Calculus I, Tutorial Problem Sheet, Week 3
Limits
Q1. Consider the given graph of the function f (x). Are the following statements true or false?
                                   1.5
                                   0.5
                                     0
                               y
                                   -0.5
                                    -1
                                   -1.5
                                    -2
                                          -2          -1.5          -1       -0.5        0         0.5       1         1.5    2
                                                                                         x
                                                                         f (x) for Q1
    (a) limx→0 f (x) exists,                        (b) limx→0 f (x) = 0,                                              (c) limx→0 f (x) = 1
    (d) limx→1 f (x) = 1,                 (e) limx→1 f (x) = 0,                                                  (f) limx→a f (x) exists ∀ a ∈ (−1, 1).
    Solution:
         (a) true,   (b) true,            (c) false,                         (d) false,                  (e) false,               (f) true.
Q2. Consider the given graph of the function f (x). Are the following statements true or false?
                                           0.5
                                          -0.5
                                     y
                                               -1
                                          -1.5
                                               -2
                                                     -1      -0.5        0     0.5       1   1.5         2       2.5    3
                                                                                         x
                                                                         f (x) for Q2
    (a) limx→2 f (x) does not exist,                                (b) limx→2 f (x) = 1,                                    (c) limx→1 f (x) does not exist,
    (d) limx→a f (x) exists ∀ a ∈ (−1, 1)                                                (e) limx→a f (x) exists ∀ a ∈ (1, 3).
                                                                                     1
    Solution:
         (a) false,             (b) true,      (c) true,        (d) true,     (e) true.
Q3. If f (x) > 0 ∀ x 6= a and limx→a f (x) = L, can we conclude that L > 0? Justify your
    answer.
    Solution:
         No. An example is provided by f (x) = x2 with a = 0 so that L = 0 which is not positive.
Q4. Justify whether the following statement is true or false.
                                               p
    If limx→a f (x) exists then so does limx→a f (x).
    Solution: False. An example is provided by f (x) = −1, with a = 0.
                                                          p
         Here limx→0 f (x) exists (and is equal to −1) but f (x) is not a real function.
Q5. Calculate the following limits
                                                           3x2                                                              cos x
    (a) limx→0 (2 − x),                (b) limx→−1        2x−1
                                                               ,        (c) limx→π/2 x sin x,           (d) limx→π          1−π
                                                                                                                                  .
                                                                     1
    Solution: (a) 2, (b) −1,                    (c) π/2, (d)        π−1 .
Q6. Calculate the following limits
                      x4 −1                          x3 −8                      √ x−1 ,                               4x−x 2
    (a) limx→1        x3 −1
                            ,      (b) limx→2        x4 −16
                                                            ,      (c) limx→1    x+3−2
                                                                                                 (d) limx→4             √ .
                                                                                                                      2− x
    Solution:
                            x4 −1                    (x2 +1)(x+1)(x−1)                 (x2 +1)(x+1)
         (a) limx→1         x3 −1
                                     = limx→1         (x−1)(x2 +x+1)
                                                                            = limx→1     x2 +x+1
                                                                                                        = 4/3.
                              x3 −8                   (x−2)(x2 +2x+4)                     x2 +2x+4
           (b) limx→2         x4 −16
                                       = limx→2
                                      (x+2)(x−2)(x2 +4)
                                                        = limx→2             = 3/8.     (x+2)(x2 +4)
                                                √                          √
           (c)            x−1
                 limx→1 √x+3−2 = limx→1 (√(x−1)(  x+3+2)
                                                   √
                                           x+3−2)( x+3+2)
                                                            = limx→1 (x−1)(  x+3+2)
                                                                         x+3−4      =                                     4.
                                                √                    √
                             2         x(4−x)(2+ x)
           (d)   limx→4 4x−x
                           √ = limx→4
                        2− x
                                          √      √
                                      (2− x)(2+ x)
                                                     = limx→4 (x(2 + x)) = 16.
Q7. Calculate the limit as x → 0 of the following
          1−cos x                 x2                   x2
    (a)     x2
                  ,     (b)     1−cos 2x
                                         ,     (c)   1−cos 4x
                                                              .
    Solution:
                                                                                                     2             
           (a)   limx→0 1−cos
                          x2
                              x
                                       =     limx→0 (1−cos x)(1+cos x)
                                                       x2 (1+cos x)
                                                                             = limx→0          sin x
                                                                                                 x
                                                                                                              1
                                                                                                            1+cos x       = 1/2.
                                x2                         x2 (1+cos 2x)                 (2x)2 (1+cos 2x)
           (b) limx→0         1−cos 2x   = limx→0       (1−cos 2x)(1+cos 2x)   = limx→0      4 sin2 2x
                                                                                                                  = 1/2.
                              x2                            x2 (1+cos 4x)                (4x)2 (1+cos 4x)
           (c) limx→0       1−cos 4x     = limx→0       (1−cos 4x)(1+cos 4x)   =   limx→0 16 sin2 4x              = 1/8.
                        sin(x+|x|)
Q8. Does limx→0              x
                                       exist?
    If the limit exists then find it.
                                                                    2
      Solution: For x > 0, sin(x+|x|)
                                  x    = sinx2x . Hence limx→0+ sin(x+|x|)
                                                                      x    = limx→0+ sinx2x = limx→0+ 2 sin
                                                                                                          2x
                                                                                                            2x
                                                                                                               = 2.
                       sin(x+|x|)                      sin(x+|x|)
           For x < 0,       x     = 0. Hence limx→0−        x     = 0.
