0% found this document useful (0 votes)
32 views8 pages

Mat Ödevi

Uploaded by

Yağız Yiğit
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
32 views8 pages

Mat Ödevi

Uploaded by

Yağız Yiğit
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

2023-2024

THE SEZIN SCHOOL


MATHEMATICS DEPARTMENT
SEMESTRE HOMEWORK-1

NAME SURNAME : ………………………………………………………… Grade : 11

NUMBER :……….

2p 5p
1) Find the principal angle of the following: [ 3200 ,3000 , 2100 , , ]
3 4
50p 27p
a) 32000 b) -600 c) 9300 d) e) -
3 4

2) Find the value of the following:

æ 3p ö æp ö p p
a) sin ç - ( )
÷ + cos -p + tan -2p [0] ( ) b) tan2 ç ÷ + cot - 2sin + sin p [3]
è 2 ø è3ø 6 3

p p p æ pö æ pö æ pö
c) sin2 - 2cos2 - 5tan2 [-5] d) cos3 ç - ÷ - cot3 ç - ÷ + sin3 ç - ÷ [3 3 ]
4 3 4 è 3ø è 6ø è 6ø

tanx - sinx secx


3) Simplify - = ? [0]
sin x
3
1 + cosx

sin3 x + cos3 x 1 - sin x.cos x


4) Prove that ÷ =1
sin2 x - cos2 x sin x - cos x

2 sin3 x + cos3 x é 7 ù
5) If tan x = then find the value of ê ú
3 sin x + cos x ë 13 û
1 1
6) + .sin20 = ? [ 2 ]
1 + cos200 1 - cos200

1 1
7) If + =4 and 0o < x < 90o find the value of x. [450]
1 - sin x 1 + sin x

sin2 155 + cos2 385 a


8) tan25 = a find interms of a. [ ]
tan205 + cot335 2
a -1

Π
cos( - a).tanx 3
Π 2
9) If 27 Cosx = 81Sinx and a +b = then find . [ ]
2 Π 5
sin( - b).secx
2

2a - 1 b +1
10) a, b Î R and sinx= and cosx= , find the interval for a+b. [ -6 £ a + b £ 5 ]
3 4

2 -13 17
11) If 2m - 3sin2x + = 0 then find the value of m [ £m£ ]
5 10 10
æ Ù ö
12) There is a unit circle, m ç POA ÷ = a then find area of shaded
ç ÷
è ø
cos3 a
region. [ ]
2sin a

1 æ Ù ö 3
13) There is a unit semicircle, [AK] ⊥ [OA], |PK| = u, m ç POA ÷ = a then find tanα. [ ]
4 ç ÷ 4
è ø

14) If there are six equal squares in the figure then find tanx . [3]

15) Arrange the trigonometric ratiof of a = cos285° , b = tan233°, c = sin127° , d = cot21°. [ d > b > c > a ]

16) Which of the following is true: [I-IV]


p
I. 0 < x < y < ⇒ sinx < siny
2
p
II. 0 < x < y < ⇒ cosx < cosy
2
p
III. < x < y < π ⇒ sinx < siny
2
3p
IV. π < x < y < ⇒ tanx < tany
2

17) Which of the following is true: [II]


I. sin130° > sin132°
II. cos130° > cos132°
III. tan134° > sin271°
IV. sin165° > tan195°
æ 5p ö
cos ç -
2
(
+ x ÷ .cot 5p - x )
18) Simplify è ø [-1]
æ 3p ö æ 17p ö
sin ç + x ÷ tan ç - ÷
è 2 ø è 4 ø

sin(x - 90° ) + sin(270° - x)


19) Simplify . [1]
cos(180° - x) - cos( -x)

æ 35p ö
( )
cos x - 13p - sin ç (
+ x ÷ - tan x - 50p )
è 2
20) Simplify
æ 23p ö
ø
æ 41p ö
[1]
cos ç (
- x ÷ + sin 31p - x + cot ç) +x÷
è 2 ø è 2 ø

