Data Structure Lec-7
Data Structure Lec-7
Sorting
TOPICS TO BE COVERED
❖ Introduction to Sorting
❖ Bubble Sort
❖ Selection Sort
❖ Insertion Sort
Sorting
4 Sorting……
A fundamental application for computers
Done to make finding data (searching)
faster
Many different algorithms for sorting
One of the difficulties with sorting is working
with a fixed size storage container (array)
i f resize, that is expensive (slow)
The "simple" sorts run in quadratic time O(N2)
bubble sort
selection sort
insertion sort
Sorting……
To arrange a set of items in sequence.
It is estimated that 25~50% of all
computing power is used for sorting
activities.
Possible reasons:
Many applications require sorting;
Many applications perform sorting when
they don't have to;
Many applications use inefficient sorting
algorithms.
Sorting Applications
To prepare a list of student ID, names, and
scores in a table (sorted by ID or name) for
easy checking.
To prepare a list of scores before letter
grade assignment.
To produce a list of horses after a race
(sorted by the finishing times) for payoff
calculation.
To prepare an originally unsorted array for
ordered binary searching.
Bubble Sort
Bubble Sort……
Bubble sort examines the array from start
to finish, comparing elements as it goes.
Any time it finds a larger element before a smaller
element, it swaps the two.
In this way, the larger elements are passed towards
the end.
The largest element of the array therefore "bubbles"
to the end of the array.
Then it repeats the process for the unsorted portion of
the array until the whole array is sorted.
Bubble Sort……
Bubble sort works on the same general
principle as shaking a soft drink bottle.
Right after shaking, the contents are a mixture
of bubbles and soft drink, distributed randomly.
Because bubbles are lighter than the soft
drink, they rise to the surface, displacing the
soft drink downwards.
This is how bubble sort got its name, because
the smaller elements "float" to the top, while
the larger elements "sink" to the bottom.
"Bubbling Up" the Largest Element
No need to swap
"Bubbling Up" the Largest Element
N 8 did_swap true
to_do 7
index
98 23 45 14 6 67 33 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap false
to_do 7
index 1
98 23 45 14 6 67 33 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap false
to_do 7
index 1
Swap
98 23 45 14 6 67 33 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap true
to_do 7
index 1
Swap
23 98 45 14 6 67 33 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap true
to_do 7
index 2
23 98 45 14 6 67 33 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap true
to_do 7
index 2
Swap
23 98 45 14 6 67 33 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap true
to_do 7
index 2
Swap
23 45 98 14 6 67 33 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap true
to_do 7
index 3
23 45 98 14 6 67 33 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap true
to_do 7
index 3
Swap
23 45 98 14 6 67 33 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap true
to_do 7
index 3
Swap
23 45 14 98 6 67 33 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap true
to_do 7
index 4
23 45 14 98 6 67 33 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap true
to_do 7
index 4
Swap
23 45 14 98 6 67 33 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap true
to_do 7
index 4
Swap
23 45 14 6 98 67 33 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap true
to_do 7
index 5
