0% found this document useful (0 votes)
97 views4 pages

Math 1 (Test - 4) Key

Uploaded by

Gaming panther
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
97 views4 pages

Math 1 (Test - 4) Key

Uploaded by

Gaming panther
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

MATHEMATICS:

1. In which quadrant 740° lies:


a) 1st b) 2nd c) 3rd d) 4th
2. Find another positive angle whose initial and final positions are same as that of −135°.
a) 210˚ b) 225˚ c) 240˚ d) All of these
3. If θ lies in second quadrant, in which quadrant –θ will lie?
a) 1st b) 2nd c) 3rd d) Both b and c
4. If θ lies in second quadrant, in which quadrant 2θ will lie?
a) 1st b) 2nd c) 3rd d) Both b and c
5. Convert angle 40˚37’30’’ into radian measurement.
65𝜋 75𝜋 65𝜋 75𝜋
a) b) c) d)
288 288 298 298
6. Find the length of an arc of a circle of diameter 20 cm which subtends an angle of 45˚ at the centre of the circle.
a) 5π b) 5π/2 c) 3π/2 d) 3π
7. Find the radius of the circle in which a central angle of 45˚ makes an arc of length 187 cm.
a) 310 cm b) 210 cm c) 238 cm d) 283 cm
8. If 𝑐𝑜𝑠𝜃 + 𝑠𝑖𝑛𝜃 = √2𝑐𝑜𝑠𝜃 then 𝑐𝑜𝑠𝜃 − 𝑠𝑖𝑛𝜃 =
a) √2𝑐𝑜𝑠𝜃 b) √2𝑠𝑖𝑛𝜃 c) 𝑐𝑜𝑠𝜃 d) 𝑠𝑖𝑛𝜃
2𝜋
9. Convert radians into degree measure.
15
a) 42˚ b) 45˚ c) 24˚ d) 35˚
𝜋
10. Convert radians into degree measure.
8
a) 22˚30’ c) 20˚10’ c) 28˚50’ d) 12˚30’
