Lect2 Part2
Lect2 Part2
Part 2
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)        Topic 1           April 3, 2024   1 / 73
                                Fundamentals of Regression Analysis   The OLS estimator assumptions
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                              April 3, 2024   2 / 73
                                Fundamentals of Regression Analysis   The OLS estimator assumptions
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                              April 3, 2024   3 / 73
                                Fundamentals of Regression Analysis   The OLS estimator assumptions
Least-Squares assumptions
Yi = β0 + β1 Xi + ui , i = 1, ..., n
    In order for the OLS estimators, βˆ0 and βˆ1 , to be appropriate estimators of the
    true parameters β0 and β1 , the following three assumptions need to be true:
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                              April 3, 2024   4 / 73
                                Fundamentals of Regression Analysis   The OLS estimator assumptions
Assumption 1: E(ui | Xi ) = 0
E(ui |Xi ) = 0
        • All the "other factors" captured in the error term ui (those that
          explain Yi but have not been included in the model) are (linearly)
          unrelated to Xi : Cov(X, u) = 0 (See Appendix)
        • The conditional distribution of Yi is centered in the population
          regression line: That is, on average, the prediction of Yi is right (See
          Appendix)
        • We will frequently come back to this assumption during the course
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                              April 3, 2024   5 / 73
                                Fundamentals of Regression Analysis   The OLS estimator assumptions
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                              April 3, 2024   6 / 73
                                Fundamentals of Regression Analysis   The OLS estimator assumptions
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                              April 3, 2024   7 / 73
                                Fundamentals of Regression Analysis   The OLS estimator assumptions
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                              April 3, 2024   8 / 73
                                Fundamentals of Regression Analysis   The OLS estimator assumptions
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                              April 3, 2024   9 / 73
                                Fundamentals of Regression Analysis   The OLS estimator assumptions
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                              April 3, 2024   10 / 73
                                Fundamentals of Regression Analysis   The sampling distribution of the OLS estimator
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                   April 3, 2024   11 / 73
                                Fundamentals of Regression Analysis   The sampling distribution of the OLS estimator
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                   April 3, 2024   12 / 73
                                Fundamentals of Regression Analysis   The sampling distribution of the OLS estimator
Unbiasedness of βˆ1
                                                       P
                                                        (Xi − X)(Yi − Y)
                                                 β̂1 =   P
                                                            (Xi − X)2
• This is one of the most important formulas we will see during this course
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                   April 3, 2024   13 / 73
                                Fundamentals of Regression Analysis   The sampling distribution of the OLS estimator
Unbiasedness of βˆ1
                                                                    P
                                                                     (Xi − X)ui
                                                         β̂1 = β1 + P
                                                                      (Xi − X)2
        • The intuitive idea is that our estimator is equal to the true parameter plus
          ’something’ else
        • If the expected value of that ’something’ else is zero, our estimator is
          unbiased; otherwise it is biased
        • If the error term is uncorrelated with our X (if assumption #1 holds), then
          the second term will be zero and thus our estimator will be unbiased
          (E(β̂1 ) = β1 )
        • However, if our model has left in the error term something relevant
          (explains Y and therefore belongs to the error term and is correlated with
          X), the second term will not be zero and our estimator will be biased
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                   April 3, 2024   14 / 73
                                Fundamentals of Regression Analysis   The sampling distribution of the OLS estimator
                                                                                     1 var[(Xi − µX )ui ]
                           N (β1 , σβ2ˆ )               where          σβ2ˆ =
                                          1                                1         n [var(Xi )]2
                                                                                        1 var(Hi ui )
                                 N (β0 , σβ2ˆ )           where                σβ2ˆ =
                                               0                                 0      n [E(Hi )2 ]2
                                                                h µ i
                                                                   X
                                                   and Hi = 1 −          Xi
                                                                 E(Xi2 )
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                   April 3, 2024   15 / 73
                                Fundamentals of Regression Analysis   The sampling distribution of the OLS estimator
From the variance formula of the OLS estimators we can see several things:
       1. Other things equal, the larger the variance of Xi , the smaller the variance
          of βˆ1
               ▶ Intuitively, the wider the range of X, the ’better’ information to draw
                 the the regression line.
       2. Other things equal, the smaller the variance of ui , the smaller the
          variance of βˆ1
               ▶ Intuitively, if we have a very good model (the errors are smaller), the
                 data will have a tighter scatter around the population regression
                 line, so its slope will be estimated more precisely.
