (x+2) -(a+2)513 ~ hm---=-
.r➔O 3
Evaluate hm -'---'---'---'-- X
x-+a x-a
i+b=.!.
( 2)5/J ( 2)5/J 3 3
- lim x+ - a+ b=-1
x➔u x-a
CONCEPT APPLICATION EXERCISE 2,3

. (2x-3)(✓ x-1)
1. EI
va uate Itm 2
.
x-+I 2x + X - 3

. x 4 -3x3 +2
2. Evaluate hm 3 .
x-+lx -5x 2 +3x+I
. I-sin 2x
3. Evaluate hm - - - •
x-+!!: I+ cos4x
4

4. Evaluate lim
I - cot 3x
x-+1rt 4 2 - cot x - cot3x

,,J3x -a - ,Jx + a
5. Evaluate Jim ~ - - ~ - - .
x-+a X - a

. ✓2 -,JJ + COSX
6. Evaluate hm . .
x-+O sm 2x

. -h+2x -<.Js + ✓2>


7. EvaIuate )1m 2
.
x-+M X -10

. (1 2 -2 2 +3 2 -42 +5 2 +···n tenns)


8. Evaluate hm
11-+00 n2

9. Evaluate lim [✓a 2x2 +ax+ I - ✓a 2x2 + 1].


x-+-
10. If [x] denotes the greatest integer less than or equal to x,
then evaluate lim ~([I· x] + [2 •x] + [3 •x]+ ... +[n •x]).
n➔ oo n

x'

7x2 +J)t-x'
12. Evaluate Jim - 2-
(
x-+- 5x -I

13. Evaluate Jim cos(1e✓n 2 + n) when n is an integer.


n-+-

100
I/-100
14. Evaluate lim~*=~1- - -
x-+t x-1

15. Evaluate lim [ </ I _ .!_] .


h-+0 h 8+h 2h

ANSWERS

1. -1/10 2. 5/4 3. 1/4


4. 3/4 5. 11-.na 6. 1/4--12
I
7. 8. 1/2 or-1/2 9. 1/2
2✓ 10(✓5 +✓2)
10. x/2 11. 114--12 12. 0
13. 0 14. 5050 15. -1/48
Exercise 2.3
. (2x - 3) ( ✓x x (✓x+
1. hm---~-~----,-'~--=--=-
-1 -1 - I) I)
x-+I (x-1}(2x+3)x(✓ x+l) 5x2 10

. x 4 -3x 3 +2
2. We have L = h m 3
- -2 - - - -
x-+I x - 5x + 3x + l
Clearly x = I is zero ofNr. and Dr..
So, factorizing, we get
. (x-l)(x3 - 2x2 -2x-2)
L = hm...;._--'--'--------'--
2
x➔1 (x-l)(x -4x-l)
. x 3 - 2x2 - 2x - 2 I- 2 - 2 - 2 5
= h m 2- - - - - -
.t-+I x -4x-l 1-4-1 4

. l-sin2x
3. I1 m - - -
x-+.!. l + cos4x
(%form)
4

. (sinx-cosx)2
= I1 m - -2- - -
x-+.!. 2cos 2x
(%form)
4

. (sinx-cosx)2
= Il m - - - ' -2- - - - - -2 ' -2-
x➔.!. 2(cos x - sin x) (%form)
4

= Jim I =-
x➔.!. 2(cosx + sin x) 2 4
4

l-cot3x
4. Jim
x-+tc/4 2 - cotx - cot 3x
= lim (1-cotx) {l+cotx+cot2x)
x-+.!. (J-cotx) (cot 2x+cotx+2)
4
l+l+l 3
-----
2+1+1 4

. '13x -a - ✓x +a
5. h m ~ - - ~ - -
x➔o x-a

. '13x- a - '1x + a '13x-a + '1x +a


= hm ~--,--~-- x "'"""'===~==-
x-+a (x-a) '13x -a +'1x+a
. (3x - a) - (x + a)
I
= x~(x-a)('13x-a+'1x+a)
2 l
= 2,£a = ,£a
. ./i-f+cosx 10. lim ...!...([I ,x)+[2·x]+(3·,t)+ ... +(n·x])
6. We have !~ sin2x 11➔-n2

