Measure of Dispersion
Measure of Dispersion
we¯Ívi cwigvc
Measures of Dispersion
6
f‚wgKv
Z_¨gvbmg~‡n A_ev †Kvb MYmsL¨v wb‡ek‡bi †ÿ‡Î Z_¨gvb¸‡jvi †K‡›`ªi w`‡K †K›`ªxf‚Z nIqvi cÖeYZv †hgb
_v‡K †Zgwb gvb¸‡jvi wewfbœ w`‡K cÖmvwiZ nIqvi cÖeYZvI _v‡K| A_©vr †Kvb Pj‡Ki gv‡bi †K›`ªxq cÖeYZvB
GKgvÎ ˆewkó¨ bq PjKwUi gv‡bi we¯ÍviI Ab¨ GKUv ˆewkó¨| Pj‡Ki gvb¸‡jvi wewfbœZv n‡jv we¯Ívi e‡j|
we¯Ív‡ii cwigvc hvi Øviv Kiv nq Zv‡K we¯Ívi cwigvcK ejv nq| G Aa¨v‡q wewfbœ cv‡V we¯Ív‡ii cwigvc,
cÖ‡qvRbxqZv, we¯Ívi cwigv‡ci myweav Amyweav BZ¨vw` m¤ú‡K© Av‡jvPbv Kiv n‡q‡Q|
G BDwb‡Ui cvVmg~n
cvV-6.1 : we¯Ívi I we¯Ívi cwigvc
cvV-6.2 : cwimi I cwimiv¼
cvV-6.3 : PZz_©K e¨eavb I PZz_©K e¨eavbv¼
cvV-6.4 : Mo e¨eavb I Mo e¨eavbv¼
cvV-6.5 : cwiwgZ e¨eavb I †f`vsK Ges cwiwgZ e¨eavbv¼ I we‡f`vsK
BDwbU 6 c„ôv 77
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb
we¯Ívi (Dispersion)
Pj‡Ki †K›`ªxq cÖeYZvi cwigvcK †hgbÑ Mo, ga¨gv, cÖPyiK Gi mvnv‡h¨ Pj‡Ki gvbmg~‡ni ˆewkó¨ myôzfv‡e Rvbv
m¤¢e bq| D`vniY¯^iƒc †KD hw` g‡b K‡i MÖx®§Kv‡j †QvU GKUv b`xi cvwbi MfxiZv M‡o 2 dzU Ges mn‡R GUv
cvi nIqv hv‡e Ggb wm×všÍ wb‡j wec‡` co‡eb| KviY b`xi cvwbi MfxiZv †Kv_vq †Kgb we¯ÍvwiZfv‡e Zv‡K
Rvb‡Z n‡e| A_©vr cvwbi MfxiZvi e¨eavb †Kgb Rvb‡Z n‡e, †Kvb RvqMvq hw` 1 ev 2 dzU Avevi †Kvb RvqMvq
hw` 7 ev 8 dzU nq Z‡eB wec‡`i m¤§ywLb n‡Z nq| myZivs Z_¨ivwki e¨eavb ev we¯Ívi †Kvb Pj‡Ki wØZxq
ˆewkó¨|
we¯Ívi Øviv Pj‡Ki Z_¨ivwki e¨vwß wKsev wbw`©ó †Kvb gvb †_‡K ivwk¸‡jvi wePy¨wZ ev e¨eavb eySv‡bv n‡q _v‡K|
we¯Ívi cwigvc t Z_¨‡m‡Ui gvb¸‡jvi wfbœZv‡K wek¦vm Ges we¯Ív‡ii cwigvc †h gv‡bi Øviv Kiv nq Zv‡K we¯Ív‡ii
cwigvcK ejv nq| wKfv‡e Pj‡Ki Z_¨gvbmg~n wewÿß n‡q Av‡Q Zvi wewfbœ gvÎv we¯Ívi cwigvc‡Ki Øviv Rvbv
hvq|
BDwbU 6 c„ôv 78
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb
2| `yB ev Z‡ZvwaK Pj‡Ki Zzjbvg~jK Av‡jvPbv t we¯Ívi cwigvc‡Ki Øviv `yB ev Z‡ZvwaK Pj‡Ki
Z_¨gvbmg~‡ni g‡a¨ Zzjbv Kiv hvq| †h Pj‡Ki we¯Ívi gvb Kg nq †mwUB fvj|