23 45 14 6 98 67 33 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap true
to_do 7
index 5
Swap
23 45 14 6 98 67 33 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap true
to_do 7
index 5
Swap
23 45 14 6 67 98 33 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap true
to_do 7
index 6
23 45 14 6 67 98 33 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap true
to_do 7
index 6
Swap
23 45 14 6 67 98 33 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap true
to_do 7
index 6
Swap
23 45 14 6 67 33 98 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap true
to_do 7
index 7
23 45 14 6 67 33 98 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap true
to_do 7
index 7
Swap
23 45 14 6 67 33 98 42
1 2 3 4 5 6 7 8
An Animated Example
N 8 did_swap true
to_do 7
index 7
Swap
23 45 14 6 67 33 42 98
1 2 3 4 5 6 7 8
After First Pass of Outer Loop
N 8 did_swap true
to_do 7
23 45 14 6 67 33 42 98
1 2 3 4 5 6 7 8
The Second “Bubble Up”
N 8 did_swap false
to_do 6
index 1
23 45 14 6 67 33 42 98
1 2 3 4 5 6 7 8
The Second “Bubble Up”
N 8 did_swap false
to_do 6
index 1
No Swap
23 45 14 6 67 33 42 98
1 2 3 4 5 6 7 8
The Second “Bubble Up”
N 8 did_swap false
to_do 6
index 2
23 45 14 6 67 33 42 98
1 2 3 4 5 6 7 8
The Second “Bubble Up”
N 8 did_swap false
to_do 6
index 2
Swap
23 45 14 6 67 33 42 98
1 2 3 4 5 6 7 8
The Second “Bubble Up”
N 8 did_swap true
to_do 6
index 2
Swap
23 14 45 6 67 33 42 98
1 2 3 4 5 6 7 8
The Second “Bubble Up”
N 8 did_swap true
to_do 6
index 3
23 14 45 6 67 33 42 98
1 2 3 4 5 6 7 8
The Second “Bubble Up”
N 8 did_swap true
to_do 6
index 3
Swap
23 14 45 6 67 33 42 98
1 2 3 4 5 6 7 8
The Second “Bubble Up”
N 8 did_swap true
to_do 6
index 3
Swap
23 14 6 45 67 33 42 98
1 2 3 4 5 6 7 8
The Second “Bubble Up”
N 8 did_swap true
to_do 6
index 4
23 14 6 45 67 33 42 98
1 2 3 4 5 6 7 8
The Second “Bubble Up”
N 8 did_swap true
to_do 6
index 4
No Swap
23 14 6 45 67 33 42 98
1 2 3 4 5 6 7 8
The Second “Bubble Up”
N 8 did_swap true
to_do 6
index 5
23 14 6 45 67 33 42 98
1 2 3 4 5 6 7 8
The Second “Bubble Up”
N 8 did_swap true
to_do 6
index 5
Swap
23 14 6 45 67 33 42 98
1 2 3 4 5 6 7 8
The Second “Bubble Up”
N 8 did_swap true
to_do 6
index 5
Swap
23 14 6 45 33 67 42 98
1 2 3 4 5 6 7 8
The Second “Bubble Up”
N 8 did_swap true
to_do 6
index 6
23 14 6 45 33 67 42 98
1 2 3 4 5 6 7 8
The Second “Bubble Up”
N 8 did_swap true
to_do 6
index 6
Swap
23 14 6 45 33 67 42 98
1 2 3 4 5 6 7 8
The Second “Bubble Up”
N 8 did_swap true
to_do 6
index 6
Swap
23 14 6 45 33 42 67 98
1 2 3 4 5 6 7 8
After Second Pass of Outer Loop
N 8 did_swap true
to_do 6
23 14 6 45 33 42 67 98
1 2 3 4 5 6 7 8
The Third “Bubble Up”
N 8 did_swap false
to_do 5
index 1
23 14 6 45 33 42 67 98
1 2 3 4 5 6 7 8
The Third “Bubble Up”
N 8 did_swap false
to_do 5
index 1
Swap
23 14 6 45 33 42 67 98
1 2 3 4 5 6 7 8
The Third “Bubble Up”
N 8 did_swap true
to_do 5
index 1
Swap
14 23 6 45 33 42 67 98
1 2 3 4 5 6 7 8
The Third “Bubble Up”
N 8 did_swap true
to_do 5
index 2
14 23 6 45 33 42 67 98
1 2 3 4 5 6 7 8
The Third “Bubble Up”
N 8 did_swap true
to_do 5
index 2
Swap
14 23 6 45 33 42 67 98
1 2 3 4 5 6 7 8
The Third “Bubble Up”
N 8 did_swap true
to_do 5
index 2
Swap
14 6 23 45 33 42 67 98
1 2 3 4 5 6 7 8
The Third “Bubble Up”
N 8 did_swap true
to_do 5
index 3
14 6 23 45 33 42 67 98
1 2 3 4 5 6 7 8
The Third “Bubble Up”
N 8 did_swap true
to_do 5
index 3
No Swap
14 6 23 45 33 42 67 98
1 2 3 4 5 6 7 8
The Third “Bubble Up”
N 8 did_swap true
to_do 5
index 4
