0% found this document useful (0 votes)
7 views18 pages

Measure of Dispersion

Uploaded by

Taher Khan
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
7 views18 pages

Measure of Dispersion

Uploaded by

Taher Khan
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 18

evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb

we¯Ívi cwigvc
Measures of Dispersion
6
f‚wgKv
Z_¨gvbmg~‡n A_ev †Kvb MYmsL¨v wb‡ek‡bi †ÿ‡Î Z_¨gvb¸‡jvi †K‡›`ªi w`‡K †K›`ªxf‚Z nIqvi cÖeYZv †hgb
_v‡K †Zgwb gvb¸‡jvi wewfbœ w`‡K cÖmvwiZ nIqvi cÖeYZvI _v‡K| A_©vr †Kvb Pj‡Ki gv‡bi †K›`ªxq cÖeYZvB
GKgvÎ ˆewkó¨ bq PjKwUi gv‡bi we¯ÍviI Ab¨ GKUv ˆewkó¨| Pj‡Ki gvb¸‡jvi wewfbœZv n‡jv we¯Ívi e‡j|
we¯Ív‡ii cwigvc hvi Øviv Kiv nq Zv‡K we¯Ívi cwigvcK ejv nq| G Aa¨v‡q wewfbœ cv‡V we¯Ív‡ii cwigvc,
cÖ‡qvRbxqZv, we¯Ívi cwigv‡ci myweav Amyweav BZ¨vw` m¤ú‡K© Av‡jvPbv Kiv n‡q‡Q|

BDwbU mgvwßi mgq BDwbU mgvwßi m‡e©v”P mgq 2 mßvn

G BDwb‡Ui cvVmg~n
cvV-6.1 : we¯Ívi I we¯Ívi cwigvc
cvV-6.2 : cwimi I cwimiv¼
cvV-6.3 : PZz_©K e¨eavb I PZz_©K e¨eavbv¼
cvV-6.4 : Mo e¨eavb I Mo e¨eavbv¼
cvV-6.5 : cwiwgZ e¨eavb I †f`vsK Ges cwiwgZ e¨eavbv¼ I we‡f`vsK

BDwbU 6 c„ôv 77
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb

cvV-6.1 we¯Ívi I we¯Ívi cwigvc


Dispersion and Measures of Dispersion
D‡Ïk¨

G cvV †k‡l Avcwb-


• we¯Ív‡ii msÁv ej‡Z cvi‡eb;
• we¯Ív‡ii cwigvcK m¤ú‡K© ej‡Z cvi‡eb;
• we¯Ív‡ii cÖKvi‡f` m¤ú‡K© wjL‡Z cvi‡eb;
• we¯Ív‡ii cwigv‡ci cÖ‡qvRbxqZv m¤ú‡K© e¨vL¨v Ki‡Z cvi‡eb|

we¯Ívi (Dispersion)
Pj‡Ki †K›`ªxq cÖeYZvi cwigvcK †hgbÑ Mo, ga¨gv, cÖPyiK Gi mvnv‡h¨ Pj‡Ki gvbmg~‡ni ˆewkó¨ myôzfv‡e Rvbv
m¤¢e bq| D`vniY¯^iƒc †KD hw` g‡b K‡i MÖx®§Kv‡j †QvU GKUv b`xi cvwbi MfxiZv M‡o 2 dzU Ges mn‡R GUv
cvi nIqv hv‡e Ggb wm×všÍ wb‡j wec‡` co‡eb| KviY b`xi cvwbi MfxiZv †Kv_vq †Kgb we¯ÍvwiZfv‡e Zv‡K
Rvb‡Z n‡e| A_©vr cvwbi MfxiZvi e¨eavb †Kgb Rvb‡Z n‡e, †Kvb RvqMvq hw` 1 ev 2 dzU Avevi †Kvb RvqMvq
hw` 7 ev 8 dzU nq Z‡eB wec‡`i m¤§ywLb n‡Z nq| myZivs Z_¨ivwki e¨eavb ev we¯Ívi †Kvb Pj‡Ki wØZxq
ˆewkó¨|
we¯Ívi Øviv Pj‡Ki Z_¨ivwki e¨vwß wKsev wbw`©ó †Kvb gvb †_‡K ivwk¸‡jvi wePy¨wZ ev e¨eavb eySv‡bv n‡q _v‡K|

we¯Ívi cwigvc t Z_¨‡m‡Ui gvb¸‡jvi wfbœZv‡K wek¦vm Ges we¯Ív‡ii cwigvc †h gv‡bi Øviv Kiv nq Zv‡K we¯Ív‡ii
cwigvcK ejv nq| wKfv‡e Pj‡Ki Z_¨gvbmg~n wewÿß n‡q Av‡Q Zvi wewfbœ gvÎv we¯Ívi cwigvc‡Ki Øviv Rvbv
hvq|

we¯Ívi cwigv‡ci cÖKvi‡f`


we¯Ívi cwigvc `yB cÖKvi n‡Z cv‡i, †hgbÑ
1| cig we¯Ívi cwigvc (Absolute Measures of Dispersion)
2| Av‡cwÿK we¯Ívi cwigvc (Relative Measures of Dispersion)