mvims‡ÿc:
Z_¨‡m‡Ui gvb¸‡jvi wewfbœZv n‡jv we¯Ívi|
BDwbU 6 c„ôv 79
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb
cwimi (Range)
cwimi nj we¯Ívi cwigv‡ci me‡P‡q mnR‡eva¨ I mnRfv‡e wbY©‡qi cwigvc| Pj‡Ki gvbmg~‡ni e„nËg I ÿz`Z ª g
gv‡bi ev msL¨vi cv_©K¨ ev e¨eavb‡K cwimi e‡j| A_©vr cwimi = e„nËg msL¨v Ñ ÿz`Zª g msL¨v|
MYmsL¨v wb‡ek‡bi †ÿ‡Î D”PZi †kÖwYi D”Pmxgv Ges wb¤œZi †kÖwYi wb¤œmxgvi e¨eavb‡K cwim‡ii cwigvY e‡j|
A_©vr cwimi = D”P‡kÖwYi D”Pmxgv Ñ wb¤œ‡kÖwYi wb¤œmxgv|
cwim‡ii Av‡cwÿK cwigvc n‡jv cwimivsK| Pj‡Ki Z_¨gvb mg~‡ni cwimi‡K e„nËg I ÿz`Z ª g gv‡bi †hvMdj
Øviv fvM Ki‡j cwimivsK cvIqv hvq| A_©vrÑ,
cwimi
cwimivsK = e„nËg msL¨v + ÿz`ªZg msL¨v × 100
K. A‡kÖwYK…Z Z‡_¨i †ÿ‡Î:
D`vniY-1 t 12 Rb e¨w³i D”PZv nj h_vµ‡g 62, 65, 68, 69, 71, 69, 67, 71, 66, 73, 72, 61 BwÂ|
cwimi Ges cwimivsK wbY©q Kiæb|
‡kÖwY 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55
MYmsL¨v 7 11 14 19 27 48 43 21 13 9
BDwbU 6 c„ôv 80
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb
Amyweav t
K) cwimi ïaygvÎ Z_¨gvb mg~‡ni e„nËg I ÿz`Z ª g gv‡bi Dci wfwË K‡i Kiv nq| mKj Z_¨gv‡bi Dci wbf©i
K‡i Kiv nq bv e‡j GUv ZZUv wbf©i‡hvM¨ we¯Ívi cwigvc bq|
L) cÖvßgv‡bi cÖfve cwim‡ii Dci h‡_ó Av‡Q|
M) MvwYwZK cÖ‡qvR‡bi †ÿ‡Î GUv Dc‡hvMx bq|
mvims‡ÿc:
cwimi we¯Ívi cwigv‡ci me‡P‡q mnR fv‡e wbY©‡qi cwigvc|
BDwbU 6 c„ôv 81
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb
Mo e¨eavb I Mo e¨eavbvsK
Mo e¨eav‡bi †ÿ‡Î Z_¨‡m‡Ui cÖwZwU gvb n‡Z MvwYwZK Mo A_ev ga¨gv Gi e¨eavb †bqv nq| mvaviYZ
MvwYwZK Mo †_‡K cÖwZwU gv‡bi e¨eav‡bi †hvMdj k~b¨ weavq GB e¨eavb¸‡jv ïaygvÎ abvZ¥K a‡i †bIqv nq
A_©vr cig (absolute) gvb †bqv nq| Zvici H e¨eavb¸‡jvi MvwYwZK Mo wbY©q K‡i Mo e¨eavb cvIqv hvq|
K. A‡kÖwYK…Z Z‡_¨i †ÿ‡Î (mivmwi c×wZ)
hw` n msL¨K Z_¨gvb wewkó †Kvb Pj‡Ki gvb x1, x2, ................ xn nq
_ 1 n
Ges x = n ∑ xi
i=1
n
_
hw` H Pj‡Ki gvbmg~‡ni Mo x nq Z‡e Mo e¨eavb n‡eÑ
1 _
MD = n n |Xi- x | i = 1, 2, ..........n.