14 6 23 45 33 42 67 98
1 2 3 4 5 6 7 8
The Third “Bubble Up”
N 8 did_swap true
to_do 5
index 4
Swap
14 6 23 45 33 42 67 98
1 2 3 4 5 6 7 8
The Third “Bubble Up”
N 8 did_swap true
to_do 5
index 4
Swap
14 6 23 33 45 42 67 98
1 2 3 4 5 6 7 8
The Third “Bubble Up”
N 8 did_swap true
to_do 5
index 5
14 6 23 33 45 42 67 98
1 2 3 4 5 6 7 8
The Third “Bubble Up”
N 8 did_swap true
to_do 5
index 5
Swap
14 6 23 33 45 42 67 98
1 2 3 4 5 6 7 8
The Third “Bubble Up”
N 8 did_swap true
to_do 5
index 5
Swap
14 6 23 33 42 45 67 98
1 2 3 4 5 6 7 8
After Third Pass of Outer Loop
N 8 did_swap true
to_do 5
14 6 23 33 42 45 67 98
1 2 3 4 5 6 7 8
The Fourth “Bubble Up”
N 8 did_swap false
to_do 4
index 1
14 6 23 33 42 45 67 98
1 2 3 4 5 6 7 8
The Fourth “Bubble Up”
N 8 did_swap false
to_do 4
index 1
Swap
14 6 23 33 42 45 67 98
1 2 3 4 5 6 7 8
The Fourth “Bubble Up”
N 8 did_swap true
to_do 4
index 1
Swap
6 14 23 33 42 45 67 98
1 2 3 4 5 6 7 8
The Fourth “Bubble Up”
N 8 did_swap true
to_do 4
index 2
6 14 23 33 42 45 67 98
1 2 3 4 5 6 7 8
The Fourth “Bubble Up”
N 8 did_swap true
to_do 4
index 2
No Swap
6 14 23 33 42 45 67 98
1 2 3 4 5 6 7 8
The Fourth “Bubble Up”
N 8 did_swap true
to_do 4
index 3
6 14 23 33 42 45 67 98
1 2 3 4 5 6 7 8
The Fourth “Bubble Up”
N 8 did_swap true
to_do 4
index 3
No Swap
6 14 23 33 42 45 67 98
1 2 3 4 5 6 7 8
The Fourth “Bubble Up”
N 8 did_swap true
to_do 4
index 4
6 14 23 33 42 45 67 98
1 2 3 4 5 6 7 8
The Fourth “Bubble Up”
N 8 did_swap true
to_do 4
index 4
No Swap
6 14 23 33 42 45 67 98
1 2 3 4 5 6 7 8
After Fourth Pass of Outer Loop
N 8 did_swap true
to_do 4
6 14 23 33 42 45 67 98
1 2 3 4 5 6 7 8
The Fifth “Bubble Up”
N 8 did_swap false
to_do 3
index 1
6 14 23 33 42 45 67 98
1 2 3 4 5 6 7 8
The Fifth “Bubble Up”
N 8 did_swap false
to_do 3
index 1
No Swap
6 14 23 33 42 45 67 98
1 2 3 4 5 6 7 8
The Fifth “Bubble Up”
N 8 did_swap false
to_do 3
index 2
6 14 23 33 42 45 67 98
1 2 3 4 5 6 7 8
The Fifth “Bubble Up”
N 8 did_swap false
to_do 3
index 2
No Swap
6 14 23 33 42 45 67 98
1 2 3 4 5 6 7 8
The Fifth “Bubble Up”
N 8 did_swap false
to_do 3
index 3
6 14 23 33 42 45 67 98
1 2 3 4 5 6 7 8
The Fifth “Bubble Up”
N 8 did_swap false
to_do 3
index 3
No Swap
6 14 23 33 42 45 67 98
1 2 3 4 5 6 7 8
After Fifth Pass of Outer Loop
N 8 did_swap false
to_do 3
6 14 23 33 42 45 67 98
1 2 3 4 5 6 7 8
Finished “Early”
N 8 did_swap false
to_do 3
We didn’t do any swapping,
index 4 so all of the other elements
must be correctly placed.
6 14 23 33 42 45 67 98
1 2 3 4 5 6 7 8
Example:
void bubble_sort(int *arr , int size)
{
int a , b , temp ;
bool flag;
for(a = 0 ; a < size ; a++)
{
flag = false;
for(b = 0 ; b < =size -2 –a ; b++)
if(arr[b] > arr[b+1])
{temp = arr[b] ; arr[b] = arr[b+1] ; arr[b+1] = temp ; flag = true;}
if(flag == false) break;
}
}
void main(void)
{
int y[10];
for(int k = 0 ; k <= 9 ; k++)
y[k] = rand() % 100 ;
bubble_sort(y , 10);
for(int k = 0 ; k <= 9 ; k++)
cout << y[k] << "\t" ;
}
Selection Sort……
Selection Sort……
Idea:
Find the largest element in the array
Exchange it with the element in the
rightmost position
Find the second largest element and
exchange it with the element in the
second rightmost position
Continue until the array is sorted
Before sorting 14 2 10 5 1 3 17 7
After pass 1 14 2 10 5 1 3 7 17
After pass 2 7 2 10 5 1 3 14 17
After pass 3 7 2 3 5 1 10 14 17
After pass 4 1 2 3 5 7 10 14 17
Selection Sort
5 1 3 4 6 2
Comparison
Data Movement
Sorted
Selection Sort
5 1 3 4 6 2
Comparison
Data Movement