æ 3 1 3ö æ 1ö 3
21) tan ç 5 arctan - arcsin ÷ [-1] 22) sin ç 3arctan 3 + 2arccos ÷ [- ]
ç
è 3 4 2 ÷ø è 2ø 2

1
(
23) If cos arctan x = ) then find x. [ x ÎR ]
1+ x2

æ æ 3 öö æ æ 12 ö ö -14
24) Find the result of sin ç tan -1 ç - ÷ ÷ + cos ç arcsin ç ÷ ÷ . [ ]
ç ÷ ç ÷
è è 4 øø è è 13 ø ø 65
æ æ æ 12 ö ö ö é 5 ù
25) Find the result of tan ç sin -1 ç sin ç arccos ÷ ÷ ÷ . ê ú
ç ç 13 ø ÷ø ÷ø ë 12 û
è è è

26) In triangle ABC, |BD|=4 u, |BE|=5 u, |EC|=3 u, |AD|=6 u, |DE|=6 u, |AC|=x then find the value of x. [12]

æÙö
27) If ABCD is a rhombus, |AB|=3 u, |BE|=|DF|=1 u, m ç A ÷ = 120 then find the value of |EF|. [ 13 ]
o

è ø

æ Ù ö æ Ù ö
28) In ABC triagle, m ç BAC ÷ = 45 , m ç ABC ÷ = 60 , BC = 3 2 u then find |AC|.
o o

è ø è ø
é3 3 ù
ëê úû

29) In ABC triagle,


|AE| = 6 u
|EC| = 3 u
|DC| = 4 u
|BD| = x u
If area of shaded regions are equal then find x. [8]
30) In ABC triangle
|AB| = 10 u, |BC| = 12 u, |AD| = 2|DC|
æ Ù ö æ Ù ö 5 3
m ç DBC ÷ = a , m ç ABD ÷ = 60o , find sina. [ ]
è ø è ø 24

31) In ABC right triangle


|AD| = 8 u, |AB| = 5 u, |BC|=12 u
[AD] ^ [AC], [AB] ^ [BC]
æ D ö 100
find A ç ABD ÷ [ ]
è ø 13

32) If B(0,-1) and D(0,4) are given then find the area of ABCD
25 y
quadrilateral. [ ]
4
D(0,4)

A
. O C x

.
B(0,-1)

33) ABCD is arectangle, find the coordinates of point D. [(8,-3)]


34) Find the coordinates of point B such that éëAB ùû Ç éëEC ùû = {D} , A(-3, 14),
E(-1, 6), C(7,4) |ED|=|DC| and 2|AD|=3|BD|. [B(7,-1)]

AC 2
35) For C Î éëAB ùû , A(-1, 4) and B(4, -6) are given. If = then find product of coordinates of C. [0]
BC 3

36) If the lines (m + 1)x + y – 2 = 0 and 3x + (m - 1)y + 1 = 0 are parallel to each other then find the product of
m values. [-4]

37) ABCD is a triangle as shown in the figure. If D(3,5) and |AK|=2|KD| are
given then find the equation of line d. [2y-3x-4=0]

38) B is a vertex of OABC rectangle, on line d. If |AB|=2|OA|, D(2,0) and


72
E(0,3) then find the area of the rectangle. [ ]
49

39) According to given figure, the lines d1 and d2 are perpendicular to each
other on y-axis. Find the equation of line d2. [3y+x-9=0]
40) ABC is an equilateral triangle where B(2, -4) is given. If [AC]is on the line 6x - 8y + 16 = 0 then find the
length of height B. [6]

41) If B( - 1 ; 6 ) C( -4 ; 0) then find the coordinates of E. [(11,0)]


y

A [ AC ] ^ [EB ]
B D

C E x

42) If the distance from the point A(–1,2) to the line 5x + 12y = –k is 2 u, find the value(s) of k. [7,-45]

16
43) Find the value of k if the distance between the lines 5x – 12y – 8 = 0 and 10x – 24y + k = 0 is 2k units. [ ]
51

44) Sketch the region in the -plane defined by the equation or inequalities.
x
a) -1 £ y £ 3 b) y < 2 , x < 4 c) y < 1 -
2

You might also like