Unit 16
Unit 16
16.1 INTRODUCTION
After studying the Completely Randomised Design (CRD) and Randomised
Block Design (RBD) in the previous two units, we shall now explain and make
detailed study of the third type of design in this unit, which is “Latin Square
Design” (LSD). In the first two units we mention the “Soil of the Fertility” in
agricultural experiments which was observed to play very important role in the
making the ‘Blocks’ as well as the experimental units, that is, ‘Plots’ from
which the ultimate data are measured or recorded for its analysis. We
mentioned the effect of sizes and shapes of blocks and plots on the results of
the experiment and, accordingly, mentioned certain rules of constructing these
in any type of experiment; be it agricultural, educational, psychological,
economical or other experiments. While dealing with the Randomised Block
Design experiment in the Unit 15, we defined and explained the term “Blocking
165
Block 4 Design of Experiments
C1 C2 C3 C4 C1 C2 C3 C4 C1 C2 C3 C4
R1 α β γ δ R1 γ δ α β R1 α δ γ β
R2 β γ δ α R2 β γ δ α R2 β α δ γ
R3 γ δ α β R3 α β γ δ R3 γ β α δ
R4 δ α β γ R4 δ α β γ R4 δ γ β α
where R1, R2, R3, R4 stands for the row numbers and C1, C2, C3, C4 for the
column numbers. 167
Block 4 Design of Experiments
In all the above three Latin Squares, it can be seen that the tables are
squares, each having four rows and four columns, and the alphabets are so
arranged within each of them in such a way that each alphabet occurs once in
a row and once in a column. However, the above three Latin Squares are not
the only squares we can construct from 4 alphabets. It is a matter of
Combinatorics and Mathematics to list all the possible squares with p numbers
(or, symbols). In fact, given a set of symbols, we can construct other Latin
squares by simply permuting rows, permuting columns and permuting the
symbols. As for example, you can see that LS-2 is obtained from LS-1 by
changing R1 and R3 and LS-3 is obtained from LS-1 by changing C2 and C4.
Transformed Set and Standard Squares: The totality of Latin Square
obtained from a single Latin Square by permuting the rows, columns and
letters is called a “Transformed Set”. A pp Latin Square with p letters in the
natural order occurring in the first row and in the first column is called a
“Standard Square”. Thus, LS-1 is a standard square whereas LS-2 and LS-
3 are ‘Transformed Sets’ from LS-1.
It can be proved that the number of squares that can be generated from a
given standard square of order p p, by permutation of rows, columns and
letters is ( p!) . All these squares are not necessarily different. Also, we obtain
p! (p − 1) ! different Latin Square by permuting all the p columns and the (p − 1)
rows except the first row. Thus, with p = 3, we can generate 12 Latin Square;
with p = 4, we get 144 Latin Square and so on.
Remark 16.1: Although, the study of Latin Square is a simple matter to
mathematicians, it is multifaceted to a statistician also, particularly to an
experimental designer who used to be engaged in designing different kinds of
experiments in an efficient manner. The name “Latin Square Design” (LSD)
is, in fact, borrowed from the concept of Latin squares due to the reason that
layout of a Latin Square Design generally resembles with a Latin Square. We
shall see in Section 16.3 that for deciding the layout of a Latin Square Design
how the concept of Latin Square Design is useful. Actually, Latin Square
Design is considered to be an example of Latin Square.
We shall now discuss in the next Sub-section how an Latin Square Design can
be given a precise definition, what is the concept behind Latin Square and in
what sense Latin Square Design has an upper hand over the previously
discussed designs.
16.2.1 Defining the Latin Square Design
Keeping in mind the structure of a Latin Square, as defined above; it is quite
easy to put forward the precise definition of an Latin Square Design. We have
the following definition of Latin Square Design:
A “Latin Square Design” (LSD) is a method of placing some treatments
(say, t treatments) in a balanced fashion within a square field or experimental
area, each one repeated t times in such a way that each treatment appears at
random exactly one time in each row and each column in the design.
As mentioned in the Remark 16.1, the Latin Square Design gets its name from
the fact that we can write it as a Latin Square with Latin letters to correspond
168 to the treatments. The treatment factor levels are the Latin letters in Latin
Unit 16 Latin Square Design
Square Design. The number of rows and columns has to correspond to the
number of treatment levels. So, if we have four treatments then we would
need to have four rows and four columns in order to create a Latin square.