4𝜋
11. The sign of 𝑡𝑎𝑛 is:
3
a) Positive b) Negative
7𝜋
12. The sign of 𝑐𝑜𝑠 (− ) is:
3
a) Positive b) Negative
3 𝑠𝑒𝑐𝑥−𝑡𝑎𝑛𝑥
13. If 𝑠𝑖𝑛𝑥 = then find the value of .
5 𝑠𝑒𝑐𝑥+𝑡𝑎𝑛𝑥
a) ½ b) 1/8 c) ¼ d) 3/4
5
14. If 𝑡𝑎𝑛𝜃 = − and θ lies in the second quadrant then the value of 𝑠𝑖𝑛𝜃 =
12
a) 5/13 b) 4/13 c) -5/13 d) -13/5
15. Find the value of 𝑠𝑖𝑛30°𝑐𝑜𝑠0° + 𝑠𝑖𝑛45°𝑐𝑜𝑠45° + 𝑠𝑖𝑛60°𝑐𝑜𝑠30°.
a) ¼ b) 5/4 c) 7/4 f) 3/4
𝜋 𝜋 𝜋 𝜋
16. Find the value of 𝑡𝑎𝑛2 + 2𝑐𝑜𝑠 2 + 3𝑠𝑒𝑐 2 + 4𝑐𝑜𝑠 2 .
3 4 6 2
a) 4 b) 8 c) 16 d) 5
17. 𝑠𝑖𝑛4 𝜃 − 𝑐𝑜𝑠 4 𝜃 =
a) 1 − 2𝑐𝑜𝑠 2 𝜃 b) 2𝑠𝑖𝑛2 𝜃 − 1 c) 𝑠𝑖𝑛2 𝜃 − 𝑐𝑜𝑠 2 𝜃 d) All of these
2 1
18. 𝑐𝑜𝑡 𝜃 − 2 + 1 =
𝑠𝑖𝑛 𝜃
a) 0 b) 1 c) -1 d) 𝑐𝑜𝑠𝑒𝑐𝜃
19. (1 + 𝑡𝑎𝑛2 𝜃)(1 − 𝑠𝑖𝑛𝜃)(1 + 𝑠𝑖𝑛𝜃) =
a) 0 b) 1 c) -1 d) 𝑠𝑒𝑐𝜃
𝑐𝑜𝑠𝜃 1−𝑠𝑖𝑛𝜃
20. + =
1−𝑠𝑖𝑛𝜃 𝑐𝑜𝑠𝜃
a) 𝑠𝑖𝑛𝜃 b) 𝑐𝑜𝑠𝜃 c) 𝑠𝑒𝑐𝜃 d) 𝑡𝑎𝑛𝜃
21. tan 105 ° =
a) – (2 + √3) b) – (2 − √3) c) – (3 + √2) d) – (3 + √2)
22. 𝑠𝑖𝑛50°𝑐𝑜𝑠10° + 𝑐𝑜𝑠50°𝑠𝑖𝑛10° =
1 √3 1
a) b) c) 1 d)
2 2 √2
23. 𝑐𝑜𝑠70°𝑐𝑜𝑠10° + 𝑠𝑖𝑛70°𝑠𝑖𝑛10° =
1 √3 1
a) b) c) 1 d)
2 2 √2
24. Covert 2𝑠𝑖𝑛5𝜃. 𝑐𝑜𝑠3𝜃 as the sum.
a) 𝑠𝑖𝑛8𝜃 + 𝑠𝑖𝑛4𝜃 b) 𝑐𝑜𝑠8𝜃 + 𝑐𝑜𝑠4𝜃 c) 𝑐𝑜𝑠8𝜃 + 𝑐𝑜𝑠2𝜃 d) 𝑠𝑖𝑛8𝜃 + 𝑠𝑖𝑛2𝜃
25. 𝑐𝑜𝑠75°. 𝑐𝑜𝑠15° =
a) ½ b) ¾ c) ¼ d) 0
cos(𝜋+𝜃)cos⁡(−𝜃)
26. 𝜋 =
sin(𝜋−𝜃)𝑐𝑜𝑠( +𝜃)
2
a) 𝑡𝑎𝑛2 𝑥 b) 𝑐𝑜𝑡 2 𝑥 c) −𝑡𝑎𝑛2 𝑥 d) −𝑐𝑜𝑡 2 𝑥
cos(90°+𝜃) sec(270°+𝜃)⁡sin⁡(180°+𝜃)
27. =
cosec(−𝜃)cos⁡(270°−𝜃)tan⁡(180°+𝜃)
a) 𝑠𝑖𝑛𝜃 b) −𝑠𝑖𝑛𝜃 c) 𝑐𝑜𝑠𝜃 d) −𝑐𝑜𝑠𝜃