Sorted
Selection Sort
5 1 3 4 6 2
Comparison
Data Movement
Sorted
Selection Sort
5 1 3 4 6 2
Comparison
Data Movement
Sorted
Selection Sort
5 1 3 4 6 2
Comparison
Data Movement
Sorted
Selection Sort
5 1 3 4 6 2
Comparison
Data Movement
Sorted
Selection Sort
5 1 3 4 6 2
Comparison
Data Movement
Sorted
Selection Sort
5 1 3 4 6 2
Largest
Comparison
Data Movement
Sorted
Selection Sort
5 1 3 4 2 6
Comparison
Data Movement
Sorted
Selection Sort
5 1 3 4 2 6
Comparison
Data Movement
Sorted
Selection Sort
5 1 3 4 2 6
Comparison
Data Movement
Sorted
Selection Sort
5 1 3 4 2 6
Comparison
Data Movement
Sorted
Selection Sort
5 1 3 4 2 6
Comparison
Data Movement
Sorted
Selection Sort
5 1 3 4 2 6
Comparison
Data Movement
Sorted
Selection Sort
5 1 3 4 2 6
Comparison
Data Movement
Sorted
Selection Sort
5 1 3 4 2 6
Largest
Comparison
Data Movement
Sorted
Selection Sort
2 1 3 4 5 6
Comparison
Data Movement
Sorted
Selection Sort
2 1 3 4 5 6
Comparison
Data Movement
Sorted
Selection Sort
2 1 3 4 5 6
Comparison
Data Movement
Sorted
Selection Sort
2 1 3 4 5 6
Comparison
Data Movement
Sorted
Selection Sort
2 1 3 4 5 6
Comparison
Data Movement
Sorted
Selection Sort
2 1 3 4 5 6
Comparison
Data Movement
Sorted
Selection Sort
2 1 3 4 5 6
Largest
Comparison
Data Movement
Sorted
Selection Sort
2 1 3 4 5 6
Comparison
Data Movement
Sorted
Selection Sort
2 1 3 4 5 6
Comparison
Data Movement
Sorted
Selection Sort
2 1 3 4 5 6
Comparison
Data Movement
Sorted
Selection Sort
2 1 3 4 5 6
Comparison
Data Movement
Sorted
Selection Sort
2 1 3 4 5 6
Comparison
Data Movement
Sorted
Selection Sort
2 1 3 4 5 6
Largest
Comparison
Data Movement
Sorted
Selection Sort
2 1 3 4 5 6
Comparison
Data Movement
Sorted
Selection Sort
2 1 3 4 5 6
Comparison
Data Movement
Sorted
Selection Sort
2 1 3 4 5 6
Comparison
Data Movement
Sorted
Selection Sort
2 1 3 4 5 6
Comparison
Data Movement
Sorted
Selection Sort
2 1 3 4 5 6
Largest
Comparison
Data Movement
Sorted
Selection Sort
1 2 3 4 5 6
Comparison
Data Movement
Sorted
Selection Sort
1 2 3 4 5 6
DONE!
Comparison
Data Movement
Sorted
void selection_sort(int *arr , int size)
{
int temp , minloc;
for(int first = 0 ; first <= size - 2 ; first++)
{
minloc = first;
for(int k = first+1 ; k <= size-1 ; k++)
if(arr[minloc] > arr[k]) minloc = k ;
temp = arr[first] ;
arr[first] = arr[minloc] ;
arr[minloc] = temp ;
}
}
void main(void)
{
int y[10];
for(int k = 0 ; k <= 9 ; k++)
y[k] = rand() % 100 ;
selection_sort(y , 10);
for(int k = 0 ; k <= 9 ; k++)
cout << y[k] << "\t" ;
}
Insertion Sort……
Insertion Sort……
Idea: like sorting a hand of playing cards
Start with an empty left hand and the cards facing
down on the table.
Remove one card at a time from the table, and insert
it into the correct position in the left hand
compare it with each of the cards already in the
hand, from right to left
The cards held in the left hand are sorted
these cards were originally the top cards of the
134
pile on the table
Insertion Sort
135
Insertion Sort
136
Insertion Sort
137
Insertion Sort
input array
5 2 4 6 1 3
sorted unsorted
138
Insertion Sort
139
void insertion_sort(int *arr , int size)
{
int a , b , temp ;
for(a = 1 ; a <= size -1 ; a++)
{
temp = arr[a];
for(b = a-1 ; b >= 0 ; b--)
if(arr[b] > temp) arr[b+1] = arr[b];
else break;
arr[b+1] = temp;
}
}
void main(void)
{
int y[10];
for(int k = 0 ; k <= 9 ; k++)
y[k] = rand() % 100 ;
insertion_sort(y , 10);
for(int k = 0 ; k <= 9 ; k++)
cout << y[k] << "\t" ;
}
THANK
FOR
YOU LISTENIN