Palladium-Catalyzed Addition of Diaryl Disulfides and Diselenides To Terminal Alkynes in Room Temperature Ionic Liquids (
Palladium-Catalyzed Addition of Diaryl Disulfides and Diselenides To Terminal Alkynes in Room Temperature Ionic Liquids (
Palladium-catalyzed addition reactions of diaryl disulfides and diselenides to terminal alkynes can
proceed smoothly in room temperature ionic liquid, 1-butyl-3-methylimidazolium
hexafluorophosphate ([bmim][PF6]), to afford the corresponding (Z)-1,2-bis(arylthio)-1-alkenes
Published on 16 August 2007 on http://pubs.rsc.org | doi:10.1039/B706320B
or (Z)-1,2-bis(arylseleno)-1-alkenes in excellent yields. Our system not only avoids the use of
highly toxic benzene or toluene as a solvent but also solves the basic problem of palladium
catalyst reuse.
industry, due to continuing depletion of natural resources and methodology was not applicable for Se–Se bond addition to
growing environmental awareness.1 One of the major efforts in alkynes.17 In this paper, we describe the palladium-catalyzed
academic research and industry is the search for replacements addition of diaryl disulfides and diselenides to terminal alkynes
to the environmentally damaging organic solvents used on a in room temperature ionic liquids. The developed methodo-
large scale, especially those which are volatile and difficult to logy has important practical advantages deserving special note.
contain. Room temperature ionic liquids, especially those
based upon the 1,3-dialkylimidazolium cation, have attracted
Results and discussion
growing interest in the last few years.2 They offer an
alternative and ecologically sound medium compared to We found that the Pd(PPh3)4-catalyzed addition reaction of
conventional organic solvents because of their negligible vapor diphenyl disulfide to 1-hexyne in [bmim][PF6] occurred
pressure, ease of handling and potential for recycling. smoothly at 60 uC, and was complete within 2 h to afford
Furthermore, their high compatibility with transition metal stereoselectively (Z)-1,2-bis(phenylthio)-1-hexene (2a) in 95%
catalysts and limited miscibility with common solvents, enables yield. The scope of the reaction has been studied for different
easy product and catalyst separation with the retention of the alkynes and diaryl disulfides (Scheme 1). The experimental
stabilized catalyst in the ionic phase. These and related ionic results are summarized in Table 1. As shown in Table 1, the
liquids have been successfully applied to hydrogenations,3 addition reactions of diaryl disulfides to a variety of terminal
alkene dimerizations,4 Friedel–Crafts reactions,5 Diels–Alder alkynes proceeded very smoothly to give stereoselectively the
reactions,6 Heck reactions,7 Bechmann condensations8 and
Suzuki reactions.9
Catalytic diaryl disulfides and diselenides additions to
terminal alkynes has been discovered by A. Ogawa, N.
Sonoda et al.10,11 The products of the addition reaction are
of high practical interest in organic chemistry12,13 and Scheme 1
materials science.14,15 The mechanism of this catalytic reaction Table 1 Palladium-catalyzed addition of Ar2S2 to various acetylenesa
has been extensively studied and proceeds via: (1) oxidative
Entry R Ar Product Yield (%)b
addition of S–S or Se–Se bond to Pd(0); (2) the stereoselective
insertion of acetylenes into the Pd–S or Pd–Se bond; (3) C–S or 1 n-C4H9 Ph 2a 95
C–Se reductive elimination.10,11,16 The reaction is catalyzed by 2 n-C4H9 4-CH3C6H4 2b 94
Pd(PPh3)4 at 80 uC using benzene as the solvent, however, the 3 HOCH2 Ph 2c 98
4 HOCH2 4-CH3C6H4 2d 96
homogeneous palladium catalyst can not be recovered and 5 CH3OCH2 4-CH3C6H4 2e 95
reused and the benzene is easily volatile and highly toxic. These 6 Ph 4-CH3C6H4 2f 94
disadvantages have so far precluded its practical applications. 7 n-C6H13 4-CH3C6H4 2g 96
8 H2NCH2 Ph 2h 93
9 n-C6H13 Ph 2i 95
Department of Chemistry, Jiangxi Normal University, Nanchang, a
Reactions were conducted under the conditions of 1.2 mmol of
330022, P. R. China. E-mail: caimzhong@163.com; acetylene 1 and 1.0 mmol of Ar2S2 in the presence of Pd(PPh3)4
Fax: +86-(791)-8517500 (2 mol%) in [bmim][PF6] (1.5 mL) at 60 uC for 2 h. b Isolated yield
{ Electronic supplementary information (ESI) available: based on the Ar2S2 used.