𝑡𝑎𝑛69°+𝑡𝑎𝑛66°
28. =
1−𝑡𝑎𝑛69°𝑡𝑎𝑛66°
a) 1 b) -1 c) 0 d) ∞
29. Convert 𝑐𝑜𝑠5𝛼 + 𝑐𝑜𝑠3𝛼 as product.
a) 2𝑐𝑜𝑠4𝛼⁡𝑐𝑜𝑠𝛼 b) 𝑐𝑜𝑠4𝛼⁡𝑐𝑜𝑠𝛼 c) 2𝑠𝑖𝑛4𝛼⁡𝑠𝑖𝑛𝛼 d) 𝑠𝑖𝑛4𝛼⁡𝑠𝑖𝑛𝛼
𝑠𝑖𝑛𝛼+𝑠𝑖𝑛3𝛼
30. 𝑐𝑜𝑠𝛼+𝑐𝑜𝑠3𝛼 =
a) 𝑡𝑎𝑛𝛼 b) 𝑡𝑎𝑛2𝛼 c) 𝑡𝑎𝑛3𝛼 d) −𝑡𝑎𝑛𝛼
31. 𝑐𝑜𝑠3𝜃 =
a) 3𝑐𝑜𝑠 3 𝜃 − 4𝑐𝑜𝑠𝜃 b) 3𝑐𝑜𝑠 3 𝜃 − 𝑐𝑜𝑠𝜃 c) 4𝑐𝑜𝑠 3 𝜃 + 3𝑐𝑜𝑠𝜃 d) 4𝑐𝑜𝑠 3 𝜃 − 3𝑐𝑜𝑠𝜃
𝑠𝑖𝑛𝑥−𝑠𝑖𝑛3𝑥
32. 𝑠𝑖𝑛2 𝑥−𝑐𝑜𝑠2 𝑥 =
a) 𝑠𝑖𝑛𝑥 b) 2𝑠𝑖𝑛𝑥 c) 𝑐𝑜𝑠𝑥 d) 2𝑐𝑜𝑠𝑥
1
33. If 𝑠𝑖𝑛𝛼 = then find the value of 𝑠𝑖𝑛3𝛼.
3
a) 4/27 b) 23/27 c) 31/27 d) 11/27
3
34. If 𝑠𝑖𝑛𝛼 = then find the value of 𝑐𝑜𝑠2𝛼.
5
a) 7/25 b) 18/25 c) -7/25 d) -18/25
35. 𝑠𝑖𝑛51° + 𝑐𝑜𝑠81° =
a) 𝑠𝑖𝑛21° b) −𝑠𝑖𝑛21° c) 𝑐𝑜𝑠21° d) −𝑐𝑜𝑠21°
1
If 𝑠𝑖𝑛𝛼 = √3 2
and 𝑐𝑜𝑠𝛽 = ,⁡and both α and β lies in 1st quadrant then
2
36. Find the value of cos(𝛼 − 𝛽).
a) -56/65 b) -33/65 c) -16/65 d) -63/65
37. Find the value of sin(𝛼 + 𝛽).
a) -56/65 b) -33/65 c) -16/65 d) -63/65
38. Which of the is not correct?
a) 𝑠𝑖𝑛𝜃 = 23 b) 𝑐𝑜𝑠𝜃 = − 14 c) 𝑡𝑎𝑛𝜃 = 300 d) 𝑐𝑜𝑠𝑒𝑐𝜃 = 23
39. Find the sign of 𝑠𝑒𝑐2000°.
a) Positive, lies in 1st quadrant b) Positive, lies in 4th quadrant
nd
c) Negative, lies in 2 quadrant d) Negative, lies in 3rd quadrant
3𝑐𝑜𝑡(90°−𝜃) 2𝑠𝑖𝑛𝜃
40. 𝑡𝑎𝑛𝜃 − 𝑐𝑜𝑠(90°−𝜃) =
a) ½ b) ¾ c) 1 d) 0
𝑠𝑖𝑛𝛼−𝑠𝑖𝑛𝛽
41. 𝑐𝑜𝑠𝛼+𝑐𝑜𝑠𝛽 =
a) 𝑡𝑎𝑛 (𝛼−𝛽
2
) b) 𝑡𝑎𝑛 (𝛼+𝛽
2
) c) 𝑡𝑎𝑛 (𝛼+𝛽
2
𝛼−𝛽
) 𝑐𝑜𝑡 ( )
2
d) 𝑡𝑎𝑛 (𝛼−𝛽
2
𝛼+𝛽
) 𝑐𝑜𝑡 ( )
2
𝛼
42. 𝑠𝑖𝑛 is equal to:
2