1| cig we¯Ívi cwigvc


cig we¯Ívi cwigv‡ci †ÿ‡Î Pj‡Ki Z_¨gvb Ges we¯Ív‡ii GKK GKB _vK‡e| cig we¯Ívi Pvi ai‡bi| h_vÑ
K) cwimi (Range)
L) PZz_©K e¨eavb (Quartile deviation)
M) Mo e¨eavb (Mean deviation)
N) cwiwgZ e¨eavb I †f`vsK (Standard deviation and variance)

BDwbU 6 c„ôv 78
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb

2| Av‡cwÿK we¯Ívi cwigvc (Relative measures of dispersion)


†h cwigvc †Kv‡bv GKwU we¯Ívi cwigvc I †K›`ªxq cÖeYZvi cwigv‡ci mv‡_ Zzjbv K‡i wbY©q Kiv nq Zv‡K
Av‡cwÿK we¯Ívi cwigvc K‡j| GUv GKUv GKK wenxb msL¨v Ges G‡K kZKiv ev AbycvZ AvKv‡i cwigvc Kiv
nq| Av‡cwÿK we¯Ívi cwigvc Pvi cÖKvi, h_vÑ
K) cwimivsK (Co-efficient of Range)
L) PZz_©K e¨eavbvsK (Co-efficient of Quartile deviation)
M) Mo e¨eavbvsK (Co-efficient of Mean deviation)
N) cwiwgZ e¨eavbvsK I we‡f`vsK (Co-efficient of standard deviation and Co-efficient of Variation)

we¯Ívi cwigv‡ci cÖ‡qvRbxqZv


1| M‡oi wek¦vm‡hvM¨Zv wbY©q t Z_¨gvb mg~‡ni we¯Ívi cwigv‡ci Øviv M‡oi Ae¯’vb Ges mwVKZv wbY©q Kiv
hvq| we¯Ívi cwigvcK hw` Kg nq Z‡e eyS‡Z n‡e Pj‡Ki Z_¨ gvbmg~n Gi †K›`ªwe›`y ev M‡oi Lye KvQvKvwQ
Ae¯’vb Ki‡Q Ges G‡ÿ‡Î Mo wek¦vm‡hvM¨ A_©vr G gvb mKj gv‡bi cÖwZwbwaZ¡ K‡i| Avevi we¯Ívi
cwigv‡ci gvb hw` †ewk nq Z‡e eyS‡Z n‡e Z_¨gvbmg~n Mo †_‡K †ek `~‡i we¯Í„Z| G‡ÿ‡Î Mo Z_¨mg~‡ni
mKj gvb‡K cÖwZwbwaZ¡ K‡i bv|

2| `yB ev Z‡ZvwaK Pj‡Ki Zzjbvg~jK Av‡jvPbv t we¯Ívi cwigvc‡Ki Øviv `yB ev Z‡ZvwaK Pj‡Ki
Z_¨gvbmg~‡ni g‡a¨ Zzjbv Kiv hvq| †h Pj‡Ki we¯Ívi gvb Kg nq †mwUB fvj|

mvims‡ÿc:
Z_¨‡m‡Ui gvb¸‡jvi wewfbœZv n‡jv we¯Ívi|

BDwbU 6 c„ôv 79
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb

cvV-6.2 cwimi I cwimivsK


Range and Co-efficient of Range
D‡Ïk¨

G cvV †k‡l Avcwb-


• cwimi wKfv‡e wbY©q Ki‡Z nq ej‡Z cvi‡eb;
• cwimi Gi myweav I Amyweav mg~n ej‡Z cvi‡eb|