Supplementary information. See DOI: 10.1039/b706320b
1180 | Green Chem., 2007, 9, 1180–1184 This journal is ß The Royal Society of Chemistry 2007
View Online
over benzene as the solvent. For example, the preparation of affording the cleaned, ionic liquid, catalytic solution. After the
(Z)-1,2-bis(phenylthio)-3-hydroxy-1-propene (2c) was success- recovered ionic liquid containing the palladium catalyst was
ful in [bmim][PF6] after only 2 h and gave a 98% yield (entry 3), concentrated in vacuo (5.0 torr, r.t. for 1 h), a second amount
but the same reaction run in benzene gave a 79% yield when of reactants were added and the process was repeated up to 4
stopped after 12 h.10 times. It seems that there is no effect on the rate and yield of
The developed methodology was also applicable for Ar2Se2 the reaction during each cycle (Table 3), the result is important
addition to terminal alkynes. The palladium-catalyzed from a practical point of view.
addition reactions of Ar2Se2 to a variety of terminal alkynes
Downloaded on 21 November 2010
This journal is ß The Royal Society of Chemistry 2007 Green Chem., 2007, 9, 1180–1184 | 1181
View Online
6.46 (s, 1H), 2.34 (s, 3H), 2.33 (s, 3H), 2.20 (t, 2H, J = 7.4 Hz), 3.38 (s, 2H), 1.40 (s, 2H). 13C NMR (100 MHz, CDCl3) d
1.51–1.41 (m, 2H), 1.25–1.19 (m, 2H), 0.83 (t, 3H, J = 7.2 Hz). 135.2, 133.7, 133.2, 132.1, 130.3, 130.0, 129.2, 129.1, 127.3,
13
C NMR (100 MHz, CDCl3) d 136.9, 134.2, 132.4, 131.1, 126.9, 47.7. IR (neat) n (cm21) 3374, 3055, 1654, 1582, 1478,
130.2, 130.1, 129.9, 129.7, 128.7, 36.6, 30.7, 22.0, 21.2, 21.1, 816, 745, 691. MS (EI), m/z (%): 273 (M+, 100), 167 (41), 147
13.9. IR (neat) n (cm21) 3020, 2956, 2928, 1564, 1491, 1453, (69), 134 (80). Anal. Calcd for C15H15NS2: C, 65.89; H, 5.53;
1401, 1091, 1018, 805. MS (EI), m/z (%): 328 (M+, 65), 195 N, 5.12. Found: C, 65.64; H, 5.61; N, 4.82.