This gives us a design where we have each of the treatments in each row and
in each column only once. We shall show afterwards that this kind of design is
used to reduce systematic error occurred not only due to rows (treatments)
but also due to columns of the square. This indicates towards the fact that
while in Randomised Block Design, only one blocking variable is removed;
the Latin Square Design designs are carefully constructed to allow the
removal of two blocking variables simultaneously.
Another important fact about Latin Square Design is that while the process of
removal of two blocking factors is possible simultaneously; this process is
accomplished with the process of reducing the number of experimental units
also needed to conduct the experiment. For illustrating this fact, let us
consider the Latin Square Design with 4 treatments A, B, C and D. We
observe that if we use a simple random design, it will require 4 4 4 = 64
experimental units, while Latin Square Design needs only 4 4 = 16
experimental units; which is a reduction of 75% in the number of required
experimental units.
16.2.2 A Brief History of Latin Square Design
As pointed out earlier, the Latin Square Design (LSD) borrows its name from
the famous works on Latin Squares by a number of mathematicians, which
have a long history. The concept probably originated with problems
concerning the movement and disposition of pieces on a chess board.
According to a work of Preece (1983), the history of Latin Square dates back
to 1624. However, Euler (1782) was attributed for the systematic development
and study of Latin Squares and their combinatorial properties which was
carried on by Cayley (1877 – 1890).
In the year 1925, R. A. Fisher, at Rothamsted Experimental Station in
Harpenden, recommended that the concept of Latin Squares can be applied
for agricultural crop experiments. In the same year, Ronald Aylmer (1925) was
also of the same opinion and hence, introduced the Latin Square Designs in
Statistics. At about the same time, Jerzy Neyman developed the same idea
during his doctoral study at the University of Warsaw. However, there is
evidence of their much earlier use in experiments.
16.2.3 Concept Behind the Latin Square Design
Now we shall discuss under what situations Latin Square Design are useful for
reducing the Experimental errors, so as to increase the efficiency of the design.
We know that in Randomised Block Design, the blocking technique is used to
reduce the experimental error by eliminating the contribution of known sources
of variation among the experimental units, which is the idea of one of the
principles of Design of Experiments (DOE), namely, the “Local Control”. This
is done by dividing the experimental area into Blocks, each Block consisting of
some experimental units (that is, plots), such that variability within each block is
minimised and variability among blocks is maximised. One such known source
of variation in field experiments which highly affect the outputs of experimental
169
Block 4 Design of Experiments
units is the “Fertility of Soil” or “Fertility Gradient”. You know that Randomised
Block Design considers only the Unidirectional Fertility Gradient in order to apply
the principle of local control and accordingly, the shape and direction of blocks
are decided to control (or, eliminate) only one source of nuisance variability, that
is, Unidirectional Fertility Gradient. This fact is also illustrated with the help of
Examples 1 and 2 under Sub-section 15.2.2 of Unit 15.
Sometimes, we may come across with a number of experiments where there
might be two sources of nuisance variability. For instance, in case a farmer
has a field; whose soil fertility might change simultaneously in two
perpendicular directions; say, from North to South direction and from East to
West direction due to many of the other reasons. As for instance, there might
be a Humidity Gradient in the field from north to south due to a slop in the level
of the field in this direction and at the same time there might be a Sunshine
Gradient from East to West direction due to more exposure of sunlight to the
western part of the field as compared to the eastern part. Both of these might
be causes of variation in the fertility of the soil. Let for the concerned field,
output (yield) is expected to vary from West to East due to fertility gradient
(obviously, in horizontal direction or, in rows) causing due to sunshine
exposures and from North to South (that is, in vertical direction or, in columns)
causing due to humidity changes. This means that due to any of the reasons,
there would be two-directional variation in the whole field. So, there are two
sources of nuisance variability, due to which the output of the field may vary
both in rows and columns. Therefore, in order to remove the variation for these
two sources simultaneously from the experimental error variation, both rows
and columns can be used as blocking factors. Latin Square Design is the
design which uses the concept of two blocking factors. Whenever we have
situations where there arises the need for more than one blocking factor, a
Latin Square Design allows us to remove all these sources of variations using
blocking technique simultaneously for all the factors. In fact, in Latin Square
Design (LSD), a field is blocked into columns and rows, that is, each row is a
level of the Row Factor, and each column is a level of the Column Factor. In
other words, we can remove the variation from our measured response in both
directions if we consider both rows and columns as Factors in our design.