a) ±√1+𝑠𝑖𝑛𝛼
2
b) ±√1−𝑐𝑜𝑠𝛼
2
c) ±√1−𝑠𝑖𝑛𝛼
2
d) ±√1+𝑐𝑜𝑠𝛼
2

43. 𝑐𝑜𝑠𝛼 − 𝑐𝑜𝑠𝛽 =


𝛼+𝛽 𝛼−𝛽 𝛼+𝛽 𝛼−𝛽 𝛼+𝛽 𝛼−𝛽 𝛼+𝛽 𝛼−𝛽
a) 2𝑠𝑖𝑛 ( ) 𝑐𝑜𝑠 ( ) b) 2𝑐𝑜𝑠 ( ) 𝑠𝑖𝑛 ( ) c) 2𝑐𝑜𝑠 ( ) 𝑐𝑜𝑠 ( ) d) −2𝑠𝑖𝑛 ( ) 𝑠𝑖𝑛 ( )
2 2 2 2 2 2 2 2
44. An allied angle to θ is:
a) 270˚+θ b) 60˚+θ c) 45˚+θ d) 30˚+θ
45. The value of cos(𝛼 − 2𝜋) is equal to:
a) – 𝑐𝑜𝑠𝛼 b) 𝑐𝑜𝑠𝛼 c) 𝑠𝑖𝑛𝛼 d) – 𝑠𝑖𝑛𝛼
46. The radian measure of the angle described by a wheel in 5 revolution is:
a) 5π b) 15π c) 10π d) 20π
47. A wheel of radius 1 foot rotates through ½ a rotation. How far will it travel?
a) 3.14 feet b) 6.2 feet c) 9.2 feet d) 1 foot
48. In which quadrant tangent function increases from -∞ to 0.
a) 1st b) 2nd c) 3rd d) 4th
49. The range of cosecθ is:
a) -1≤cosecθ≤1 b) R c) All real numbers ≥1 and ≤ -1
50. Find the principal solution of 𝑐𝑜𝑡 −1 (−√3).
a) 11π/6 b) π/6 c) 5π/6 d) 7π/6
51. 𝑠𝑖𝑛 (− 11𝜋
3
)=
√3 1
a) b) c) 1 d) 0
2 2
52. 𝑐𝑜𝑡 (− 15𝜋
4
)=
√3 1
a) b) c) 1 d) 0
2 2
53. 𝑐𝑜𝑠(−1710°) =
√3 1
a) b) c) 1 d) 0
2 2
54. Find the range of the function 𝑠𝑖𝑛3𝑥.
a) {𝑦: 𝑦 ∈ ℝ, −3 ≤ 𝑦 ≤ 0} b) {𝑦: 𝑦 ∈ ℝ, −3 ≤ 𝑦 ≤ 3} c) {𝑦: 𝑦 ∈ ℝ, −1 ≤ 𝑦 ≤ 1} d) {𝑦: 𝑦 ∈ ℝ, 0 ≤ 𝑦 ≤ 1}
55. Find the period of the function 𝑠𝑖𝑛3𝑥.
2𝜋 𝜋
a) 𝜋 b) c) 2𝜋 d)
3 2
56. Find the range of the function 3𝑐𝑜𝑠2𝑥.
2𝜋 𝜋
a) 𝜋 b) c) 2𝜋 d)
3 2
3𝜋
57. 𝑠𝑖𝑛 ( 2 + 𝜃) =
a) 𝑠𝑖𝑛𝜃 b) −𝑠𝑖𝑛𝜃 c) 𝑐𝑜𝑠𝜃 d) −𝑐𝑜𝑠𝜃
58. 𝑠𝑒𝑐 (𝜋2 + 𝜃) =
a) 𝑠𝑒𝑐𝜃 b) −𝑠𝑒𝑐𝜃 c) 𝑐𝑜𝑠𝑒𝑐𝜃 d) −𝑐𝑜𝑠𝑒𝑐𝜃
59. 𝑠𝑖𝑛1230° + cot(−315°) =
a) 1 b) ½ c) 0 d) 3/2
60. If r1, r2, r3 are the radii of escribed circle then r1r2r3 =
a) r2 b) rs c) rs2 d) r2s
2
61. In a ΔABC, if a = 2, b = 3 and 𝑠𝑖𝑛𝛼 = then find β.
3
a) 45˚ b) 30˚ c) 60˚ d) 90˚
62. In a ΔABC, if a = 2, b = 3 and c = 4 then find 𝑐𝑜𝑠𝛼.
a) 8/7 b) 7/8 c) 1/8 d) 1/7
𝛼
63. In a ΔABC, if a = 13, b = 14 and c = 15, find the value of 𝑠𝑖𝑛 .
2
1 1 7 7
a) b) c) d) −
√5 5 √65 √65