(100), 161 (57), 149 (81), 91 (54). Anal. Calcd for C20H24S2: C,
73.12; H, 7.36. Found: C, 72.86; H, 7.15. (Z)-1,2-Bis(phenylthio)-1-octene 2i. Oil. 1H NMR (400 MHz,
Downloaded on 21 November 2010
CDCl3) d 7.42–7.19 (m, 10H), 6.56 (s, 1H), 2.24 (t, 2H, J =
(Z)-1,2-Bis(phenylthio)-3-hydroxy-1-propene 2c10a. Oil. 1H 7.4 Hz), 1.51–1.45 (m, 2H), 1.26–1.21 (m, 6H), 0.85 (t, 3H, J =
NMR (400 MHz, CDCl3) d 7.44–7.21 (m, 10H), 7.03 (s, 1H), 7.2 Hz). 13C NMR (100 MHz, CDCl3) d 136.0, 134.5, 133.9,
4.14 (s, 2H), 2.01 (br, 1H). 13C NMR (100 MHz, CDCl3) d 130.5, 129.7, 129.1, 129.0, 128.9, 126.8, 126.7, 37.2, 31.5, 28.6,
134.8, 134.7, 133.2, 130.5, 129.9, 129.3, 129.2, 127.5, 127.0, 28.5, 22.6, 14.1. IR (neat) n (cm21) 3073, 2955, 2927, 1582,
65.5. IR (neat) n (cm21) 3382, 3057, 1716, 1581, 1478, 1439, 1478, 1439, 1092, 1024, 740, 690. MS (EI), m/z (%): 328 (M+,
1091, 1024, 740, 690. MS (EI), m/z (%): 274 (M+, 47), 167 (48), 95), 167 (71), 147 (100), 135 (37), 109 (68). Anal. Calcd for
163 (73), 147 (75), 135 (100). Anal. Calcd for C15H14OS2: C, C20H24S2: C, 73.12; H, 7.36. Found: C, 73.24; H, 7.29.
65.66; H, 5.14. Found: C, 65.39; H, 5.25.
Typical procedure for the Ar2Se2 addition to terminal alkynes
(Z)-1,2-Bis[(4-methylphenyl)thio]-3-hydroxy-1-propene 2d.
Oil. 1H NMR (400 MHz, CDCl3) d 7.34–7.28 (m, 4H), 7.14– Into a two-necked flask equipped with a reflux condenser and
7.09 (m, 4H), 6.89 (s, 1H), 4.09 (s, 2H), 2.33 (s, 3H), 2.30 (s, a magnetic stirring bar were placed Pd(PPh3)4 (24 mg,
3H), 1.98 (br, 1H). 13C NMR (100 MHz, CDCl3) d 137.6, 0.02 mmol), diphenyl diselenide (312 mg, 1.0 mmol), 1-hexyne
137.3, 134.3, 131.4, 130.8, 130.6, 130.1, 130.0, 129.4, 65.4, 21.1. (99 mg, 1.2 mmol), and [bmim][PF6] (1.5 mL) under an argon
IR (neat) n (cm21) 3391, 3020, 1714, 1564, 1491, 1091, 1017, atmosphere. The color of the solution rapidly turned from
805. MS (EI), m/z (%): 302 (M+, 98), 246 (64), 163 (72), 161 yellow to dark brown. The mixture was stirred at 60 uC for 2 h,
(84), 149 (93), 123 (92), 91 (100). Anal. Calcd for C17H18OS2: then cooled to 30 uC and extracted with light petroleum ether
C, 67.51; H, 6.00. Found: C, 67.33; H, 6.05. (3 6 10 mL). The recovered ionic liquid containing the
palladium catalyst was concentrated in vacuo (5.0 torr, r.t. for
(Z)-1,2-Bis[(4-methylphenyl)thio]-3-methoxy-1-propene 2e. 1 h) and reused in the next run. Combined organic solution
Oil. 1H NMR (400 MHz, CDCl3) d 7.36–7.30 (m, 4H), 7.16– was evaporated and dried under reduced pressure to give
7.10 (m, 4H), 6.86 (s, 1H), 3.90 (s, 2H), 3.27 (s, 3H), 2.34 (s, 378 mg (96%) of (Z)-1,2-bis(phenylseleno)-1-hexene (3a) as a
3H), 2.33 (s, 3H). 13C NMR (100 MHz, CDCl3) d 137.5, 137.1, yellow oil (purity: 97%).