∑
i=1
BDwbU 6 c„ôv 82
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb
Mo e¨eavbvsK nj
Mo e¨eavb
Mo e¨eavbvsK = MvwYwZK Mo × 100
D`vniY-1 t
GKwU K‡j‡Ri `k Rb Qv‡Îi eqm wb‡¤œ †`Iqv Av‡Q| Mo e¨eavb I Mo e¨eavbvsK †ei Kiæb|
eqm (erm‡i) t 16, 15, 17, 18, 14, 19, 21, 16, 20, 23
mgvavb t
_ ΣXi
G‡ÿ‡Î MvwYwZK Mo X = n
179
= 10
= 17.9
Mo e¨eavb †ei Ki‡Z n‡j wb‡¤œi mviwY e¨envi Ki‡Z n‡e|
Mo e¨eavb I Mo e¨eavbvsK wbY©q mviYx
eqm Xi Xi − X Xi − X
16 -1.9 1.9
15 -2.9 2.9
17 -0.9 0.9
18 0.1 0.1
14 -3.9 3.9
19 1.1 1.1
21 3.1 3.1
16 -1.9 1.9
20 2.1 2.1
23 5.1 5.1
_
Σ|Xi- X | = 23
10
∑ | xi − x |
∴ Mo e¨eavb MD = i =1
n
1
= 10 × 23
= 2.3
2.3
Ges Mo e¨eavbvsK = 17.9 × 100
= 12.849%
BDwbU 6 c„ôv 83
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb
∑ fi | xi − x |
AZGe, Mo e¨eavb MD = i =1
N
BDwbU 6 c„ôv 84
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb
1053
= 100 , n= 100
= 10.53
10.53
AZGe, Mo e¨eavbvsK = 39.5 ×100
= 26.658
mvims‡ÿc:
M‡o e¨eavb wbY©‡qi †ÿ‡Î cÖwZwU Z_¨gvb n‡Z MvwYwZK Mo ga¨gvq cig e¨eavb †bqv nq|
BDwbU 6 c„ôv 85
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb
BDwbU 6 c„ôv 86
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb
15+1
∴ Q1 =
4
16
= 4 Zg gvb|
= 4_© gvb|
= 9|
3(15+1)
∴ Q3 = Zg gvb
4
= 12 Zg gvb
= 17|
Q3-Q1
GLb, PZz_©K e¨eavb QD = 2
47.826-31.351
= 2
=
Q3-Q1
Ges PZz_©K e¨eavbvsK = Q +Q × 100
3 1
47.826 - 31.351
= 47.826+31.351 × 100
16.475
= 79.187 × 100
=
n hLb †Rvo:
wØZxq Z‡_¨ 16wU msL¨vgvb Av‡Q hv‡`i‡K µgvbymv‡i mvRv‡j cvIqv hvq|
15, 16, 17, 21, 22, 23, 24, 25, 25, 26, 28, 29, 30, 31, 33, 34|
16 16 + 4
∴ Q1 =
4 Zg I Zg gv‡bi Mo
4
21 + 22
=
2
43
= 2
= 21.5
3 × 16 3 × 16 + 4
∴ Q3 = Zg I Zg
4 4
= 12Zg gvb I 13Zg gv‡bi MvwYwZK Mo
BDwbU 6 c„ôv 87
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb
29+30
= 2
= 29.5
Q3-Q1
GLb, PZz_©K e¨eavb QD = 2
47.826-31.351
= 2
=
Q3-Q1
Ges PZz_©K e¨eavbvsK = Q +Q × 100
