Jee Mock Paper 4
Jee Mock Paper 4
2. a , b , c are three non-coplanar vector such that [a b c abc 2a b c] = k [a b c] then k
is-
(1) 3 (2) –3 (3) 2 (4) 6
3. If a î ˆj k̂ and b î 2ˆj k̂ , then the vector c such that a . c = 2 and a c = b is-
1 1
(1) (î 2 ĵ k̂) (2) (î 2 ĵ 5k̂ )
3 3
1 1
(3) (î 2ˆj 5k̂) (4) (î 2 ĵ 5k̂)
3 3
^ ^ ^ ^ ^ ^ ^ ^ ^
5. A unit vector is orthogonal to 5 i + 2 j + 6 k and is coplanar to 2 i + j + k and i – j + k then the vector is -
6. If three non-zero vectors a , b , c are such that a × b = 2 a × c , | a | = | c | = 1, | b | = 4 and the angle
1
between b and c is cos–1 then b – 2 c = a , where is equal to :
4
1 1
(1) ± 2 (2) ± 4 (3) (4)
2 4
7. The lines r = î – ˆj + (2 î + k̂ ) and r = 2 î + ( î + ˆj – k̂ ) :
Page No. : 1
8. The shortest distance between the lines whose equations are r = t( î + ˆj + k̂ ) and r = k̂ + s ( î – 2 ˆj + 3
k̂ ) is :
3 3 2
(1) 3 (2) (3) (4)
38 14 13
10. Let the unit vectors a , b , c be the position vectors of the vertices of a triangle ABC. If F is the position
vector of the mid point of the line segment joining its orthocentre and centroid then ( a – F )2 + ( b – F )2 + (
2
c –F) =
(1) 1 (2) 2 (3) 3 (4) None of these
11. If the shortest distance between the line r (î 2 ĵ 3k̂ ) +1 ( 2 î 3 ĵ 4 k̂ ) and r (2î 4ˆj 5k̂ ) + 2
12. The image of the point having the position vector î 3ˆj 4k̂ in the plane r . ( 2 î – ĵ k̂ ) + 3 = 0 is
13. If a + b + c = d , b + c + d = a and [ a b c ] 0 then a + b + c + d equals -
(1) a (2) b (3) 0 (4) (+) c
14. If the position vector of the points A, B, C, D are 3î 2ˆj k̂ , 2î 3 ĵ 4k̂ , – î ĵ 2k̂ , 4î 5ˆj k̂
Page No. : 2
15. If a , b , c are non-coplanar vectors such that b × c = a , a × b = c and c × a = b then -
(1) [ a b c ] = 1 (2) [ a b c ] 1
(3) | a | + | b | + | c | = 3 (4) None of these
16. If the vector a = (c log2 x) î – 6 ˆj + 3 k̂ and b = (log2 x) î + 2 ˆj + (2c log2 x) k̂ make an obtuse angle for
17. If a , b are non-zero vectors such that | a + b | = | a – 2 b |, then -
(1) a.b 2 | b | 2 (2) a.b | b | 2
4 4
(3) Least value of a.b 2 is 2 2 (4) Least value of a.b 2 is 2 2 – 1
| b | 2 | b | 2
18. If | a | = | b | = | c | = 1 and a . b = b . c = c . a = cos then maximum value of is-
(1) (2)
2 5
2
(3) (4)
3 9
19. Let a = 1 î + 2 ˆj + 3 k̂ , b = 1 î + 2 ˆj + 3 k̂ and c = 1 î + 2 ˆj + 3 k̂ and | a | = 2 2 makes the angle
1 2 3
/3 with the plane of b and c and angle between b & c is /6 then the value of 1 2 3 equals -
1 2 3
n n/2
| a || b | | c || b |
(1) (2)
2 3 2 3
n
3 (| b || c |) 3 (| a | | b |)
n
(3) (4)
2 2
20. a = î + 2 k̂ , b = î + ˆj + k̂ , c = 7 î – 3 ˆj + 4 k̂ , then the vector d satisfies the relation d × b = c × b , a . d
= 0 is given by –
(1) 2 î + 4 ˆj + k̂ (2) 2 î – 8 ˆj – k̂
Page No. : 3
3
21. If the vectors b = tan ,1, 2 tan , c = tan , tan , are orthogonal and
2
sin
2
vector a = (1, 3, sin ) makes an obtuse angle with z- axis then equals:
(1) (2n +1)+ tan–1 2 (2) (2n + 1)– tan–12
(3) n – tan–1 2 (4) None of these
22. ( a + 3 b – c ). {( a – b ) × ( a – b – c )} equals
(1) 4 [ a b c ] (2) 2 [ a b c ] (3) – 4 [ a b c ] (4) –2 [ a b c ]