We know that in experimental designs, some treatments are applied randomly
with replications on plots which are grouped into different blocks. In Latin
Square Design, treatments are assigned at random within rows and columns,
with each treatment appearing once per row and once per column. Therefore,
Latin Square Design consists of equal number of rows, columns and
treatments, that is, Latin Square Design is actually a Latin Square or it is an
example of Latin Square.
The Latin Square Design (LSD), perhaps, represents the most popular
alternative design when two blocking factors need to be controlled
simultaneously. It is useful where the experimenter desires to control variation
in two different directions. It is to be mentioned here that Latin Square Design
is not only useful in field experiments but also equally useful in industrial
experimentation as well as other experiments.
We can explain the concept of Latin Square Design with the help of the
following example:
170
Unit 16 Latin Square Design
Assuming that a factory produces an item with six technicians and the same
number of machines. Also assume that columns represent the technicians,
and the rows represent the machines. Then, obviously we have a 6 6
squares with six rows and six columns and we can randomly assign the
specific technicians to a row and the specific machines to a column. Let the six
treatments are six different protocols for producing the item. The interest of the
concerned manufacturer in this experimentation is the average time needed to
produce each item. If technicians and machines both have an effect on the
time required to produce the item, which is a very common phenomenon in
manufacturing system, then by using a Latin Square Design, this variation due
to technicians or machines will be effectively removed from the analysis.
Now, you may like to answer the following Self-Assessment Question:
SAQ 1
Define a Latin Square Design (LSD). Explain how the name Latin Square
Design is derived.
say that there are p = 4 treatments and accordingly, the field is a perfect
square field having 4 rows and 4 columns. Let us denote the factor ‘Social
Status’ by U, consisting of four levels arranged in 4 rows R1, R2, R3 and R4
and the factor ‘Age Group’ by V consisting of four levels arranged in four
columns C1, C2, C3 and C4. As mentioned above, the aim behind using the
Latin Square Design for the analysis is to control the two nuisance variability
caused due to Factors U and V.
Thus, the experiment should be a 4 4 Latin Square Design with 4
treatments. Let us, therefore, consider the following standard Latin Square
Design for deciding the layout:
LSD-1
C1 C2 C3 C4
R1 A B C D
R2 B C D A
R3 C D A B
R4 D A B C
C1 C2 C3 C4 C1 C2 C3 C4
R1 B C D A R1 A C B D
R2 D B A C R2 B A D C
R3 A D C B R3 D B C A
R4 C A B D R4 C D A B
172
Unit 16 Latin Square Design
SAQ 2
Mention the rule of allocating different treatments to different rows and
columns in case the design chosen is Latin Square Design. If there be 5
treatments denoted by μ, θ, φ, α and β ; show how would you assign them to
rows and columns in order to prepare the layout of a Latin Square Design,
given that the treatments assigned to first column are in the sequence
μ, α, φ, θ and β from top to bottom.
173
Block 4 Design of Experiments
where xijk stands for the observation coming from the ith row, jth column and
under the kth treatment for i, j, k = 1, 2, …, p; μ, α i , β j and τ k being
respectively, the Fixed General Effect, Effect due to the ith level of the Factor U
(Row Effects), Effect due to the jth level of the Factor V (Column Effects) and
Effect due to the kth level of the Factor T (Treatment Effects). The p2 random
variables eijk is the error component, assumed to be independently and
normally distributed with mean zero and variance σ 2 , that is, eijk s are i.i.d.
random variables where eijk ~ N 0, σ2 . ( )
16.4.2 Hypotheses to be Tested
In Latin Square Design (LSD), since we come across with the analysis of
effects of three different factors over the output (yield), namely, row, column
and treatment effects, we have the following three corresponding null
hypotheses along with corresponding alternative hypotheses for testing their
significance: The hypotheses are:
(i) H0R : α1 = α2 = = αp = 0;
(ii) H0C : β1 = β2 = = βp = 0;
(iii) H0Tr : τ1 = τ2 = = τp = 0
Using the notations similar to described in the Unit 12, we can see that
αi = (μi00 − μ) for all i; where, μioo stands for the mean of the ith level of the
( )
Factor U, βj = μojo − μ for all j; where, μojo denotes the mean of the jth level of
the Factor V and τk = (μook − μ) for all k; where, μook denoting the mean of the
kth level of the Factor T.