3 1
47.826 - 31.351
= 47.826+31.351 × 100
16.475
= 79.187 × 100
mgvavb t
PZz_K
© e¨eavb wbY©q mviwY
†kÖwY MYmsL¨v µg‡hvwRZ MYmsL¨v
0-10 2 2
10-20 3 5
20-30 15 20=Fc1
30-40 37 57= Fc3
40-50 23 80
50-60 13 93
60-70 5 98
70-80 2 100
n 100
GLv‡b 4 = 4 = 25 GLv‡b Q1 Ae¯’vb K‡i 30-40 †kÖwY‡Z|
BDwbU 6 c„ôv 88
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb
n
8 - F1
Q1 = L1 + fQ × C
1
GLv‡b L1 = 30, n= 100, Fc1 = 20, fQ1=37, C=10
100
4 - 20
Q1 = 30 + 37 × 10
5
= 30 + 37 × 10 = 31.351
3n 300
Avevi 4 = 4 = 75 hvi †P‡q eo µg‡hvwRZ MYmsL¨v n‡”Q 80, A_©vr 40-50 †kÖwY‡Z Q3 Aew¯’Z|
3n
4 - Fc3
Q3 = L3 + fQ ×C
3
GLv‡b L3 = 40, Fc3 = 57, fQ3=23, C=10
300
4 - 57
myZivs Q3 = 40 + 23 × 10
18
= 40+23 × 10
= 47.826
Q3-Q1
GLb, PZz_©K e¨eavb QD = 2
47.826-31.351
= 2
= 16.475
Q3-Q1
Ges PZz_©K e¨eavbvsK = Q +Q × 100
3 1
47.826 - 31.351
= 47.826+31.351 × 100
16.475
= 79.187 × 100
= 20.805%
PZz_©K e¨eav‡bi myweav I Amyweav:
K) we¯Ívi cwigv‡ci Rb¨ PZz_©K e¨eavb cwim‡ii †P‡q †ewk DËg|
L) PZz_K© e¨eavb mn‡R wbY©q Kiv hvq Ges GUv †ek mnR‡eva¨|
M) GUv cÖvšÍxq gvb Øviv cÖfvweZ nq bv|
mvims‡ÿc:
PZz_©K e¨eav‡bi Av‡cwÿK cwigvc nj PZz_K
© e¨eavbvsK
BDwbU 6 c„ôv 89
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb
n
(ΣXi)2
∑ Xi2 - n
i=1
Ges cwiwgZ e¨eavb S = n
BDwbU 6 c„ôv 90
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb
_
Σƒi (Xi-X)2
†f`vsK S2 = n
n 2
∑fixi2 - (Σfixi)
N
i=1
= N
n 2
∑fixi2 - (Σfixi)
N
i=1
Ges cwiwgwZ e¨eavb S = N
cwiwgZ e¨eavbvsK I we‡f`vsK : cwiwgZ e¨eavb I M‡oi AbycvZ‡K 100 Øviv ¸Y Ki‡j †h gvb cvIqv hvq
Zv‡KB cwiwgZ e¨eavbvsK e‡j|A_©vr,
cwiwgZ e¨eavb S
cwiwgZ e¨eavbvsK = Mo × 100 ev, × 100
x
†f`vsK σ
∴ we‡f`vsK = Mo ×100 ev ×100
x
D`vniY-1
GB BDwb‡Ui cvV-6.3 G D`vniY-1 G ewY©Z 10 Rb Qv‡Îi eq‡mi cwiwgZ e¨eavb, †f`vsK Ges cwiwgZ
e¨eavbvsK I we‡f`vsK †ei Kiæb|
eqm (erm‡i) t 16, 15, 17, 18, 14, 19, 21, 16, 20, 23
mgvavb t
GLv‡b n = 10