134.1, 131.6, 130.8, 130.7, 129.9, 129.8, 129.6, 127.3, 74.4, 58.0,
21.1. IR (neat) n (cm21) 3021, 1714, 1564, 1491, 1119, 1091, (Z)-1,2-Bis(phenylseleno)-1-hexene 3a. Oil. 1H NMR
1017, 806. MS (EI), m/z (%): 316 (M+, 59), 177 (43), 161 (100), (400 MHz, CDCl3) d 7.56–7.51 (m, 4H), 7.32–7.23 (m, 6H),
91 (39). Anal. Calcd for C18H20OS2: C, 68.31; H, 6.37. Found: 6.93 (s, 1H), 2.28 (t, 2H, J = 7.4 Hz), 1.51–1.43 (m, 2H), 1.27–
C, 68.38; H, 6.29. 1.20 (m, 2H), 0.82 (t, 3H, J = 7.2 Hz). 13C NMR (100 MHz,
CDCl3) d 136.3, 132.9, 132.7, 131.3, 129.6, 129.3, 129.2, 127.9,
(Z)-1,2-Bis[(4-methylphenyl)thio]styrene 2f. Oil. 1H NMR 127.4, 127.3, 39.7, 31.1, 21.9, 13.9. IR (neat) n (cm21) 3057,
(400 MHz, CDCl3) d 7.54–6.97 (m, 14H), 2.35 (s, 3H), 2.23 (s, 2955, 2927, 1577, 1476, 1437, 1022, 735, 690. MS (EI), m/z (%):
3H). 13C NMR (100 MHz, CDCl3) d 138.9, 137.7, 136.8, 135.8, 396 (M+, 95), 394 (86), 183 (57), 157 (100), 77 (66). Anal. Calcd
131.8, 131.1, 131.0, 130.0, 129.6, 129.2, 128.6, 128.3, 127.4, for C18H20Se2: C, 54.83; H, 5.11. Found: C, 54.61; H, 5.20.
126.8, 21.1, 21.0. IR (neat) n (cm21) 3020, 1714, 1539, 1490,
1091, 1017, 803. MS (EI), m/z (%): 348 (M+, 47), 246 (93), 123 (Z)-1,2-Bis[(4-chlorophenyl)seleno]-1-hexene 3b. Oil. 1H
(100), 91 (84), 77 (72). Anal. Calcd for C22H20S2: C, 75.82; H, NMR (400 MHz, CDCl3) d 7.49–7.42 (m, 4H), 7.29–7.23 (m,
5.78. Found: C, 75.57; H, 5.63. 4H), 6.88 (s, 1H), 2.27 (t, 2H, J = 7.4 Hz), 1.50–1.42 (m, 2H),
1182 | Green Chem., 2007, 9, 1180–1184 This journal is ß The Royal Society of Chemistry 2007
View Online
1.27–1.21 (m, 2H), 0.83 (t, 3H, J = 7.2 Hz). 13C NMR (100 MHz, CDCl3) d 133.1, 132.5, 130.8, 130.6, 129.4, 129.3,
(100 MHz, CDCl3) d 136.7, 134.1, 134.0, 133.8, 133.7, 129.5, 128.9, 127.7, 127.5, 50.3. IR (neat) n (cm21) 3370, 3053, 1578,
129.4, 129.2, 128.0, 127.6, 39.7, 31.1, 21.9, 13.8. IR (neat) n 1477, 841, 735. MS (EI), m/z (%): 369 (M+, 11), 183 (58), 157
(cm21) 2955, 2927, 1712, 1570, 1473, 1387, 1090, 1011, 813, (76), 77 (100). Anal. Calcd for C15H15NSe2: C, 49.06; H, 4.12;