64. In any triangle ΔABC, 𝑏𝑐𝑜𝑠 2 (𝛼2) + 𝑐𝑐𝑜𝑠 2 (𝛽2) =
a) s b) 2s c) s(s-a) d) ½ s
65. Find the area of triangle ABC in which 𝑎 = 60°, 𝑏 = 4⁡𝑐𝑚 and 𝑐 = ⁡ √3⁡𝑐𝑚.
a) 3 sq. cm b) 5 sq. cm c) 8 sq. cm d) None of these
66. In any triangle ABC, if 𝑎 = √2⁡𝑐𝑚, 𝑏 = ⁡ √3 and 𝑐 = √5⁡𝑐𝑚. Find the area of triangle.
1 1
a) √3 sq. cm b) √3 sq. cm c) √6 sq. cm d) √6 sq. cm
2 2
67. In a ΔABC, if a = 18 cm, b = 24 cm and c = 30 cm then R =
a) 12 cm b) 13 cm c) 14 cm d) 15 cm
68. Find the height of an object if the angle of elevation of the sun is 30˚ and the length of the shadow of the object is 1.7 meters.
a) 0.34 m b) 1.4 cm c) 0.577 d) 0.98
69. From the top of a tower, the angle of depression to the nearest port of a ship at its waterline is 45˚. If the height of the tower is 35 m,
find the distance between the ship and the foot of the tower.
a) 70 m b) 35 m c) 17.43 m d) 55 m
70. An aeroplane is flying at a height of 8000 metres. If the angle of depression to a field marker measures 30˚, find the aerial distance.
a) 12000 m b) 14500 m c) 16000 d) 4000 m
71. In a ΔABC, if a = 5 cm, b = 10 cm and c = 13 cm then r =
a) 3.1 cm b) 2.57 cm c) 4 cm d) 3.57 cm
72. Find the area of triangle ABC, with 𝑎 = 2√2 cm, β = 60˚ and γ = 90˚.
a) √3 cm b) 2√3 cm c) √3/2 cm d) 3√3 cm
73. Find r1, if a = b = c = 2 cm.
a) √3 cm b) 2√3 cm c) √3/2 cm d) 3√3 cm
74. From the top of a cliff 80√3 m high the angle of depression of a boat is α. If the distance between the boat and foot of cliff is 80 m,
then the angle α is:
𝜋 𝜋 𝜋 𝜋
a) b) c) d)
4 6 3 2
75. Radius of the circle passing through all the vertices of a triangle is called:
a) circum-radius b) In-radius c) e-radius d) None of these
76. In any triangle ABC, √(𝑠−𝑎)(𝑠−𝑐)
𝑎𝑐
is equal to:
a) 𝑠𝑖𝑛 𝛼2 b) 𝑐𝑜𝑠 𝛼2 c) 𝑠𝑖𝑛 𝛽2 d) 𝑠𝑖𝑛 𝛾2
𝛾
77. In any triangle ABC, 𝑐𝑜𝑠 is equal to:
2