23. If a 2b 3c 0 , then a b b c c a is equal to
(1) 6(b c) (2) 6(c a ) (3) 6(a b) (4) none of these
2 1
24. If a , b, c are such that [ a , b, c ] = 1, c (a b), a b , and | a | = 2 , |b|= 3 , | c | , then the
3 3
angle between a and b is
(1) (2) (3) (4)
6 4 3 2
25. A unit vector a in the plane b 2î ĵ and c î ˆj k̂ is such that a b a d where d ˆj 2 k̂ is
î ĵ k̂ î ˆj k̂ 2î ˆj 2î ˆj
(1) (2) (3) (4)
3 3 3 5
26. If a1 , a 2 , a 3 are non-coplanar vectors and (x + y– 3) a 1 + (2x – y + 2) a 2 + (2x + y + ) a 3 0 holds for some
‘x’ and ‘y’ then is
7 10 5
(1) (2) 2 (3) (4)
3 3 3
27. Let a , b and c be non-coplanar unit vectors equally inclined to one another at an acute angle . Then
[a , b , c] in terms of is equal to
28. Let r , a , b and c be four non-zero vectors such that r . a = 0, | r b | = | r | | b | , | r c | = | r | | c | , then [a, b, c] =
(1) | a | | b | | c | (2) – | a | | b | | c | (3) 0 (4) None of these
Page No. : 4
29. If b and c are two non-collinear vectors such that a . (b c) = 4& a × (b c) = (x2 – 2x + 6) b + (siny) c ,
then the point (x, y) lies on
(1) x = 1 (2) y = 1 (3) y = (4) x + y = 0
30. vectors a , b and c with magnitude 2, 3 & 4 respectively are coplanar. A unit vector d is perpendicular to
î ĵ k̂
all of them. If (a b) (c d) and the angle between a and b is 30°, then c. î c. ĵ c. k̂ is
6 3 3
equal to
5 5 5 5
(1) (2) (3) (4)
3 9 12 18
31. If the vector a = (c log2x) î 6ˆj 3k̂ and b = (log2x) î 2ˆj + (2c log2x) k̂ make on obtuse angle for any
32. If a , b are non zero vectors and a is perpendicular to b then a non zero vector r satisfying r . a = , for
some scalar a × r = b is:
a ( a b) a a b a (a b ) a (a b )
(1) (2) (3) (4)
| a |2 | b |2 | a |2 | b |2
33.
If (a b) (c d) . ( a × d ) = 0, then which of the following is always true-
(1) a , b , c , d are necessarily coplanar (2) either a or d must lie in the plane of b and c
(3) either b or c must lie in plane of a and d (4) either a or b must lie in plane of c and d
34. a , b, c are three vectors of which every pair is non-collinear. If the vector a b and b c are collinear
with c and a respectively then a b c is -
(1) a unit vector (2) the null vector
(3) equally inclined to a , b, c (4) none of these
35. Let , , be distinct real numbers. The points with position vectors î ĵ k̂ , î ˆj k̂ ,
î ˆj k̂ -
Page No. : 5
JEE MAIN PAPER (VECTOR)
ANSWER KEY
1. (3) 2. (4) 3. (2) 4. (1) 5. (1) 6. (2) 7. (2)
8. (2) 9. (4) 10. (3) 11. (3) 12. (3) 13. (3) 14. (1)
15. (1) 16. (3) 17. (4) 18. (3) 19. (3) 20. (2) 21. (2)
22. (1) 23. (1) 24. (2) 25. (2) 26. (3) 27. (3) 28. (3)
29. (1) 30. (4) 31. (3) 32. (3) 33. (3) 34. (2) 35. (2)
Solution for
JEE Main
Practice
Questions Set
28
HINT & SOLUTION
1.
Sol. Let b = î + ˆj + k̂
a × b = ˆj – k̂
î ˆj k̂
1 1 1 = ˆj – k̂
– = 0, = 1, = 1
= = 1 + = 1 +
a . b = 1 = 1
+ 1 + = 1 = 0
= 1, = 0
b = î .
2.
1 1 1
Sol. STP = 1 1 1 [a b c]
2 1 1
3.
Sol. a b a (a c) (a . c) a (a . a) c = 2a 3c
i j k
ab 1 11 = 3î 3k̂
1 2 1
1 1
c (2a a b) = ( î 2ˆj 5k̂ )
3 3
Page No. : 1
4.
a a c
Sol. 1 0 1 = 0 c2 – ab = 0
c c b
5.