cwimi (Range)
cwimi nj we¯Ívi cwigv‡ci me‡P‡q mnR‡eva¨ I mnRfv‡e wbY©‡qi cwigvc| Pj‡Ki gvbmg~‡ni e„nËg I ÿz`Z ª g
gv‡bi ev msL¨vi cv_©K¨ ev e¨eavb‡K cwimi e‡j| A_©vr cwimi = e„nËg msL¨v Ñ ÿz`Zª g msL¨v|
MYmsL¨v wb‡ek‡bi †ÿ‡Î D”PZi †kÖwYi D”Pmxgv Ges wb¤œZi †kÖwYi wb¤œmxgvi e¨eavb‡K cwim‡ii cwigvY e‡j|
A_©vr cwimi = D”P‡kÖwYi D”Pmxgv Ñ wb¤œ‡kÖwYi wb¤œmxgv|
cwim‡ii Av‡cwÿK cwigvc n‡jv cwimivsK| Pj‡Ki Z_¨gvb mg~‡ni cwimi‡K e„nËg I ÿz`Z ª g gv‡bi †hvMdj
Øviv fvM Ki‡j cwimivsK cvIqv hvq| A_©vrÑ,
cwimi
cwimivsK = e„nËg msL¨v + ÿz`ªZg msL¨v × 100
K. A‡kÖwYK…Z Z‡_¨i †ÿ‡Î:
D`vniY-1 t 12 Rb e¨w³i D”PZv nj h_vµ‡g 62, 65, 68, 69, 71, 69, 67, 71, 66, 73, 72, 61 BwÂ|
cwimi Ges cwimivsK wbY©q Kiæb|

mgvavb t GLv‡b e„nËg msL¨v= 73


ÿz`ªZg msL¨v = 61
∴ cwimi = 73Ñ61
= 12 BwÂ|
12
cwimivsK = 73+61
12
= 134 × 100
= 8.96%
L. †kÖwYK…Z Z‡_¨i †ÿ‡Î:
D`vniY-2: wb‡¤œi MYmsL¨v wb‡ekb web¨vm n‡Z cwimi I cwimiv¼ wbY©q Kiæb|

‡kÖwY 5-10 10-15 15-20 20-25 25-30 30-35 35-40 40-45 45-50 50-55
MYmsL¨v 7 11 14 19 27 48 43 21 13 9

BDwbU 6 c„ôv 80
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb

mgvavb t cwimi = D”P‡kÖwYi D”Pmxgv Ñ wb¤œ‡kÖwYi wb¤œmxgv


= 55 Ñ 5
= 50
50
∴ cwimivsK = 55+5 × 100
50
= 60 × 100
= 83.33%

cwim‡ii myweav I Amyweav


myweav t
K) cwimi Lye mn‡R eySv hvq Ges mn‡R wbY©q Kiv hvq|
L) cwimi wbY©q Ki‡Z Lye Kg mgq jv‡M|

Amyweav t
K) cwimi ïaygvÎ Z_¨gvb mg~‡ni e„nËg I ÿz`Z ª g gv‡bi Dci wfwË K‡i Kiv nq| mKj Z_¨gv‡bi Dci wbf©i
K‡i Kiv nq bv e‡j GUv ZZUv wbf©i‡hvM¨ we¯Ívi cwigvc bq|
L) cÖvßgv‡bi cÖfve cwim‡ii Dci h‡_ó Av‡Q|
M) MvwYwZK cÖ‡qvR‡bi †ÿ‡Î GUv Dc‡hvMx bq|

mvims‡ÿc:
cwimi we¯Ívi cwigv‡ci me‡P‡q mnR fv‡e wbY©‡qi cwigvc|

BDwbU 6 c„ôv 81
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb

cvV-6.3 Mo e¨eavb I Mo e¨eavbvsK


Mean deviation and Co-efficient of mean deviation
D‡Ïk¨

G cvV †k‡l Avcwb-


• Mo e¨eavb m¤ú‡K© ej‡Z cvi‡eb;
• Mo e¨eavb wbiƒcY Ki‡Z cvi‡eb;
• Mo e¨eavbvsK m¤ú‡K© ej‡Z cvi‡eb;
• Mo e¨eavbvsK wbY©q Ki‡Z cvi‡eb|

Mo e¨eavb I Mo e¨eavbvsK
Mo e¨eav‡bi †ÿ‡Î Z_¨‡m‡Ui cÖwZwU gvb n‡Z MvwYwZK Mo A_ev ga¨gv Gi e¨eavb †bqv nq| mvaviYZ
MvwYwZK Mo †_‡K cÖwZwU gv‡bi e¨eav‡bi †hvMdj k~b¨ weavq GB e¨eavb¸‡jv ïaygvÎ abvZ¥K a‡i †bIqv nq
A_©vr cig (absolute) gvb †bqv nq| Zvici H e¨eavb¸‡jvi MvwYwZK Mo wbY©q K‡i Mo e¨eavb cvIqv hvq|
K. A‡kÖwYK…Z Z‡_¨i †ÿ‡Î (mivmwi c×wZ)
hw` n msL¨K Z_¨gvb wewkó †Kvb Pj‡Ki gvb x1, x2, ................ xn nq
_ 1 n
Ges x = n ∑ xi
i=1
n
_
hw` H Pj‡Ki gvbmg~‡ni Mo x nq Z‡e Mo e¨eavb n‡eÑ
1 _
MD = n n |Xi- x | i = 1, 2, ..........n.