       3. Other things equal, a larger the sample size (n), the smaller the variance
          βˆ1
               ▶ Intuitively, larger n means more dots (information) to draw the
                 regression line
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                   April 3, 2024   16 / 73
                                Fundamentals of Regression Analysis   The sampling distribution of the OLS estimator
From the variance formula of the OLS estimators we can see several things:
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                   April 3, 2024   17 / 73
                                Fundamentals of Regression Analysis   The sampling distribution of the OLS estimator
                            1
                               Pn               2 2                                                1
                                                                                                       Pn        2 2
                         1 n−2   i=1 (Xi − X̄) ûi                                              1 n−2    i=1 Ĥi ûi
              σ̂β̂2 =    n h P                   i2                   and           σ̂β̂2 =     n h P            2 2
                  1                                                                     0
                                                                                                                  i
                             1  n              2                                                     1  n
                             n  i=1 (X i − X̄)                                                       n  i=1 Ĥ i
                                                                                                            1 Pn
                                                                           where Ĥi = 1 − (X/                   X 2 )Xi
                                                                                                            n i=1 i
    And the standard errors of βˆ1 and βˆ0 are estimators of the standard deviation
    of βˆ1 and βˆ0 , σβˆ1 and σβˆ0 :
                                                q                                               q
                                 se(βˆ1 ) =         σ̂β2ˆ        and            se(βˆ0 ) =          σ̂β2ˆ
                                                        1                                               0
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                    April 3, 2024   18 / 73
                                Fundamentals of Regression Analysis   Homoskedasticity and heteroskedasticity
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                  April 3, 2024   19 / 73
                                Fundamentals of Regression Analysis   Homoskedasticity and heteroskedasticity
Homoskedasticity
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                  April 3, 2024   20 / 73
                                Fundamentals of Regression Analysis   Homoskedasticity and heteroskedasticity
Graphically:
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                  April 3, 2024   21 / 73
                                Fundamentals of Regression Analysis   Homoskedasticity and heteroskedasticity
    If the three least square assumptions hold and the errors are homoskedastic:
       1. The OLS estimators remain unbiased, consistent and asymptotically
          normal
               ▶ Note that unbiasedness and consistency do not depend on whether
                 errors are heteroskedastic or homoskedastic
               ▶ For these properties to be true, we only need the
                 first 3 least square assumptions to hold
       2. The OLS estimators βˆ0 and βˆ1 are efficient among all estimators that are
          a linear combination of Y1 , ..., Yn and are unbiased (Gauss-Markov
          theorem).
               ▶ This is, the OLS estimators are the more efficient linear
                 conditionally unbiased estimators (are BLUE)
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                  April 3, 2024   22 / 73
                                Fundamentals of Regression Analysis   Homoskedasticity and heteroskedasticity
                                                 σu2                                   E(Xi2 ) 2
                                     σβ2ˆ =                   and           σβ2ˆ =            σ
                                         1      nσX2                            0       nσX2 u
                                                                                       1 P               
                                                                                                 n
                                                                                                 i=1   Xi2 s2û
                                                                            σ̃β2ˆ = Pnn
                                         q
                          se(βˆ0 ) =         σ̃β2ˆ        where
                                                 0                              0
                                                                                            i=1 (Xi    − X)2
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                  April 3, 2024   23 / 73
                                Fundamentals of Regression Analysis   Homoskedasticity and heteroskedasticity
Warning
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                  April 3, 2024   24 / 73
                                Fundamentals of Regression Analysis   Homoskedasticity and heteroskedasticity
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                  April 3, 2024   25 / 73
                                Fundamentals of Regression Analysis   Homoskedasticity and heteroskedasticity
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                  April 3, 2024   26 / 73
                                Fundamentals of Regression Analysis   Hypothesis test and confidence intervals
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                    April 3, 2024   27 / 73
                                Fundamentals of Regression Analysis   Hypothesis test and confidence intervals
Steps:
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                    April 3, 2024   28 / 73
                                Fundamentals of Regression Analysis   Hypothesis test and confidence intervals
                                      Empirical question:
                     Does the size of an apartment affects its sale’s price?
Price = β0 + β1 Size
    Concretely, we want to know if this relation exists at all. Therefore, our null
    and alternative hypotheses are:
        • H0 : β 1 = 0                  (NO relation between Size and Price in the population)
        • H1 : β1 ̸= 0                  (Relation between Size and Price in the population)
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                    April 3, 2024   29 / 73
                                Fundamentals of Regression Analysis   Hypothesis test and confidence intervals
                                      Empirical question:
                    Does the size of an apartment affects its price of sale?