Sol. Let a be the unit vector
^ ^ ^ ^ ^ ^
a = (2 i + j + k ) + ( i – j + k )
| a | = 1 (2+ )2 + (– )2 + (+ )2 = 1
62 + 4 + 32 = 1
^ ^ ^
a is orthogonal to 5 i + 2 j + 6 k so,
3 ĵ k̂
a =
10
6.
Sol. a × b =2a × c
a × ( b – 2 c ) = 0
b –2 c =a
Taking modulus on both sides and then squaring we get, | b – 2 c |2 = 2 | a |2
| b |2 + 4| c |2 – 4| b | | c | cos = 2| a |2
1
16 + 4 – 4 . 4 . 1. = 2.1
4
2 = 16
=±4
Page No. : 2
7.
Sol. Line r = a1 + b1 and r = a 2 + b 2 do not intersect if ( a 2 – a1 ). ( b1 × b 2 ) 0 and are not parallel if
b1 b2.
8.
Sol. Shortest distance between two lines is given by
(5î – 2 ĵ – 3k̂ )
= k̂
25 4 9
3
=
38
9.
Sol. Here,
x 1/ 3 y 1/ 3 z 1
= = …(i)
1/ 6 1/ 3 1/ 2
Line r = a + b can be written as
x a1 y a2 z a3
= =
b1 b2 b3
Where a = a1 î + a2 ˆj + a3 k̂
and b = b1 î + b2 ˆj + a3 k̂
so the equation (i) can be written as :
1 1
r î – ĵ k̂ + ( î + 2 ˆj + 3 k̂ ).
3 3
10.
Sol. Let the circumcentre of the triangle be the origin.
a bc
orthocentre is a + b + c and the centroid is
3
2
F = (a + b+ c )
3
( a – F )2 + ( b – F )2 + ( c – F )2
1
= [( a – 2( b + c )2 ) + ( b – 2( a + c )2) + ( c –2 ( a + b )2)]
9
1
= (27) = 3
9
Page No. : 3
11.
Sol. Line of shortest distance will be along
î ˆj k̂
2 3 4 = – î 2ˆj – k̂
3 4 5
(– î 2 ĵ – k̂) 1
x = ( î 2 ĵ 2 k̂ ) . =
6 6
12.
Sol. Equation of line passing through given point P and normal to given plane is
r = ( î 3ˆj 4 k̂ ) + ( 2 î – ĵ k̂ )
Image point Q
((1 2 ) î (3 – ) ˆj ( 4 ) k̂ )
Now mid point of
PQ [( 1) î (3 – / 2)ˆj ( 4 / 2) k̂ ]
satisfies given plane that gives = –2
So position vector of image is – 3î 5ˆj 2k̂
13.
Sol. a + b + c + d = ( +1) d = ( +1) a
1
d= a
1
1
So a + b + c = d = a
1
1
a 1 + b + c = 0
1
[ a b c ] 0 = –1
a + b+ c + d=0
14.
Sol. If the points are coplanar then their P.V. a , b , c , d must satisfy the condition [ b – a , c – a , d – a ]=0
1 5 3
146
4 3 3 = 0 = –
17
1 7 1
Page No. : 4
15.
Sol. b × c = a [a b c ] = a . a = |a | 2
similarly a × b = c [ a b c ] = | c |2
c × a = b [a b c ] = | b |2
Also, [ a b c ] = [ b × c c × a a × b ] = [ a b c ]2
[a b c ] = 1
16.
Sol. For vectors a and b to be inclined at an obtuse angle
a . b < 0 , x (0, )
c(log2 x)2 – 12 + 6 c log2 x < 0 x (0, )
cy2 + 6 < cy – 12 < 0 y R y = log2 x
c < 0 and 36 c2 + 48 c < 0
c<0 c (3c + 4) < 0
c (– 4/3, 0)
17.
Sol. 2 a .b = – 4 a .b + 3 b2 2 a .b = b2
4
a.b + 2
| b | 2
4
= (1 + a . b ) + –12 2 –1
2(a . b 1)
18.
a .a a . b a . c
Sol. [ a b c ]2 = b . a b . b b . c
c .a c .b c .c
1 cos cos
= cos 1 cos
cos cos 1
= 2 cos3 – 3 cos2 + 1
= (2 cos +1) (1 – cos )2
[ a b c ]2 0 1 + 2 cos 0
1 2
cos –
2 3
Page No. : 5
19.
n
1 2 3
Sol. 1 2 3 = (| a . ( b × c )|)n
1 2 3
= (| a | | b | | c | cos sin )n
6 6
n
3 | b || c |
=
2
20.