i=1

BDwbU 6 c„ôv 82
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb

Mo e¨eavbvsK nj
Mo e¨eavb
Mo e¨eavbvsK = MvwYwZK Mo × 100
D`vniY-1 t
GKwU K‡j‡Ri `k Rb Qv‡Îi eqm wb‡¤œ †`Iqv Av‡Q| Mo e¨eavb I Mo e¨eavbvsK †ei Kiæb|
eqm (erm‡i) t 16, 15, 17, 18, 14, 19, 21, 16, 20, 23

mgvavb t
_ ΣXi
G‡ÿ‡Î MvwYwZK Mo X = n
179
= 10
= 17.9
Mo e¨eavb †ei Ki‡Z n‡j wb‡¤œi mviwY e¨envi Ki‡Z n‡e|
Mo e¨eavb I Mo e¨eavbvsK wbY©q mviYx
eqm Xi Xi − X Xi − X
16 -1.9 1.9
15 -2.9 2.9
17 -0.9 0.9
18 0.1 0.1
14 -3.9 3.9
19 1.1 1.1
21 3.1 3.1
16 -1.9 1.9
20 2.1 2.1
23 5.1 5.1
_
Σ|Xi- X | = 23
10

∑ | xi − x |
∴ Mo e¨eavb MD = i =1

n
1
= 10 × 23
= 2.3
2.3
Ges Mo e¨eavbvsK = 17.9 × 100
= 12.849%

BDwbU 6 c„ôv 83
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb

L. †kÖwYK…Z Z‡_¨i †ÿ‡Î (mivmwi c×wZ)


hw` n msL¨K gvb‡K k †kÖwY wewkó MYmsL¨v wb‡ek‡b cwiYZ Kiv hvq Ges Xi (i=1,2,........n) i Zg †kÖwYi ga¨gvb
nq Ges ƒi hw` D³ †kÖwYi MYmsL¨v nq Z‡eÑ
k  _
Mo e¨eavb (MD) = ∑ƒi xi- x
i=1
_ Σƒi Xi n
GLv‡b, x = N ; [N =
∑ ƒi ]
i=1
Mo e¨eavb
Mo e¨eavbvsK = MvwYwZK Mo × 100

†kYxK…Z Z‡_¨i †ÿ‡Î (mivmwi c×wZ)


D`vniY-2: wb‡¤œ mviwY †_‡K Mo e¨eavb I Mo e¨eav¼ wbY©q Kiæb|
†kÖwY 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80
MYmsL¨v 2 3 15 37 23 13 5 2
mgvavb t
Mo e¨eavb I Mo e¨eavbvsK wbY©q mviwY
†kÖwY ga¨gvb MYmsL¨v ƒi ƒ Xi _ _
Xi i ƒi (Xi- X ) ƒi |Xi- X |
0-10 5 2 10 -69.0 69.0
10-20 15 3 45 -73.5 73.5
20-30 25 15 375 -217.5 217.5
30-40 35 37 1295 -166.5 166.5
40-50 45 23 1035 126.5 126.5
50-60 55 13 795 201.5 201.5
60-70 65 5 325 127.5 127.5
70-80 75 2 150 71.00 71.00
N=Σƒi =100 8 _
∑ƒi Xi =3950 Σƒi |Xi- X |
i=1 = 1053
_ 3950
X = 100 = 39.5

∑ fi | xi − x |
AZGe, Mo e¨eavb MD = i =1
N

BDwbU 6 c„ôv 84
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb

1053
= 100 , n= 100
= 10.53
10.53
AZGe, Mo e¨eavbvsK = 39.5 ×100
= 26.658

Mo e¨eav‡bi myweav I Amyweav


myweav t
K) Mo e¨eavb mn‡R cwigvc Kiv hvq|
L) MvwYwZK wnmve mn‡R Kiv hvq|
M) `yB ev Z‡ZvwaK wb‡ek‡bi Zzjbv Kivi Rb¨ GUv GKUv wbf©i‡hvM¨ cwigvcK|
Amyweav t
K) Mo e¨eav‡bi †ÿ‡Î FbvZ¥K gvb AMÖvn¨ Ki‡Z nq d‡j G‡Z cieZx©‡Z exRMvwYwZK cÖwµqv Av‡ivc Kiv hvq
bv|

mvims‡ÿc:
M‡o e¨eavb wbY©‡qi †ÿ‡Î cÖwZwU Z_¨gvb n‡Z MvwYwZK Mo ga¨gvq cig e¨eavb †bqv nq|