Using the results of Unit 12, further, we know that
α = i=1 (μioo − μ) = 0 ,
p p
i=1 i
β = j=1 (μojo − μ) = 0.
p p
j=1 j
τ = k =1 (μook − μ) = 0.
p p
174 k =1 k
Unit 16 Latin Square Design
SAQ 3
State which ANOVA model would be most suitable for the analysis of data
obtained in a Latin Square Design. Explain the parameters which would be
used in the model with an explanation of all of these parameters.
where xooo , xioo , xojo and xook are, respectively, the Grand Mean of all the
observations, Mean of the ith level of the Factor U, Mean of the jth level of the
Factor V and Mean of the kth level of the Factor T as obtained on the basis of
the data.
Partition of the Total Sum of Squares:
The model (16.1), after substitution of estimates of the parameters become
x ijk = μˆ + αˆ i + βˆ j + τ̂k + eˆ ijk ;
(
+p2 k =1 ( xook − xooo ) + i=1 j=1k =1 xijk − xioo − xojo − xook + 2xooo )
p 2 p p p 2
.
As per definition of each Sum of Squares, given in the Units 11 and 12, we
see that the above expression is equivalent to be written as
TSS = Sum of Squares due to Row (SSR) + Sum of Squares due to
Column (SSC) + Sum of Squares due to Treatment (SSTr) +
Sum of Squares due to Error (ESS);
which shows that how the Total variability of the data could be partitioned into
a number of variations.
Associated Degrees of Freedom (df):
The Degrees of Freedom (df) associated with TSS, SSR, SSC, SSTr and ESS
( ) ( )
will be p2 − 1 , (p − 1) , (p − 1) , (p − 1) and p2 − 1 − ( 3p − 3 ) = (p − 1)(p − 2) ,
respectively.
175
Block 4 Design of Experiments
SSR p
= σ + p − 1 i=1αi ;
2 p 2
(ii) E
p − 1
SSC p
p
(iii) E = σ2 + β2 ;
p − 1 p − 1 j =1 j
SSTr p
p
(iv) E = σ2 + τ 2 and
p − 1 p − 1 k =1 k
ESS
= σ .
2
(v) E
( p − 1)( p − 2 )
These results indicate that while Total Mean Sum of Squares (MSST) and
Error Mean Sum of Squares (MSSE) are unconditionally unbiased for the total
variability, σ 2 ; the other Mean Sum of Squares, namely, Mean Sum of
Squares due to Rows (MSSR), Mean Sum of Squares due to Columns (MSSC)
and Mean Sum of Squares due to Error (MSSE) are unbiases for σ 2 , only
when the respective conditions αi = 0, βi = 0, τ i = 0 for all i = 1, 2, 3, …, p.
Column
C1 C2 C3 … Cp Total
R1 T1 T2 T3 Tp
… R1
x111 x122 x133 x 1pp
R2 T2 T3 T4 T1
… R2
x 212 x 223 x 234 x 2p1
Row T3 T4 T5 T2
R3
… R3
x 313 x 324 x 335 x 3p2
. . . . … . .
. . . . … . .
. . . . … . .
Tp T1 T2 T p −1
Rp
… Rp
x p1p x p 21 x p32 xpp(p −1)
Total C1 C2 C3 … Cp G
176
Unit 16 Latin Square Design
Let us, further denote by Tk, the sum of those observations which come from
kth treatment from each of the rows or from each of the column (k = 1, 2, …, p).
Steps:
1. Calculate the Row Totals R1, R2, …, Rp.
2. Calculate the Column Totals C1, C2, …, Cp.
3. Calculate the Treatment Totals T1, T2, …, Tp.
p p p 2
5. Calculate the Raw Sum of Squares given by i=1 j=1 k =1 ijk
x .