a) √𝑠(𝑠−𝑎)
𝑎𝑏
b) √𝑠(𝑠−𝑏)
𝑎𝑐
c) √𝑠(𝑠−𝑎)
𝑏𝑐
d)√𝑠(𝑠−𝑐)
𝑎𝑏⁡⁡

78. In any triangle ABC, √(𝑠−𝑎)(𝑠−𝑏)


𝑠(𝑠−𝑐)
is equal to:
𝛾 𝛾 𝛼 𝛾
a) 𝑐𝑜𝑡 b) 𝑡𝑎𝑛 c) 𝑡𝑎𝑛 d) 𝑠𝑖𝑛
2 2 2 2
79. In any triangle ABC, with usual notation, abc =
a) 2Δ b) 4Δ c) 4RΔ d) 4r
80. In an equilateral triangle, 𝑟: 𝑅: 𝑟1 =
a) 1:2:3 b) 1:3:2 c) 3:2:1 d) 2:3:1
𝛽
81. 𝑠⁡𝑡𝑎𝑛 =
2
a) r b) r1 c) r2 d) r3
82. 𝑟1 + 𝑟2 + 𝑟3 − 𝑟 =
a) s2 b) Δ c) 4R d) rs2
83. 𝑟1 𝑟2 + 𝑟2 𝑟3 + 𝑟3 𝑟1 =
a) s2 b) Δ c) 4R d) rs2
84. In a ΔABC, if a = 18 cm, b = 24 cm and c = 30 cm then the value of r3.
a) 12 cm b) 18 cm c) 36 cm d) 10 cm
85. (𝑠𝑒𝑐𝜃 + 𝑡𝑎𝑛𝜃)(𝑠𝑒𝑐𝜃 − 𝑡𝑎𝑛𝜃) =
a) secθ b) tanθ c) 1 d) 0
86. The domain of y = cos-1x is:
a) -∞<x<∞ b) -1<x<1 c) x≤-1 or x≥1
87. 𝑡𝑎𝑛−1 14 + 𝑡𝑎𝑛−1 15 = ______.
𝜋 3𝜋 9 19
a) b) c) 𝑡𝑎𝑛−1 d) 𝑡𝑎𝑛−1
4 4 19 9
88. 𝑠𝑖𝑛−1 𝑥 − 𝑐𝑜𝑠 −1𝑦 =⁡
a) 𝑐𝑜𝑠 −1 {𝑥𝑦 + √1 − 𝑥 2 √1 − 𝑦 2 } b) 𝑐𝑜𝑠 −1 {𝑥𝑦 − √1 − 𝑥 2√1 − 𝑦 2 }
c) 𝑐𝑜𝑠 −1 {𝑥𝑦 + √1 + 𝑥 2 √1 − 𝑦 2 } d) 𝑐𝑜𝑠 −1 {𝑥𝑦 + √1 − 𝑥 2√1 + 𝑦 2 }
89. 𝑠𝑖𝑛−1 𝑥 − 𝑐𝑜𝑠 −1𝑥 =
𝜋
a) 0 b) 1 c) -1 d)
2
90. Find the value of 𝑠𝑖𝑛 (𝑐𝑜𝑠 −1 √3
2
)=
1 √3 2
a) b) c) d) √3
2 2 √3
91. Find the value of 𝑠𝑒𝑐 [𝑠𝑖𝑛−1 (12)]=
1 √3 2
a) b) c) d) ∞
2 2 √3
92. Find the solution of the equation 1+cosθ = 0
a) {π+2nπ} b) {2π+2nπ} c) {π/2+2nπ} d) {π+nπ}
93. Solve the equation 4𝑐𝑜𝑠 2 𝑥 − 3 = 0
a) {𝜋2 + 2𝑛𝜋} ∪ {𝜋6 + 𝑛𝜋} b) {𝜋6 + 2𝑛𝜋} ∪ {11𝜋
3
+ 2𝑛𝜋} c) {𝜋3 + 2𝑛𝜋} ∪ {11𝜋
6
+ 2𝑛𝜋} d) {𝜋6 + 2𝑛𝜋} ∪ {11𝜋
6
+ 2𝑛𝜋}
94. Find the principal solution of 𝑐𝑜𝑡𝑥 = √3.
2𝜋 5𝜋 𝜋 7𝜋 2𝜋 7𝜋 𝜋 5𝜋
a) , b) , c) , d) ,
3 4 6 6 3 6 6 4
√3
95. Find the principal solution of 𝑠𝑖𝑛𝑥 = −
2
𝜋 5𝜋 𝜋 2𝜋 4𝜋 5𝜋 4𝜋 2𝜋
a) , b) , c) , d) ,
6 3 3 3 3 3 3 3
96. The range of cosecθ is:
a) -1≤ cosecθ ≤1 b) R c) All real numbers ≥1 and ≤ -1
97. Solve 𝑐𝑜𝑡𝑥. 𝑐𝑜𝑠 2 𝑥 = 2𝑐𝑜𝑡𝑥
a) {𝜋4 + 2𝑛𝜋} ∪ {𝜋2 + 𝑛𝜋} b) {𝜋4 + 2𝑛𝜋} c) {𝜋2 + 𝑛𝜋} d) {𝜋4 + 2𝑛𝜋} ∪ {𝜋2 + 2𝑛𝜋}
98. Find the value of 𝑠𝑖𝑛−1 (𝑐𝑜𝑠 (13𝜋
6
)).
𝜋 𝜋 𝜋 𝜋
a) b) c) d)
6 3 4 2
−1 4
99. Find the value of 𝑠𝑖𝑛 (𝑐𝑜𝑠 ( )).
5
a) 2/3 b) ½ c) ¾ d) 4/3
100. Solution of trigonometric equation 2cos2θtanθ = tanθ in the interval [0, π]
𝜋 3𝜋 5𝜋 7𝜋 3𝜋 5𝜋 7𝜋 5𝜋 7𝜋 𝜋 3𝜋
a) 0, , , 𝜋, and b) 0, , 𝜋, and c) 0,⁡ and d) 0, , ,𝜋
4 4 4 4 4 4 4 4 4 4 4

You might also like