BDwbU 6 c„ôv 85
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb

cvV-6.4 PZz_©K e¨eavb I PZz_©K e¨eavbvsK


Quartile deviation and Co-efficient of Quartile deviation
D‡Ïk¨

G cvV †k‡l Avcwb-


• PZz_©K e¨eavb m¤ú‡K© ej‡Z cvi‡eb;
• PZz_©K e¨eavb wbY©q Ki‡Z cvi‡eb;
• PZz_©K e¨eavbvsK m¤^‡Ü ej‡Z cvi‡eb;
• PZz_©K e¨eavbvsK wbY©q Ki‡Z cvi‡eb;
• PZz_©K e¨eav‡bi myweav I Amyweav m¤ú‡K© ej‡Z cvi‡eb|

PZz_©K e¨eavb (Quartile deviation)


c~‡e©i cv‡V †`Lv †M‡Q †h, cwimi ïaygvÎ Pj‡Ki ÿz`Z ª g gvb Ges e„nËg gv‡bi Dci wbf©ikxj| GLb PZz_K
©
e¨eavb Pj‡Ki cÖ_g I Z…Zxq PZz_©‡Ki Dci wbf©ikxj| GwU we¯Ív‡ii wØZxq cwigvc Ges Gi gvb nj 3q I 1g
PZz_©K gv‡bi e¨eav‡bi A‡a©K| A_©vr Q1 hw` 1g PZz_K
© Ges Q3 hw` 3q PZz_K© nq Zvn‡jÑ
Q3-Q1
PZz_©K e¨eavb QD = 2
BDwbU-6 Gi cvV 6.4 G Q1, Q2, Q3 wKfv‡e wbY©q Ki‡Z nq Gi m~Î we¯ÍvwiZfv‡e †`qv Av‡Q|
PZz_©K e¨eavb cwigvc‡Ki GKK Av‡Q| PZz_K © e¨eav‡bi Av‡cwÿK cwigvcK nj PZz_K © e¨eavbvsK| PZz_K
©
e¨eavb‡K 3q I 1g PZz_©‡Ki MvwYwZK Mo Øviv fvM Ki‡j PZz_K
© e¨eavbvsK cvIqv hvq| GUv GKwU GKK wenxb
msL¨v|
(Q3-Q1)/2
PZz_©K e¨eavbvsK = (Q +Q )/2 × 100
3 1
Q3-Q1
= Q +Q × 100
3 1
A‡kÖYxK…Z Z‡_¨i †ÿ‡Î
D`vniY-1
wb‡¤œ `ywU Z‡_¨i gvbmg~n †`qv Av‡Q| cÖ_g PZz_K
© (Q1) Ges 3q PZz_K
© (Q3) wbY©q Kiæb|
Z_¨-1t 7, 4, 11, 15, 12, 21, 19, 16, 9, 8, 10, 14, 18, 13, 17|
Z_¨-2t 16, 15, 21, 22, 26, 24, 29, 25, 17, 30, 25, 23, 28, 31, 34, 33|

BDwbU 6 c„ôv 86
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb

mgvavb t n hLb we‡Rvo:


cÖ_gwU‡Z 15wU gvb Av‡Q| G‡`i‡K DaŸ©µgvbymv‡i mvRv‡j cvIqv hvq|
4, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 21

15+1
∴ Q1 =
4
16
= 4 Zg gvb|
= 4_© gvb|
= 9|
3(15+1)
∴ Q3 = Zg gvb
4
= 12 Zg gvb
= 17|
Q3-Q1
GLb, PZz_©K e¨eavb QD = 2
47.826-31.351
= 2
=
Q3-Q1
Ges PZz_©K e¨eavbvsK = Q +Q × 100
3 1
47.826 - 31.351
= 47.826+31.351 × 100
16.475
= 79.187 × 100
=
n hLb †Rvo:
wØZxq Z‡_¨ 16wU msL¨vgvb Av‡Q hv‡`i‡K µgvbymv‡i mvRv‡j cvIqv hvq|
15, 16, 17, 21, 22, 23, 24, 25, 25, 26, 28, 29, 30, 31, 33, 34|
16 16 + 4
∴ Q1 =
4 Zg I Zg gv‡bi Mo
4
21 + 22
=
2
43
= 2
= 21.5
3 × 16 3 × 16 + 4
∴ Q3 = Zg I Zg
4 4
= 12Zg gvb I 13Zg gv‡bi MvwYwZK Mo