                                                                                   1 var[(Xi − µX )ui ]
                            N(β1 , σβ2ˆ )               where          σβ2ˆ =
                                         1                                 1       n [var(Xi )]2
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                    April 3, 2024   30 / 73
                                Fundamentals of Regression Analysis   Hypothesis test and confidence intervals
                                      Empirical question:
                    Does the size of an apartment affects its price of sale?
    Or in our example:
                                        P
                                         (Sizei − Size)(Pricei − Price)   sSize,Price
                             β̂1act =                                   =
                                                                             s2Size
                                              P                2
                                                 (Sizei − Size)
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                    April 3, 2024   31 / 73
                                Fundamentals of Regression Analysis   Hypothesis test and confidence intervals
    Alternative 1: Calculate the t-statistic using β̂ act and compare it to the critical
    value t* (for α = 0.05, t*=1.96)
                                                                                                         act
                                    βˆ1 − β1,0   βˆ1 − 0                                             βˆ1
                             t=                =                           −→            tact =
                                      se(βˆ1 )   se(βˆ1 )                                           se(βˆ1 )
    where se(βˆ1 ) is the standard error of βˆ1 , which is the estimator of the standard
    deviation of βˆ1 , σβˆ1 :
                                                           1
                                                              Pn               2 2
                                                                i=1 (Xi − X̄) ûi
                             q
                    ˆ
               se(β1 ) = σ̂βˆ  2   where           2    1 n−2
                                                 σ̂β̂ = n h                     i2
                                 1                   1        Pn
                                                            1                 2
                                                            n  i=1 (X i − X̄)
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                    April 3, 2024   32 / 73
                                Fundamentals of Regression Analysis   Hypothesis test and confidence intervals
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                    April 3, 2024   33 / 73
                                Fundamentals of Regression Analysis   Hypothesis test and confidence intervals
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                    April 3, 2024   35 / 73
                                Fundamentals of Regression Analysis    Hypothesis test and confidence intervals
Alternative 3: Calculate the confidence interval for β1 and check if β1,0 is in it.
    95% confidence interval (CI) of β1 : an interval that contains the true value
    of β1 with 95% probability. Or equivalently, the set of values of β1 that cannot
    be rejected by a 5% two-sided hypothesis test.
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                     April 3, 2024   36 / 73
                                Fundamentals of Regression Analysis   Hypothesis test and confidence intervals
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                    April 3, 2024   37 / 73
                                Fundamentals of Regression Analysis   Hypothesis test and confidence intervals
    The 95% confidence interval for β1 can be used to construct a 95% interval
    for the predicted effect of a general change in Size (∆Size) on Price (∆Price).
    According to our model, the predicted change in Price will be:
∆Price = β1 ∆Size
    For example, the confidence interval for the predicted change in price for a
    15m2 increase in house size will be:
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                    April 3, 2024   38 / 73
                                Fundamentals of Regression Analysis   Hypothesis test and confidence intervals
                                      Empirical question:
                    Does the size of an apartment affects its price of sale?
Price = β0 + β1 Size
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                    April 3, 2024   39 / 73
                                Fundamentals of Regression Analysis   Hypothesis test and confidence intervals
                                Empirical question:
    Is the increase in the price of sale for an additional square meter greater
                                 than 1600 euros?
Price = β0 + β1 Size
    But now we want to know if this slope is greater than 1600. Therefore, now
    our null and alternative hypotheses are:
        • H0 : β1 = 1600
        • H1 : β1 > 1600
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                    April 3, 2024   40 / 73
                                Fundamentals of Regression Analysis   Hypothesis test and confidence intervals
    Alternative 1: Calculate the t-statistic using β̂ act and compare it to the critical
    value t*
    When using a one-tailed test, we are testing for the possibility of the
    relationship in one direction and completely disregarding the possibility of a
    relationship in the other direction. Therefore, we will concentrate on only one
    side of the standard normal distribution and critical value for the CDF at 5%
    changes (t∗). Concretely, in a one-sided test, for significance level of
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)                Topic 1                                    April 3, 2024   42 / 73
                                Fundamentals of Regression Analysis   Hypothesis test and confidence intervals
So in our example:
                                                act
                                     act
                                             βˆ1 − 1600 1641.24 − 1600
                                 t         =              =            = 0.56
                                                 se(βˆ1 )   73.43
    So, with the evidence at hand, we conclude that the increase in price for an
    additional square meter is not different from 1600.