Ri2
i=1 p .
p
6. Calculate the Sum
C2j
p
7. Calculate the Sum j =1
.
p
Tk2
k =1 p .
p
8. Calculate the Sum
G2
9. Calculate the Correction Factor (C.F.), given by .
p2
G2
i=1 j=1k =1xijk2 −
p p p
10. Calculate the Total Sum of Squares (TSS) as .
p2
Ri2 G2
p
11. Calculate the Sum of Squares due to Rows (SSR) as i =1
− 2.
p p
C2j G2
p
12. Calculate the Sum of Squares due to Columns (SSC) as j =1
− .
p p2
Tk2 G2
k =1 p − p2 .
p
13. Calculate the Sum of Squares due to Treatments (SSTr) as
177
Block 4 Design of Experiments
FT =
p k =1(x ook − xooo )2
p
Due to SSTr MSSTr
p −1 = MSSTr
Treatment
= SSTr p −1 MSSE
p p p
i =1 j =1 k =1
ESS
(p − 1)(p − 2) = MSSE
Error
(x − xioo − x ojo − x ook + 2x ooo ) (p − 1)(p − 2) ----
2
ijk
= ESS
(x − xooo )
p p p 2
Total p2 − 1 i =1 j =1 k =1 ijk
---- ----
= TSS
From the ANOVA table, the conclusions can be drawn for the null hypotheses
(I) H0R : α1 = α2 = = αp = 0; (II) H0C : β1 = β2 = = βp = 0 and
(III) H0Tr : τ1 = τ2 = = τp = 0 as follows:
1. Using the F distribution and the computed F Ratio FR, as obtained in the
ANOVA Table, we test the null hypothesis H0 R of equality of all the row
effects (p number of effects) and
(i) Reject the Null Hypothesis H0 R which states that all the row
effects are equal; at the given level of significance α if the
computed ratio,
MSSR
FR = > Fα; (p −1),(p−1)(p− 2) , the Tabulated value;
MSSE
where Fα; (p −1), (p −1) (p −2) is the upper α point of the F distribution with
df (p – 1), (p –1) ( p –2) to be observed from the F-table in
Appendix given at the end of this Volume 2;
(ii) Otherwise, accept or do not reject the Null Hypothesis, H0 R
implying that all the row effects are equally effective.
2. Using the F distribution and the computed F Ratio, FC, we test the null
hypothesis H0C :β1 = β2 = = βp = 0 , which states that the effects of all
the p columns are equal and
(i) Reject the Null Hypothesis H0C , at the given level of significance
α if the computed ratio,
MSSC
FC = > Fα; (p –1),(p –1)(p –2) , the Tabulated value;
MSSE
Where Fα; (p −1), (p −1) (p −2) is the upper α − point of the F distribution with
df (p – 1), (p –1)(p – 2), to be observed from the tables of F
178 distribution given in Appendix given at the end of this Volume 2;
Unit 16 Latin Square Design
3. Using the F distribution and the computed F Ratio, i.e., FT, as obtained
in the ANOVA table, we test the null hypothesis H0Tr stating the equality
of all the treatment effects (p effects) and
(i) Reject the Null Hypothesis H0Tr which states that all the
treatment effects are equal; at the given level of significance α if
the computed ratio
MSSTr
FT = > Fα; (p –1), (p –1) (p –2) , the Tabulated value;
MSSE
where Fα; (p −1), (p −1) (p −2) is the upper α − point of the F distribution
with df (p – 1), (p –1)( p –2) to be observed from the F-table in
Appendix given at the end of this Volume 2;
(ii) Otherwise, accept or do not reject the null hypothesis H0Tr ,
implying that all the treatment effects are equally effective.
Let us illustrate the entire computational procedure in Latin Square Design
through a real problem, which is given below:
Example 1: In an agricultural experiment, with the aim of testing the effect of
five types of spacing methods between the brinjal plants on the yield of it, a
5x5 Latin Square Design was applied. The field layout and yields under the
Latin Square Design are shown below. Here spacings are the treatments
which are denoted by letters A, B, C, D and E.
Column
Row
1 2 3 4 5
p p p
5. Calculation of the Raw Sum of Squares: i=1 j=1
x = 1650359.
2
k =1 ijk
179
Block 4 Design of Experiments
G2
9. Calculation of the Correction Factor (C.F.) :
p2
G2 40081561
= = 1603262.44.
p2 25
10. Calculation of Total Sum of Squares (TSS):
G2
i=1 j=1k =1 ijk p2 = 1650359 − 1603262.44 = 47096.56.
p p p
x 2
−
Conclusions:
1. Since, FR=0.366 at df (4,12) ˂ F (Tabulated) =3.26 at 5% level of
significance observed from the F-table in Appendix given at the end of
180
Unit 16 Latin Square Design
this Volume 2, the hypothesis H0R is not rejected, that is, all the row
effects on the average yield are equal.