BDwbU 6 c„ôv 87
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb

29+30
= 2
= 29.5
Q3-Q1
GLb, PZz_©K e¨eavb QD = 2
47.826-31.351
= 2
=
Q3-Q1
Ges PZz_©K e¨eavbvsK = Q +Q × 100
3 1
47.826 - 31.351
= 47.826+31.351 × 100
16.475
= 79.187 × 100

†kÖYxK…Z Z‡_¨i †ÿ‡Î


D`vniY-2 : BDwbU 5 Gi cvV 5.4 Gi D`vniY-2 G ewY©Z Z_¨m~n †_‡K PZz_K © e¨eavb I PZz_K
© e¨eavsK wbY©q
Kiæb|
wb¤œwjwLZ MYmsL¨v wb‡ek‡bi †ÿ‡Î PZz_©K e¨eavb I PZz_K
© e¨eavbvsK wbY©q Kiæb|
‡kÖwY 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80
MYmsL¨v 2 3 15 37 23 13 5 2

mgvavb t
PZz_K
© e¨eavb wbY©q mviwY
†kÖwY MYmsL¨v µg‡hvwRZ MYmsL¨v
0-10 2 2
10-20 3 5
20-30 15 20=Fc1
30-40 37 57= Fc3
40-50 23 80
50-60 13 93
60-70 5 98
70-80 2 100

n 100
GLv‡b 4 = 4 = 25 GLv‡b Q1 Ae¯’vb K‡i 30-40 †kÖwY‡Z|

BDwbU 6 c„ôv 88
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb

n
8 - F1
Q1 = L1 + fQ × C
1
GLv‡b L1 = 30, n= 100, Fc1 = 20, fQ1=37, C=10
100
4 - 20
Q1 = 30 + 37 × 10
5
= 30 + 37 × 10 = 31.351
3n 300
Avevi 4 = 4 = 75 hvi †P‡q eo µg‡hvwRZ MYmsL¨v n‡”Q 80, A_©vr 40-50 †kÖwY‡Z Q3 Aew¯’Z|
3n
4 - Fc3
Q3 = L3 + fQ ×C
3
GLv‡b L3 = 40, Fc3 = 57, fQ3=23, C=10

300
4 - 57
myZivs Q3 = 40 + 23 × 10
18
= 40+23 × 10
= 47.826
Q3-Q1
GLb, PZz_©K e¨eavb QD = 2
47.826-31.351
= 2
= 16.475
Q3-Q1
Ges PZz_©K e¨eavbvsK = Q +Q × 100
3 1
47.826 - 31.351
= 47.826+31.351 × 100
16.475
= 79.187 × 100
= 20.805%
PZz_©K e¨eav‡bi myweav I Amyweav:
K) we¯Ívi cwigv‡ci Rb¨ PZz_©K e¨eavb cwim‡ii †P‡q †ewk DËg|
L) PZz_K© e¨eavb mn‡R wbY©q Kiv hvq Ges GUv †ek mnR‡eva¨|
M) GUv cÖvšÍxq gvb Øviv cÖfvweZ nq bv|

mvims‡ÿc:
PZz_©K e¨eav‡bi Av‡cwÿK cwigvc nj PZz_K
© e¨eavbvsK

BDwbU 6 c„ôv 89
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb

cvV-6.5 cwiwgZ e¨eavb I †f`vsK Ges cwiwgZ e¨eavbvsK I we‡f`vsK


Standard Deviation & Variance and Co-efficient of Standard
Deviation & Co-efficient of Variation
D‡Ïk¨

G cvV †k‡l Avcwb-


• cwiwgZ e¨eavb I †f`vsK m¤ú‡K© ej‡Z cvi‡eb;
• cwiwgZ e¨eavb I †f`vsK wbY©q Ki‡Z cvi‡eb;
• we‡f`vsK m¤ú‡K© e¨vL¨v Ges GUv wbY©q Ki‡Z cvi‡eb|

cwiwgZ e¨eavb I †f`vsK


(Standard deviation and Variance)
cwiwgZ e¨eavb GKwU ¸iæZ¡c~Y© I eûj cÖPwjZ we¯Ívi cwigvc| Mo e¨eav‡bi c×wZ MÖnY Kiv nq Ges msL¨vgvb
†_‡K M‡oi e¨eavb¸‡jv‡K G‡ÿ‡Î eM© Kiv nq d‡j mg¯Í eM©dj¸‡jvB abvZ¥K n‡q hvq|
†Kvb PjK ev wb‡ek‡bi mKj Z_¨gvb †_‡K G‡`i MvwYwZK M‡oi e¨eavbmg~‡ni e‡M©i Mo nj †f`vsK Ges
†f`vsK Gi abvZ¥K eM©g~j nj cwiwgZ e¨eavb|