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                    April 3, 2024   43 / 73
                                Fundamentals of Regression Analysis   Hypothesis test and confidence intervals
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                    April 3, 2024   44 / 73
                                Fundamentals of Regression Analysis   Appendix
Appendix
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1         April 3, 2024   45 / 73
                                Fundamentals of Regression Analysis   Appendix
E(ui |Xi ) = 0
E(ui |Xi ) = 0
(3) E(Yi | Xi ) = β0 + β1 Xi
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1         April 3, 2024   47 / 73
                                Fundamentals of Regression Analysis   Appendix
               ▶ That is, the correlation only captures the linear relationship between
                 Xi and ui
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1         April 3, 2024   48 / 73
                                Fundamentals of Regression Analysis   Appendix
Unbiasedness of βˆ1
                                                         P
                                                          (Xi − X)(Yi − Y)
                                               β̂1 =       P
                                                              (Xi − X)2
                      P
                         (Xi − X̄)[β1 (Xi − X i ) + (ui − u)]
    (1)         β̂1 =             P
                                      (Xi − X̄)2
                           (Xi − X̄)2
                         P                P                             P
                                             (Xi − X̄)(ui − ū)          (Xi − X̄)(ui − ū)
    (3)         β̂1 = β1 P           2
                                       +      P             2
                                                                = β 1 +   P
                           (Xi − X̄)              (Xi − X̄)                  (Xi − X̄)2
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1         April 3, 2024   49 / 73
                                Fundamentals of Regression Analysis   Appendix
                                  P              P
                                   (Xi − X̄)ui − (Xi − X̄)u
    (4)         β̂1 = β1 +              P
                                            (Xi − X̄)2
                     Pn
        • Hint: X̄ =  i=1 Xi   Pn
                             → i=1 Xi = nX̄
                       n
        • Hint: (Xi − X̄)ū = [ ni=1 Xi − ni=1 X̄]ū = [nX̄ − nX̄]ū = 0
                P              P         P
                           P
                            (Xi − X)ui
    (5)         β̂1 = β1 + P
                             (Xi − X)2
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1         April 3, 2024   50 / 73
                                Fundamentals of Regression Analysis   Appendix
                                 P
                                 (Xi − X)E(ui |X1 , ..., Xn ) 
    (7)         E(β̂1 ) = E β1 +      P
                                         (Xi − X)2
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1         April 3, 2024   51 / 73
                                Fundamentals of Regression Analysis   Appendix
Unbiasedness example
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1         April 3, 2024   52 / 73
                                Fundamentals of Regression Analysis   Appendix
Data simulation
    First, we will use Stata to simulate some observations from a true model
    (remember: we never know the true model and the whole point is to estimate
    its parameters)
        • The true model is Wagei = β0 + β1 × Agei + ui , with β0 = 21 y β1 = 2
        • Age is in years and wage is in euros per hour
        • Let’s assume for the sake of simplicity, that the unknown error term is
            iid
          u ∼ N (0, 3) and satisfies the assumption of E(u | X) = 0
        • As we said, we will treat the model as known, and we will generate 1000
          values for Age and u, and using the true values of the parameters β0 and
          β1 we will generate 1000 values for the wage
        • Therefore, the 1000 data points for (Yi , Xi , ui ) will be our population
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1         April 3, 2024   53 / 73
                                Fundamentals of Regression Analysis   Appendix
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1         April 3, 2024   54 / 73
                                Fundamentals of Regression Analysis   Appendix
Simulation
       1. Let’s take a random sample of n=50 data from 1000 data points
       2. Then estimate the parameters β0 and β1 applying OLS to those data
       3. That is, let’s now pretend that we don’t know the true population
          parameters and use our random sample to estimate both β̂0 and β̂1
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1         April 3, 2024   55 / 73
                                Fundamentals of Regression Analysis   Appendix
            The red dots are those point from the populations that were chosen in the random sampling and the estimated line with
            those 50 points Wagei = 21.87 + 1.75Agei . In black, we have the true line (Wagei = 21 + 2Agei )
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                               April 3, 2024           56 / 73
                                Fundamentals of Regression Analysis   Appendix
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1         April 3, 2024   57 / 73
                                Fundamentals of Regression Analysis   Appendix
            Again, in red we have the points chosen in the second random sampling and the regression line with 50 data points
            Wagei = 20, 6 + 2, 06Edadi . In black, we have the true line (Wagei = 21 + 2Agei )
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                               April 3, 2024            58 / 73
                                Fundamentals of Regression Analysis   Appendix
            In red we have the points chosen in the third random sampling and the regression line with 50 data points
            Wagei = 22, 09 + 1, 81Agei . In black, we have the true line (Wagei = 21 + 2Agei )
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                April 3, 2024   59 / 73
                                Fundamentals of Regression Analysis   Appendix
            In red we have the points chosen in the fourth random sampling and the regression line with 50 data points
            Wagei = 21, 12 + 1, 94Agei . In black, we have the true line (Wagei = 21 + 2Agei )
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                April 3, 2024    60 / 73
                                Fundamentals of Regression Analysis   Appendix
            In red we have the points chosen in the fifth random sampling and the regression line with 50 data points