Sol. d × b= c × b
(d – c ) ×b = 0
d = c + b
d = (7+ ) î + (–3 + ) ˆj + (4 + ) k̂
a .d = 0
7 + + 2(4 + ) = 0 = – 5
So d = 2 î – 8 ˆj – k̂
21.
Sol. b perpendicular c b . c = 0
tan2 – tan – 6 = 0
tan = 3, –2
also a make an obtuse angle with z- axis
therefore a . k̂ < 0 sin 2 < 0
2 tan 4
if tan = 3 then sin 2 = = >0
1 tan 2 3
Now tan 2> 0, sin 2 < 0 third quadrant and tan = –2
tan ( – ) = 2 = (2n +1) – tan–1 2, n I
22.
Sol. ( a + 3 b – c ). {( a – b ) × (– c )}
= – (a + 3b) . {a ×c – b× c }
= a .( b × c ) – 3 b . ( a × c )
= [ a b c ] + 3[ a b c ]
= 4 [a b c ]
Page No. : 6
23.
Sol. a 2b 3c 0
a b 3(c b) = 0 i.e. a b 3 (b c)
a c 2(b c) 0 i.e. 2(b c) c a
a b b c c a 3(b c) b c 2(b c)
6(b c)
24.
Sol. c (a b)
c.c | c | 2 1 1
1 = (a b). c
2 3 3
2 2
c (a b)
1 1 1
= (a2 b2 sin2) = × 2 × 3 sin2
3 9 9
1
sin2 = =
2 4
25.
Sol. Let a b c
a.b a.d
then
ab ad
(b c).b (b c).d
i.e.
b d
[(2î ĵ) (î ˆj k̂ )].(2î ˆj)
i.e.
5
[(2î ˆj) (î ˆj k̂ )].(ˆj 2k̂ )
=
5
26.
Sol. Since a 1 , a 2 , a 3 are non-coplanar vectors
x+y–3=0 .....(i)
2x – y + 2 = 0 .....(ii)
2x + y + = 0 .....(iii)
From (i) and (ii) x = 1/3, y = 8/3
10
from (iii) = –
3
Page No. : 7
27.
a.a a.b a.c 1 cos cos
2
Sol. [abc] = b.a b.b b.c cos 1 cos
c.a c.b c.c cos cos 1
28.
Sol. r . a = 0, | r b | = | r || b | and | r c | = | r | | c |
r a , b, c
a , b, c are coplanar
[a, b, c] = 0
29.
Sol. a . b a . c = 4 ……..(i)
& (a.c)b (a . b)c = (x2 – 2x + 6) b + (siny) c
b & c are non-collinear vectors
a.c = x2 – 2x + 6 & a.b = – siny
putting in (i) we get
x2 – 2x + 6 – siny = 4
(x – 1)2 + (1 – siny) = 0
x = 1 & siny = 1
30.
Sol. a b = | a | | b | sin 30° n̂ = 3n̂
since d is perpendicular to a & b
n̂ = ± d
a b = ± 3 d
Now (a b) (c d) = ± 3d (c d)
î ĵ k̂ î 2ˆj 2k̂
± 3 {(d.d)c (d.c)d} or ± 3c
6 3 3 6
1 1 1
| c. î | , | c. ĵ | , | c.k̂ |
18 9 9
31.
Sol. For vectors a & b to be make an obtuse angle
a . b < 0, x(0, )
c(log2x)2 – 12 + 6c log2x < 0 for all x (0,)
cy2 + 6cy – 12 < 0 yR y = log2x
c < 0 and 36c2 + 48c < 0
c < 0 c(3c + 4) < 0
4
c , 0
3
Page No. : 8
32.
Sol. a× r=b
a × (a × r ) = a ×b
or ( a . r ) a – ( a . a ) r = a × b
33.
Sol. (a b ) (c d ) . a d = 0
[a c d] b [b c d] a . a d = 0
[a c d ] [ b a d ] = 0
either c or b must lie in the plane of a and d .
34.
Sol. Here, a b = t c , b c = sa . Subtracting,
a c = t c – sa
or (1 + s) a = (1 + t) c .
But a , c are non-collinear.
1+ s = 0, 1 + t = 0. hence, a + b = – c .
35.
Sol. Let P, Q and R be points having position vectors
Page No. : 9