730. MS (EI), m/z (%): 464 (M+, 35Cl, 5.2), 217 (100), 191 (33), N, 3.81. Found: C, 49.29; H, 4.28; N, 3.99.
156 (57), 57 (38). Anal. Calcd for C18H18Cl2Se2: C, 46.68; H,
3.92. Found: C, 46.42; H, 3.75. (Z)-1,2-Bis(phenylseleno)-1-octene 3i. Oil. 1H NMR
(400 MHz, CDCl3) d 7.57–7.51 (m, 4H), 7.32–7.24 (m, 6H),
(Z)-1,2-Bis(phenylseleno)-3-hydroxy-1-propene 3c. Oil. 1H 6.93 (s, 1H), 2.28 (t, 2H, J = 7.4 Hz), 1.50–1.45 (m, 2H), 1.27–
NMR (400 MHz, CDCl3) d 7.59–7.53 (m, 4H), 7.40 (s, 1H), 1.17 (m, 6H), 0.84 (t, 3H, J = 6.8 Hz). 13C NMR (100 MHz,
7.33–7.28 (m, 6H), 4.15 (s, 2H), 1.93 (br, 1H). 13C NMR CDCl3) d 136.5, 132.9, 132.6, 131.3, 129.5, 129.3, 129.2, 127.8,
(100 MHz, CDCl3) d 133.4, 133.2, 132.4, 132.2, 130.3, 129.4, 127.4, 127.3, 40.0, 31.5, 28.9, 28.4, 22.5, 14.1. IR (neat)
129.3, 128.6, 127.8, 127.6, 67.6. IR (neat) n (cm21) 3388, 3057, n (cm21) 3057, 2956, 2926, 1710, 1577, 1476, 1438, 1071, 1022,
Published on 16 August 2007 on http://pubs.rsc.org | doi:10.1039/B706320B
1668, 1575, 1475, 1437, 1070, 1021, 735, 690. MS (EI), m/z (%): 735, 690. MS (EI), m/z (%): 424 (M+, 35), 183 (88), 115 (100),
370 (M+, 29), 183 (53), 157 (77), 77 (100). Anal. Calcd for 77 (76). Anal. Calcd for C20H24Se2: C, 56.88; H, 5.73. Found:
C15H14OSe2: C, 48.93; H, 3.83. Found: C, 48.71; H, 3.95. C, 56.59; H, 5.75.
IR (neat) n (cm21) 3377, 3018, 1709, 1574, 1488, 1447, 1072, 129.4, 129.2, 127.8, 127.6, 40.0, 31.5, 28.9, 28.4, 22.5, 14.0. IR
1015, 801. MS (EI), m/z (%): 398 (M+, 46), 226 (48), 197 (63), (neat) n (cm21) 2957, 2928, 1637, 1574, 1473, 1387, 1089, 1011,
171 (75), 91 (100). Anal. Calcd for C17H18OSe2: C, 51.53; H, 812. MS (EI), m/z (%): 492 (M+, 35Cl, 45), 193 (58), 191 (100),
4.58. Found: C, 51.31; H, 4.36. 156 (72), 112 (68), 109 (94), 67 (81). Anal. Calcd for
C20H22Cl2Se2: C, 48.90; H, 4.51. Found: C, 48.63; H, 4.45.
(Z)-1,2-Bis[(4-methylphenyl)seleno]-3-methoxy-1-propene 3e.
Oil. 1H NMR (400 MHz, CDCl3) d 7.48–7.44 (m, 4H), 7.25 (s, (Z)-1,2-Bis[(4-chlorophenyl)seleno]styrene 3k. Oil. 1H NMR
1H), 7.13–7.08 (m, 4H), 3.91 (s, 2H), 3.25 (s, 3H), 2.34 (s, 3H), (400 MHz, CDCl3) d 7.56–7.12 (m, 14H). 13C NMR (100 MHz,
2.33 (s, 3H). 13C NMR (100 MHz, CDCl3) d 137.8, 137.6, 133.4, CDCl3) d 140.1, 135.4, 134.6, 134.4, 133.0, 132.4, 132.1, 129.6,
133.2, 132.9, 130.1, 130.0, 129.1, 126.9, 125.0, 76.6, 57.9, 21.2. IR 129.3, 129.0, 128.5, 128.4, 127.9, 127.3. IR (neat) n (cm21)
(neat) n (cm21) 3018, 1697, 1573, 1488, 1101, 1015, 802. MS (EI), 3056, 1709, 1544, 1472, 1387, 1089, 1011, 810. MS (EI), m/z
m/z (%): 412 (M+, 37), 171 (69), 91 (100). Anal. Calcd for (%): 484 (M+, 35), 293 (38), 258 (100), 191 (99), 156 (60), 112
C18H20OSe2: C, 52.69; H, 4.91. Found: C, 52.44; H, 5.05. (42). Anal. Calcd for C20H14Cl2Se2: C, 49.72; H, 2.92. Found:
C, 49.93; H, 3.05.