10 2
∑ (SXi)
Xi2 - n
i=1
∴S= N
10
GLb, ∑ Xi2 = 162+152+172+ ....... +232 = 3277
i=1
10
Ges ∑ Xi =16+15+17+ ............ + 23 = 179
i=1
BDwbU 6 c„ôv 91
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb
(179)2
3277 - 10
∴S = 10
1
= 10 × 72.9
= 2.7
∴ myZivs cwiwgZ e¨eavb = 2.7
∴ †f`vsK = σ = (2.7)2 = 7.29
S
cwiwgZ e¨eavbvsK = × 100
X
2.7
= 17.9 × 100
= 15.084%
σ 7.29
∴ we‡f`vsK = × 100 =17.9 = 40.72%
X
D`vniY-2 t cvV 6.3 G D`vniY-2 G ewY©Z MYmsL¨v wb‡ek‡bi Rb¨ cwiwgZ e¨eavb I †f`vsK Ges cwiwgZ
e¨eavbvsK I we‡f`vsK wbY©q Kiæb|
wb‡¤œ mviYx †_‡K Mo e¨eavb I Mo e¨eav¼ wbY©q Kiæb|
†kÖwY 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80
MYmsL¨v 2 3 15 37 23 13 5 2
mgvavb t
cwiwgZ e¨eavb wbY©q mviwY
‡kÖwY ga¨gvb Xi MYmsL¨v ƒi ƒi Xi ƒi Xi2
0-10 5 2 10 50
10-20 15 3 45 675
20-30 25 15 375 9375
30-40 35 37 1295 45325
40-50 45 23 1035 46575
50-60 55 13 715 39325
60-70 65 5 325 21125
70-80 75 2 150 11250
Σƒi = 100 Σƒi Xi= 3950 Σƒi Xi2=
173700
BDwbU 6 c„ôv 92
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb
100
(Σfixi)2
∑ fixi2 - 100
i=1
cwiwgZ e¨eavb S= 100
(3950)2
173700 - 100
= 100
17675
= 100
= 176.75
= 13.295
∴ †f`vsK = (13.295)2 = 176.5
S
Ges cwiwgZ e¨eavbvsK = X × 100
13.295
=
39.5 × 100
= 33.657
σ
Ges we‡f`vsK = X × 100
176.75
=
39.5 × 100
= 447.48
cwiwgZ e¨eav‡bi myweav
K) cwiwgZ e¨eavb we¯Ívi cwigv‡ci me‡P‡q ¸iæZ¡c~Y© I eûj e¨eüZ cwigvc|
L) cwiwgZ e¨eav‡b MvwYwZK msÁv ¯úó Ges GUv mg¯Í Z_¨gv‡bi Dci wfwË K‡i wbY©q Kiv nq|
M) `yB ev †ewk MÖæ‡ci Z_¨gv‡bi Rb¨ mshy³ cwiwgZ e¨eavb †ei Kiv hvq wKšÍz Ab¨ cwigv‡ci †ÿ‡Î m¤¢e bq|
N) `yB ev Z‡ZvwaK web¨v‡mi Zzjbv Kivi Rb¨ cwiwgZ we‡f`vsK me‡P‡q †ewk Dc‡hvMx|
mvims‡ÿc:
‡Kvb PjK ev wb‡ek‡bi mKj Z_¨gvb †_‡K G‡`i MvwYwZK M‡oi e¨eavbmgy‡ni e‡M©i Mo nj †f`vsK Ges
†f`vs‡Ki eM©g~j nj cwiwgZ e¨eavb|
BDwbU 6 c„ôv 93
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb
BDwbU g~j¨vqb:
BDwbU 6 c„ôv 94