K. A‡kÖwYK…Z Z‡_¨i †ÿ‡Î :


_ 1 n
hw` n msL¨K Z_¨gvb wewkó Pj‡Ki gvb X1, X2, ............Xn nq Ges Gi MvwYwZK Mo X = n ∑ Xi nq, Z‡e
i=1
1  _ 2
†f`vsK S2 = n Σ Xi - X
n 2
∑Xi2 - (ΣXi)
n
i=1
= n

n
(ΣXi)2
∑ Xi2 - n
i=1
Ges cwiwgZ e¨eavb S = n

L. †kÖwYK…Z Z‡_¨i †ÿ‡Î :


MYmsL¨v wb‡ek‡bi †ÿ‡Î †hLv‡b X1, X2, .......... Xn nj ga¨gvb Ges f1, f2, ............. fn n‡jv h_vµ‡g Zv‡`i
MYmsL¨v|

BDwbU 6 c„ôv 90
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb

_
Σƒi (Xi-X)2
†f`vsK S2 = n
n 2
∑fixi2 - (Σfixi)
N
i=1
= N

n 2
∑fixi2 - (Σfixi)
N
i=1
Ges cwiwgwZ e¨eavb S = N

cwiwgZ e¨eavbvsK I we‡f`vsK : cwiwgZ e¨eavb I M‡oi AbycvZ‡K 100 Øviv ¸Y Ki‡j †h gvb cvIqv hvq
Zv‡KB cwiwgZ e¨eavbvsK e‡j|A_©vr,
cwiwgZ e¨eavb S
cwiwgZ e¨eavbvsK = Mo × 100 ev, × 100
x
†f`vsK σ
∴ we‡f`vsK = Mo ×100 ev ×100
x

D`vniY-1
GB BDwb‡Ui cvV-6.3 G D`vniY-1 G ewY©Z 10 Rb Qv‡Îi eq‡mi cwiwgZ e¨eavb, †f`vsK Ges cwiwgZ
e¨eavbvsK I we‡f`vsK †ei Kiæb|
eqm (erm‡i) t 16, 15, 17, 18, 14, 19, 21, 16, 20, 23
mgvavb t
GLv‡b n = 10
10 2
∑ (SXi)
Xi2 - n
i=1
∴S= N

10
GLb, ∑ Xi2 = 162+152+172+ ....... +232 = 3277
i=1
10
Ges ∑ Xi =16+15+17+ ............ + 23 = 179
i=1

BDwbU 6 c„ôv 91
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb

(179)2
3277 - 10
∴S = 10

1
= 10 × 72.9
= 2.7
∴ myZivs cwiwgZ e¨eavb = 2.7
∴ †f`vsK = σ = (2.7)2 = 7.29
S
cwiwgZ e¨eavbvsK = × 100
X
2.7
= 17.9 × 100
= 15.084%
σ 7.29
∴ we‡f`vsK = × 100 =17.9 = 40.72%
X

D`vniY-2 t cvV 6.3 G D`vniY-2 G ewY©Z MYmsL¨v wb‡ek‡bi Rb¨ cwiwgZ e¨eavb I †f`vsK Ges cwiwgZ
e¨eavbvsK I we‡f`vsK wbY©q Kiæb|
wb‡¤œ mviYx †_‡K Mo e¨eavb I Mo e¨eav¼ wbY©q Kiæb|
†kÖwY 0-10 10-20 20-30 30-40 40-50 50-60 60-70 70-80
MYmsL¨v 2 3 15 37 23 13 5 2

mgvavb t
cwiwgZ e¨eavb wbY©q mviwY
‡kÖwY ga¨gvb Xi MYmsL¨v ƒi ƒi Xi ƒi Xi2
0-10 5 2 10 50
10-20 15 3 45 675
20-30 25 15 375 9375
30-40 35 37 1295 45325
40-50 45 23 1035 46575
50-60 55 13 715 39325
60-70 65 5 325 21125
70-80 75 2 150 11250
Σƒi = 100 Σƒi Xi= 3950 Σƒi Xi2=
173700