2. Since, FC = 17.096 at df (4, 12) > F (Tabulated) = 3.26 at 5% level of
significance observed from the F-table in Appendix given at the end of
this Volume 2, the hypothesis H0C is rejected. Therefore, we conclude
that all the column effects on the average yield are not the same.
3. We see that FT = 1.543 at df (4, 12) ˂ F (Tabulated) =3.26 at 5% level of
significance observed from the F-table in Appendix given at the end of
this Volume 2, therefore, the hypothesis H0Tr is not rejected, therefore, it
indicates that all the treatment effects on the average yield are same.
Now, you may try to answer the following Self-Assessment Question:
SAQ 4
Perform an Analysis of Variance for the following Latin Square Design with six
treatments A, B, C, D, E and F in order to test the hypothesis that all the
treatments are equally effective:
B 92 F 80 E 120 D 84 A 99 C 82
D 78 A 72 B 90 E 122 C 110 F 98
E 118 C 100 F 110 A 50 B 94 D 74
A 80 D 98 C 98 B 66 F 82 E 90
C 90 B 70 D 66 F 90 E 98 A 66
F 90 E 112 A 78 C 82 D 98 B 94
MSSR + (p − 1) MSSE
Relative Efficiency (Row) = .
pMSSE
183
Block 4 Design of Experiments
(G )
2
*
+ X1
TSS = i=1 j=1 x + X − where (i, j, k ) (1,1,1) ;
p p p 2 2
k =1 ijk 1
p2
(R ) (G )
2 2
*
1 + X1 + R 22 + + Rp2 *
+ X1
S SR = − ;
p p2
(C ) (G )
2 2
*
1 + X1 + C22 + + Cp2 *
+ X1
S SC = − ;
p p2
(T ) (G )
2 2
1
*
+ X1 + T22 + + Tp2 *
+ X1
SSTr = − .
p p2
Thus, since,
ESS = TSS – SSR – SSC – SSTr,
due to the above expressions, we have
ESS =
(G ) − (R ) + (G ) − (C ) + (G ) − (T )
2 2 2 2 2 2
*
+ X1 *
1 + X1 *
+ X1 *
1 + X1 *
+ X1 1
*
+ X1
X −
2
1
p2 p p2 p p2 p
(G )
2
*
+ X1
+ + terms independent of X1.
p2
(R ) (C ) − (T )
2 2 2
*
1 + X1 *
1 + X1 1
*
+ X1
=X 2
1 − −
p p p
(G )
2
*
+ X1
+2 + terms independent of X1.
p2
ˆ =
X
(
p R1* + C1* + T1* − 2G* ) .
1
(p − 1)(p − 2 )
Thus, the value of the missing observation is easily computed. After getting
this value of X1, it is substituted for the missing observation in the table of
observations and the usual method of finding different Sum of Squares is
used.
Obviously, if instead of first row, first column and the first treatment, the
missing observation corresponds to ith row, column and treatment, the
estimated value of the missing observation will be
ˆ =
X
(
p Ri* + Ci* + Ti* − 2G* ) for i = 1, 2, …, p.
i
(p − 1)(p − 2 )
184
Unit 16 Latin Square Design
SAQ 5
Compare the Latin Square Design with Randomised Block Design for their
advantages and disadvantages.
16.8 SUMMARY
In this unit, we have discussed:
• The concept of Latin Squares, as developed by mathematicians a long
back, with examples since, the Latin Square Design (LSD) derives its
name from it and the method of allocating treatments to different plots in
Latin Square Design is borrowed from the definition of Latin Squares.
• The precise definition of Latin Square Design along with a brief history of
the development of it.
• The concept of two directional blocking techniques as used in Latin
Square Design in detail and its usefulness in order to reduce the
experimental error as an advancement of the unidirectional blocking
technique, used in Randomised Block Design.
• The layout of a Latin Square Design with the help of some illustrations.
• The statistical analysis of the data obtained in a Latin Square Design
along with the description of appropriate ANOVA model to be used,
hypotheses to be tested using ANOVA technique, estimation of the
parameters involved in the model on the basis of the data observed,
steps for computation of different sum of squares, preparation of the
ANOVA table and its use for the test procedures.
• The various advantages and disadvantages of Latin Square Design in
respect of Randomised Block Design.
• The efficiency of Latin Square Design over Randomised Block Design
and Completely Randomised Design and the expressions of relative
efficiencies.