(Z)-1,2-Bis[(4-methylphenyl)seleno]styrene 3f10a. Oil. 1H
NMR (400 MHz, CDCl3) d 7.52–6.97 (m, 14H), 2.35 (s, 3H), (Z)-1,2-Bis(phenylseleno)-3-methoxy-1-propene 3l. Oil. 1H
2.24 (s, 3H). 13C NMR (100 MHz, CDCl3) d 140.7, 138.0, NMR (400 MHz, CDCl3) d 7.59–7.54 (m, 4H), 7.36 (s, 1H),
136.6, 136.3, 133.5, 132.3, 131.4, 131.2, 130.2, 129.9, 128.2, 7.35–7.24 (m, 6H), 3.95 (s, 2H), 3.27 (s, 3H). 13C NMR
127.4, 127.3, 126.5, 21.1, 21.0. IR (neat) n (cm21) 3014, 2965, (100 MHz, CDCl3) d 133.4, 133.1, 132.6, 130.5, 129.4, 129.3,
1592, 1487, 1441, 1015, 801. MS (EI), m/z (%): 444 (M+, 95), 129.1, 128.9, 127.7, 127.5, 76.7, 58.0. IR (neat) n (cm21) 3055,
171 (58), 91 (100). Anal. Calcd for C22H20Se2: C, 59.74; H, 1692, 1577, 1475, 1098, 1021, 800, 738, 690. MS (EI), m/z (%):
4.56. Found: C, 59.51; H, 4.35. 384 (M+, 65), 195 (100), 147 (97), 115 (98), 77 (96). Anal. Calcd
for C16H16OSe2: C, 50.28; H, 4.22. Found: C, 50.35; H, 4.29.
(Z)-1,2-Bis[(4-methylphenyl)seleno]-1-octene 3g. Oil. 1H
NMR (400 MHz, CDCl3) d 7.45–7.41 (m, 4H), 7.10–7.06 (m, (Z)-1,2-Bis[(4-chlorophenyl)seleno]-3-methoxy-1-propene 3m.
4H), 6.83 (s, 1H), 2.32 (s, 3H), 2.31 (s, 3H), 2.22 (t, 2H, J = Oil. 1H NMR (400 MHz, CDCl3) d 7.51–7.45 (m, 4H), 7.30–
7.2 Hz), 1.48–1.42 (m, 2H), 1.26–1.14 (m, 6H), 0.83 (t, 3H, J = 7.25 (m, 5H), 3.94 (s, 2H), 3.28 (s, 3H). 13C NMR (100 MHz,
7.2 Hz). 13C NMR (100 MHz, CDCl3) d 137.4, 136.5, 133.5, CDCl3) d 134.5, 134.2, 134.0, 133.8, 133.4, 133.3, 129.6, 129.5,
133.0, 130.1, 130.0, 128.5, 127.6, 127.3, 125.8, 39.7, 31.6, 28.9, 128.5, 127.0, 77.2, 58.1. IR (neat) n (cm21) 3076, 1696, 1572,
28.5, 22.6, 21.2, 14.2. IR (neat) n (cm21) 3017, 2955, 2925, 1473, 1089, 1011, 812. MS (EI), m/z (%): 452 (M+, 35Cl, 28),
1574, 1488, 1453, 1015, 802. MS (EI), m/z (%): 452 (M+, 18), 229 (80), 181 (100), 156 (52), 112 (22). Anal. Calcd for
262 (88), 183 (100), 91 (63). Anal. Calcd for C22H28Se2: C, C16H14OCl2Se2: C, 42.60; H, 3.13. Found: C, 42.41; H, 3.20.