BDwbU 6 c„ôv 92
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb

100
(Σfixi)2
∑ fixi2 - 100
i=1
cwiwgZ e¨eavb S= 100

(3950)2
173700 - 100
= 100

17675
= 100
= 176.75
= 13.295
∴ †f`vsK = (13.295)2 = 176.5
S
Ges cwiwgZ e¨eavbvsK = X × 100
13.295
=
39.5 × 100
= 33.657
σ
Ges we‡f`vsK = X × 100
176.75
=
39.5 × 100
= 447.48
cwiwgZ e¨eav‡bi myweav
K) cwiwgZ e¨eavb we¯Ívi cwigv‡ci me‡P‡q ¸iæZ¡c~Y© I eûj e¨eüZ cwigvc|
L) cwiwgZ e¨eav‡b MvwYwZK msÁv ¯úó Ges GUv mg¯Í Z_¨gv‡bi Dci wfwË K‡i wbY©q Kiv nq|
M) `yB ev †ewk MÖæ‡ci Z_¨gv‡bi Rb¨ mshy³ cwiwgZ e¨eavb †ei Kiv hvq wKšÍz Ab¨ cwigv‡ci †ÿ‡Î m¤¢e bq|
N) `yB ev Z‡ZvwaK web¨v‡mi Zzjbv Kivi Rb¨ cwiwgZ we‡f`vsK me‡P‡q †ewk Dc‡hvMx|

cwiwgZ e¨eav‡bi Amyweav


K) Ab¨vb¨ cwigv‡ci †P‡q GUv wbY©q Kiv GKUz KwVb|
L) cwiwgZ e¨eavb cÖvšÍxq gvb Øviv cÖfvweZ nq|

mvims‡ÿc:
‡Kvb PjK ev wb‡ek‡bi mKj Z_¨gvb †_‡K G‡`i MvwYwZK M‡oi e¨eavbmgy‡ni e‡M©i Mo nj †f`vsK Ges
†f`vs‡Ki eM©g~j nj cwiwgZ e¨eavb|

BDwbU 6 c„ôv 93
evsjv‡`k Dš§y³ wek¦we`¨vjq e¨emvq cwimsL¨vb

BDwbU g~j¨vqb:

1| we¯Ívi I we¯Ívi cwigvc ej‡Z Kx eySvq D`vniYmn wjLyb|


2| wewfbœ we¯Ívi cwigvc¸‡jv wK wK? eY©bv Kiæb| †Kvb cwigvcwU fvj, hyw³ mnKv‡i D‡jøL Kiæb|
3| Av‡cwÿK we¯Ívi cwigvc I cig we¯Ívi cwigvc ej‡Z Kx eySvq? G‡`i g‡a¨ cv_©K¨ Kx?
4| we¯Ívi cwigv‡ci cÖ‡qvRbxqZv m¤ú‡K© Av‡jvPbv Kiæb|
5| cwimi ej‡Z Kx †evSvq? GUv wKfv‡e wbY©q Ki‡Z nq? cwimivsK Kx? cwim‡ii myweav I Amyweavmg~n
wjLyb| wb¤œwjwLZ Z_¨gvb †_‡K cwimi Ges cwimivsK †ei Kiæb|
19, 16, 15, 14, 13, 17, 21, 22, 28, 15, 16, 19
6| PZz_©K e¨eavb I PZz_©K e¨eavbvsK ej‡Z Kx eySvq? G¸‡jv wbY©q Kivi c×wZ eY©bv Kiæb| PZz_K
©
e¨eav‡bi myweav I Amyweavmg~n wjLyb|
7| wb¤œwjwLZ MYmsL¨v wb‡ekb †_‡K PZz_K © e¨eavb I PZz_K
© e¨eavbvsK wbY©q Kiæb|
X 10-20 20-30 30-40 40-50 50-60 60-70
f 12 19 5 10 9 6
8| cwiwgZ e¨eavb I cwiwgZ we‡f`vsK ej‡Z Kx eySvq? wKfv‡e G¸‡jv wbY©q Ki‡Z nq? Gi myweav I
Amyweavmg~n wjLyb| cwiwgZ e¨eavb I Mo e¨eav‡bi g‡a¨ cv_©K¨ Kx?
9| wb‡¤œ cÖ`Ë wKQymsL¨K †jv‡Ki D”PZvi wb‡ek‡bi mviwY †_‡K cwiwgZ e¨eavb I cwiwgZ we‡f`vsK wbY©q
Kiæb|
D”PZv (Bw‡Z) †jv‡Ki msL¨v
60-65 20
65-70 180
70-75 31
75-80 09
10| `ywU msL¨vi MvwYwZK Mo 6 Ges †f`vsK 9| msL¨v `ywU wK wK?

BDwbU 6 c„ôv 94

You might also like