• The case of missing observations in Latin Square Design. The
estimation of the missing observation using the missing plot technique,
that is, finding the least square estimate by minimizing the Error Sum of
Squares along with the expression of the estimate.
185
Block 4 Design of Experiments
3. Show how would you present the data along with the levels of the three
factors, namely, treatments, rows and columns in a tabular form for an
Latin Square Design with h factors of each factor.
4. Give the format of the ANOVA table to be used in a Latin Square Design
and explain how the null hypotheses can be tested on the basis of this
table.
5. An industrial experimenter wishes to compare the effects of five types of
electronic circuits A, B, C, D and E on the laptops. It was found that two
other factors, namely, voltage levels and size of mother boards might
highly affect the performance of the laptop. The experimenter designed
the experiment in the form of a Latin Square Design for comparing the
effectiveness of the 5 electronic circuits. The layout of the design is
depicted below, where numerical figures are some coded measures of
the performance of laptops:
Mother Board Size
1 2 3 4 5
1 E 52.0 D 69.0 C 55.0 A 53.0 B 65.0
2 C 60.0 B 60.0 A 59.0 E 54.0 D 62.0
Voltage 3 A 51.0 E 59.0 D 50.0 B 68.0 C 55.0
4 D 66.0 A 60.0 B 68.0 C 63.0 E 67.0
5 B 62.0 C 62.0 E 66.0 D 54.0 A 59.0
Perform an ANOVA and test for the main factors: type of electronic
circuits, voltage levels and size of mother boards.
6. What is the problem of missing plots in Latin Square Design? How would
you estimate the missing observation which occurs for the observation
x111, where 111 in the suffix stands for the first level of all the three
factors?
α φ θ β μ
φ θ β μ α
θ β μ α φ
β μ α φ θ
186
4. The data are reproduced below:
Unit 16 Latin Square Design
B 92 F 80 E 120 D 84 A 99 C 82
D 78 A 72 B 90 E 122 C 110 F 98
E 118 C 100 F 110 A 50 B 94 D 74
A 80 D 98 C 98 B 66 F 82 E 90
C 90 B 70 D 66 F 90 E 98 A 66
F 90 E 112 A 78 C 82 D 98 B 94
p p p
Calculation of the Raw Sum of Squares: i=1 j=1
x = 297733.
2
k =1 ijk
G2
Calculation of the Correction Factor (C.F.), :
p2
G2 10374841
= = 288190.03.
p2 36
Conclusions:
1. Since, FR = 1.180 at df (5, 20 ) ˂ F (Tabulated) =2.71 at (5, 20) df
and 5% level of significance to be observed from the F-table in
Appendix given at the end of this Volume 2, the hypothesis H0R is
not rejected, that is, the effect of all the rows are same on all the
treatments.
2. Since, FC = 1.182 at df (5, 20) < F (Tabulated) = 2.71 at (5, 20) df
and at 5% level of significance to be observed from the F-table in
Appendix given at the end of this Volume 2, the hypothesis H0C is
not rejected. Therefore, we conclude that the effects of all the
columns are not significantly different from each other.
3. We see that FT = 5.625 at df (5, 20) > F (Tabulated) = 2.71 at 5%
level of significance to be observed from the F-table in Appendix
given at the end of this Volume 2, therefore, the hypothesis H0Tr is
rejected. It indicates that all the treatment effects do not differ
significantly from each other.
5. Hint: Consult Sub-section 16.4.1 and 16.5.2 for your answer.
Terminal Questions (TQs)
1. Hint: See Sub-section 16.2.4 for your answer.
2. The layout of the 6x6 Latin Square Design in the Standard Latin Square
form will be
A B C D E F
B C D E F A
C D E F A B
D E F A B C
E F A B C D
F A B C D E
Another Latin Square Design in the transformed form with the same
treatments will be
C D A F E B
B C D A F E
E B C D A F
F E B C D A
A F E B C D
188 D A F E B C
Unit 16 Latin Square Design
3. Hint: See Sub-section 16.4.4 and Table 16.1 for your answer.
4. Hint: See Sub-section 16.4.5 and Table 16.2 for the answer.
5. The data given in the exercise are presented below:
Mother Board Size
1 2 3 4 5
1 E 52.0 D 69.0 C 55.0 A 53.0 B 65.0
2 C 60.0 B 60.0 A 59.0 E 54.0 D 62.0
Voltage 3 A 51.0 E 59.0 D 50.0 B 68.0 C 55.0
4 D 66.0 A 60.0 B 68.0 C 63.0 E 67.0
5 B 62.0 C 62.0 E 66.0 D 54.0 A 59.0
p p p
5. Calculation of the Raw Sum of Squares: i=1 j=1
x = 90675.