• lim 2 - (I+ cos.t) x I


!,1rxJ
•-• sin' x Ji+ Ji+ cosx
• lim -n-,-
,.,
• lim I -cosx x lim 1
•-•(I+ cosx)(I - cosx) •-• Ji +Ji+ cosx
1 1
• lim--- - x
•-•(I+ cosx) N2
I • lim
·w
7. Ra1ionalizing Nr.. we gel
r
• ,..!'}.
7+2.t-(✓ S+.Ji>'
x' -10 ./7 + 2x+(Js + Ji)
• lim x.
,.__
[
n(n+I)
nl
- ~
~ nl
,.,
(rx}
l
I I' 2(x-./io)
• J,+2./io +(✓5 +.Ji),..!'J..(x-Jio)(x+Jio)
I I
• lim[x.(1+~) _
,.__ 2
~,.,
~ n2
(rx}]
- (Ts+Ji)+(Ts+Ji)'Jio
I
• 2Jio(Ts+Ji)
- .:!.-o-.:!.
2 2
8. When n is even:
Given series II. J~x'{Jx'+Ji+x' -x.Ji}
I2 - 22 + 32 - 42 + ... - n'
• (I 2 - 2') + (3 2 - 42 ) + ... [(n - I )2 - n'J 2 2
•-(I +2+3+4+•··+n) • I•1m :r'[ x + ~ - 2 x ]
• _ n(11+l)
•-• ✓x'+P +x./i
2 • lim x3 (I +x'-x')
Given l • lim- ll(II + I) • - .!.
,._.,_ 2n 2 2 •-•( Jx'+P u.Ji) (Pu')
When n is odd:
Given series • lim xl

I2- 22 + 32- 42 + ... + n 2 ,-•(Jx'+P +x.Ji)(P +x')


=-1(1 +2+3+ ..·+(11-l))+n2
• _ n(n - I) + n'
2
• n(n+I)
2

Given l • lim n(n+ I) • .!.


,,,_.,.. 2n 2 2 I
. 7x2 +I . ?+:;, 7
12 I,m 2 •hm--•-
x➔-
• x-+-Sx -I
5 _ _!_
x2
S

(Ra1ionalizing) XS Xl
lim-- • lim-- • -
x-+•1-x1 x-+-_!__ 1
0
• lim ~--...;; , . . . . _ ~ - -
x'
2 a I 2+...!...
a +;+7+ 0 xi
(Dividing numeralor and denominalor by x)

0
=Gr =
13. L= limcos{1r✓n2 +n}
n➔-

= lim(-ltcos{n,r-,r ✓n 2 +n}
n ➔-

= lim (-It cos


n-+-
-n,r
~
[ n+-yn2 +n
l
= (-It lim cos[ J,r )
n➔- n+ n 2 +n

= (-It n➔•
lim cos[ Rl
I
I+ l+-
n
n ,r
= (-1 ) cos-
2
=O

. [~x*]-100
14. I1 m ~ - ~ - -
x-+I (x -1)

. (x+x 2 +x3 +···+x100 )-IOO


=hm-'---------~-
x-+I (x-1)
2 3 100
. (x -1) + (x -1) + (x -1) +· ••+ (x -1)
=hm -'-------'-----'-----'-----'-----'----'-------'-
x-+I (x-1)
2 3 100
=x-+I
lim {(-
X --
x-1
I) + ( -
x --I) + ( -
x-1
x --I) +···+ ( -
x-1
x -- I)}
x-1
2 3
• (x-1)
= hm - - +hm• (x- -I) • (x
- +hm - -I)
- +···
X-+I X - I X-+I X - I X-+I X - I

. (x• 00
-I)
hm - - = I +2+3+···+ 100
x-+I x-1

= 100 x IOI
5050
2

2
- 3</S+h
(,+~r-,1
8
IS. lim
h-+O [2h~8+h ] = - lim ~.,..h-~ -
h-+o
8_ 8 +h v
r 8

48

You might also like