            Wagei = 20, 96 + 2, 04Agei . In black, we have the true line (Wagei = 21 + 2Agei )
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                 April 3, 2024   61 / 73
                                Fundamentals of Regression Analysis   Appendix
            In red we have the points chosen in the sixth random sampling and the regression line with 50 data points
            Wagei = 19, 66 + 2, 23Agei . In black, we have the true line (Wagei = 21 + 2Agei )
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                April 3, 2024   62 / 73
                                Fundamentals of Regression Analysis   Appendix
            In red we have the points chosen in the seventh random sampling and the regression line with 50 data points
            Wagei = 21, 73 + 1, 85Agei . In black, we have the true line (Wagei = 21 + 2Agei )
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                               April 3, 2024      63 / 73
                                Fundamentals of Regression Analysis   Appendix
         • In red we have the points chosen in the eight random sampling and the regression line with 50 data points
           Wagei = 22, 71 + 1, 86Agei . In black, we have the true line (Wagei = 21 + 2Agei )
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                               April 3, 2024   64 / 73
                                Fundamentals of Regression Analysis   Appendix
            In red we have the points chosen in the ninth random sampling and the regression line with 50 data points
            Wagei = 20, 43 + 2, 14Agei . In black, we have the true line (Wagei = 21 + 2Agei )
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                April 3, 2024   65 / 73
                                Fundamentals of Regression Analysis   Appendix
            In red we have the points chosen in the tenth random sampling and the regression line with 50 data points
            Wagei = 20, 57 + 2, 12Agei . In black, we have the true line (Wagei = 21 + 2Agei )
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1                                April 3, 2024   66 / 73
                                Fundamentals of Regression Analysis     Appendix
                                                        1             21.87    1.75
                                                        2             20.66    2.06
                                                        3             22.09    1.81
                                                        4             21.12    1.94
                                                        5             20.96    2.04
                                                        6             19.66    2.23
                                                        7             21.73    1.85
                                                        8             22.71    1.86
                                                        9             20.43    2.14
                                                        10            20.55    2.15
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)             Topic 1                April 3, 2024   67 / 73
                                Fundamentals of Regression Analysis   Appendix
Simulation: continuation
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1         April 3, 2024   68 / 73
                                Fundamentals of Regression Analysis     Appendix
                                                        1             21.87   1.75
                                                        2             20.66   2.06
                                                        3             22.09   1.81
                                                        4             21.12   1.94
                                                        5             20.96   2.04
                                                        6             19.66   2.23
                                                        7             21.73   1.85
                                                        8             22.71   1.86
                                                        9             20.43   2.14
                                                        10            20.55   2.15
                                                        11            20.57   2.12
                                                        12            21.86   1.88
                                                        13            21.36   2.00
                                                        14            22.60   1.75
                                                        15            21.50   1.95
                                                        16            20.49   2.11
                                                        17            20.81   2.02
                                                        18            21.20   1.98
                                                        19            22.23   1.75
                                                        20            20.80   2.12
                                                        21            19.69   2.16
                                                        22            21.58   1.83
                                                        23            21.00   2.05
                                                        24            19.99   2.04
                                                        25            20.89   2.12
                                                        26            20.89   2.06
                                                        27            21.73   1.99
                                                        28            21.85   2.03
                                                        29            21.95   1.87
                                                        30            20.31   2.12
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)             Topic 1                April 3, 2024   69 / 73
                                Fundamentals of Regression Analysis   Appendix
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1         April 3, 2024   70 / 73
                                Fundamentals of Regression Analysis   Appendix
        • How would the result would change if we could repeat the process more
          times?
        • How would the result change if we repeat it from scratch 1000, but now
          using random samples of n=100?
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1         April 3, 2024   71 / 73
                                Fundamentals of Regression Analysis   Appendix
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF)            Topic 1         April 3, 2024   72 / 73
                                Fundamentals of Regression Analysis   Appendix
Conclusions
Javier Abellán, Màxim Ventura and Carlos Suárez (UPF) Topic 1 April 3, 2024 73 / 73