58.67; H, 6.27. Found: C, 58.38; H, 6.20.
Conclusions
(Z)-1,2-Bis(phenylseleno)-3-amino-1-propene 3h10a. Oil. 1H
NMR (400 MHz, CDCl3) d 7.61–7.50 (m, 4H), 7.33–7.26 (m, The present article describes the palladium-catalyzed addition
6H), 7.22 (s, 1H), 3.38 (br, 2H), 1.43 (br, 2H). 13C NMR reactions of diaryl disulfides and diselenides to terminal
This journal is ß The Royal Society of Chemistry 2007 Green Chem., 2007, 9, 1180–1184 | 1183
View Online
alkynes in ionic liquid. The high yields and stereoselectivity 6 (a) T. Fischer, A. Sethi, T. Welton and T. Woolf, Tetrahedron
Lett., 1999, 40, 793; (b) C. W. Lee, Tetrahedron Lett., 1999, 40,
were observed for a variety of alkynes. Easy product isolation, 2461; (c) P. Lusley and N. Karodia, Tetrahedron Lett., 2001, 42,
the ionic liquid and catalyst recycling, and avoiding the use of 2011.
highly toxic benzene or toluene as solvents are important 7 (a) T. Jeffery, Tetrahedron Lett., 1994, 35, 3051; (b) V. Calo,
advantages of the developed methodology. A. Nacci, L. Lopez and M. Nicola, Tetrahedron Lett., 2001, 42,
9873.
8 (a) X. R. Rex, D. Z. Larisa and O. Wei, Tetrahedron Lett., 2001,
Acknowledgements 42, 8441; (b) J. J. Peng and Y. Q. Deng, Tetrahedron Lett., 2001,
42, 403.
We thank the National Natural Science Foundation of China 9 C. J. Mathews, P. J. Smith and T. Welton, Chem. Commun., 2000,
1249.
(Project No.20462002) and the Natural Science Foundation of 10 (a) H. Kuniyasu, A. Ogawa, S.-I. Miyazaki, I. Ryu, N. Kambe and
Jiangxi Province (Project No. 0420015). N. Sonoda, J. Am. Chem. Soc., 1991, 113, 9796; (b) A. Ogawa,
J. Organomet. Chem., 2000, 611, 463.
11 For general reviews on the catalytic E-E bond addition to alkynes
References see: (a) Catalytic Heterofunctionalization, ed. A. Togni and
Published on 16 August 2007 on http://pubs.rsc.org | doi:10.1039/B706320B
3 P. J. Dyson, D. J. Ellis, D. G. Parker and T. Welton, Chem. G. G. Aleksandrov and I. L. Eremenko, J. Organomet. Chem.,
Commun., 1999, 25. 2003, 687, 451; (b) V. P. Ananikov, I. P. Beletskaya,
4 B. Ellis, W. Keim and P. Wasserscheid, Chem. Commun., 1999, G. G. Aleksandrov and I. L. Eremenko, Organometallics, 2003,
336. 22, 1414; (c) V. P. Ananikov and I. P. Beletskaya, Org. Biomol.
5 (a) C. J. Adams, M. J. Earle, G. Roberts and K. R. Seddon, Chem. Chem., 2004, 2, 284.
Commun., 1998, 2097; (b) A. Stark, B. L. Maclean and R. D. Singer, 17 V. P. Ananikov, M. A. Kabeshov and I. P. Beletskaya, Synlett,
J. Chem. Soc., Dalton Trans., 1999, 63. 2005, 1015.
1184 | Green Chem., 2007, 9, 1180–1184 This journal is ß The Royal Society of Chemistry 2007