           The left-sided and right-sided limits exist but are not equal, hence the limit does not exist.
 Q9. In each case either evaluate the limit or state that no limit exists
                      x2 +x+12                        x2 +x−12                         (x2 +x−12)2                   (x2 +x−12)
      (a) limx→3         x−3
                               ,     (b) limx→3          x−3
                                                               ,          (c) limx→3       x−3
                                                                                                   ,    (d) limx→3     (x−3)2
                                                                                                                                ,
                      1−1/h2                     1+1/h
      (e) limh→0      1+1/h2
                             ,     (f) limh→0    1+1/h2
                                                        .
      Solution:
           (a) no limit exists,
                             x2 +x−12
             (b) limx→3         x−3    = limx→3 (x+4)(x−3)
                                                    x−3      = 7.
                               2       2                2 (x−3)2
             (c)   limx→3 (x +x−12)
                                 x−3     = limx→3 (x+4)x−3       = limx→3 (x                + 4)2 (x − 3) = 0.
                      2
                    (x +x−12)
             (d)      (x−3)2
                                 = (x+4)(x−3)
                                     (x−3)2
                                              = x+4
                                                x−3 hence no limit exists.
                          1−1/h2                     h2 −1
             (e) limh→0   1+1/h2
                                      = limh→0       h2 +1
                                                             = −1.
                          1+1/h                      h2 +h
             (f)   limh→0 1+1/h2      = limh→0       h2 +1
                                                             = 0.
Q10. Calculate the limit as x → ∞ of the following
            6x+7                 x2
      (a)   1−2x
                 ,     (b)   x2 +sin2 x
                                        .
      Solution:
                              6x+7                   6+ x7
             (a) limx→∞       1−2x   = limx→∞        1
                                                       −2
                                                             = −3.
                                                     x
                                            sin2 x       1
             (b) First note that 0 ≤          x2
                                                     ≤   x2
                                                            .
                             1                                                              sin2 x
             As limx→∞       x2
                                  = 0 then by the pinching theorem limx→∞                     x2
                                                                                                     = 0.
                                 x2                              1
             Thus     limx→∞ x2 +sin 2x     = limx→∞                 2     = 1.
                                                             1+ sin 2 x
                                                                  x
Q11. Calculate the following limits
                                                          1/x
      (a)   limx→∞ cos(1/x)
                   1+(1/x)
                            ,         (b) limx→∞             1
                                                             x
                                                                      ,
      (c) limx→∞ (3 + x2 ) cos(1/x),                 (d) limx→∞ {( x32 − cos(1/x))(1 + sin(1/x))}.
      Solution:
           Set u = 1/x in each case
                           cos(1/x)          cos u
             (a) limx→∞    1+(1/x) = limu→0+ 1+u = 1.
                            1/x
             (b)     limx→∞ x1      = limu→0+ uu = limu→0+                        exp(log uu ) = limu→0+ exp(u log u) =
             e0 = 1.
             (c) limx→∞ (3 + x2 ) cos(1/x) = limu→0+ (3 + 2u) cos u = 3.
             (d) limx→∞ ( x32 − cos(1/x))(1 + sin(1/x)) = limu→0+ (3u2 − cos u)(1 + sin u) = −1.
                                                                  3
Q12. For each of the following statements, either give a proof that it is true or a counter example
     to show that it is false:
      (a) If g(x) > 0 ∀ x > 0 and limx→∞ (f (x) − g(x)) = 0 then limx→∞ (f (x)/g(x)) = 1.
      (b) If g(x) > 0 ∀ x > 0 and limx→∞ (f (x)/g(x)) = 1 then limx→∞ (f (x) − g(x)) = 0.
      Solution:
           (a) False. A counter example is provided by f (x) = 1/x and g(x) = 2/x.
           (b) False. A counter example is provided by f (x) = x and g(x) = x + 1.
Q13. In each case either evaluate the limit or state that no limit exists
                     u2                                                     (x−2)(1−cos 3x)                      t−5
      (a) limu→−5   5−u
                        ,    (b) limy→0 (2y −8)1/3 ,           (c) limx→0         2x
                                                                                            ,     (d) limt→5    t2 −25
                                                                                                                       ,
                    √ x+2                     −3x4 +x2 +1                        5t3 +8t2                    tan(2(x−3))
      (e) limx→−2    x2 +5−3
                             ,   (f) limx→∞    −5x4 −1
                                                          ,        (g) limt→0   3t2 −16t4
                                                                                          ,     (h) limx→3       x−3
                                                                                                                         ,
                                              √
                       x+3                        x2 +12−4                    t2 +t−2                       t3 +1
      (i) limx→−3   x2 +4x+3
                             ,   (j) limx→2        x−2
                                                           ,     (k) limt→1    t2 −1
                                                                                      ,       (l) limt→−∞   t2 +1
                                                                                                                  .
      Solution:
           (a) 5/2, (b) −2, (c) 0, (d) 1/10, (e) −3/2,                        (f) 3/5,        (g) 8/3,   (h) 2,
           (i) −1/2, (j) 1/2, (k) 3/2, (l) no limit exists.