2
k =1 ijk
G2
9. Calculation of the Correction Factor (C.F.), :
p2
G2 2247001
= = 89880.04.
p2 25
189
Block 4 Design of Experiments
Conclusions:
1. Since, FC = 1.52 at df (4, 12) ˂ F (Tabulated) =3.26 at 5% level of
significance to be observed from the F-table in Appendix given at
the end of this Volume 2, the hypothesis H0R is not rejected, that
is, all levels of voltage effects are same on all the treatments.
2. Since, FC = 0.51 at df (4, 12) < F (Tabulated) = 3.26 at 5% level of
significance to be observed from the F-table given in Appendix
given at the end of this Volume 2, the hypothesis H0C is not
rejected. Therefore, we conclude that the effects of size of the
mother board do not significantly affect the performance of the
laptops.
3. We see that FT = 1.44 at df (4, 12) ˂ F (Tabulated) =3.26 at 5%
level of significance to be observed from the F-table given in
Appendix given at the end of this Volume 2, therefore, the
hypothesis H0Tr is not rejected, therefore, it indicates that all the
treatment effects on the average provide same performance of
laptops.
6. Hint: See Section 16.7 for your answer.
190
Appendix
191
Table II F Distribution (F table)
F-table contains the values of F-statistic for different set of degrees of freedom (1 , 2 ) of numerator and
denominator such that the area under the curve of F-distribution to its right (upper tail) is equal to α.
F values for α = 0.1
Degrees of Degrees of Freedom for Numerator(ν1)
Freedom for
Denominator 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 24 30 40 60 120 ∞
(ν2)
1 39.86 49.50 53.60 55.83 57.23 58.21 58.91 59.44 59.86 60.20 60.47 60.70 60.91 61.07 61.22 61.35 61.47 61.57 61.66 61.74 62.00 62.26 62.53 62.79 63.06 63.33
2 8.53 9.00 9.16 9.24 9.29 9.33 9.35 9.37 9.38 9.39 9.40 9.41 9.41 9.42 9.42 9.43 9.43 9.44 9.44 9.44 9.45 9.46 9.47 9.47 9.48 9.49
3 5.54 5.46 5.39 5.34 5.31 5.28 5.27 5.25 5.24 5.23 5.22 5.22 5.21 5.20 5.20 5.20 5.19 5.19 5.19 5.18 5.18 5.17 5.16 5.15 5.14 5.13
4 4.54 4.32 4.19 4.11 4.05 4.01 3.98 3.96 3.94 3.92 3.91 3.90 3.89 3.88 3.87 3.86 3.86 3.85 3.85 3.84 3.83 3.82 3.80 3.79 3.78 3.76
5 4.06 3.78 3.62 3.52 3.45 3.40 3.37 3.34 3.32 3.30 3.28 3.27 3.26 3.25 3.24 3.23 3.22 3.22 3.21 3.21 3.19 3.17 3.16 3.14 3.12 3.11
6 3.78 3.46 3.29 3.18 3.11 3.05 3.01 2.98 2.96 2.94 2.92 2.90 2.89 2.88 2.87 2.86 2.86 2.85 2.84 2.84 2.82 2.80 2.78 2.76 2.74 2.72
7 3.59 3.26 3.07 2.96 2.88 2.83 2.79 2.75 2.72 2.70 2.68 2.67 2.65 2.64 2.63 2.62 2.61 2.61 2.60 2.59 2.58 2.56 2.54 2.51 2.49 2.47
8 3.46 3.11 2.92 2.81 2.73 2.67 2.62 2.59 2.56 2.54 2.52 2.50 2.49 2.48 2.46 2.45 2.45 2.44 2.43 2.42 2.40 2.38 2.36 2.34 2.32 2.29
9 3.36 3.01 2.81 2.69 2.61 2.55 2.51 2.47 2.44 2.42 2.40 2.38 2.36 2.35 2.34 2.33 2.32 2.31 2.31 2.30 2.28 2.25 2.23 2.21 2.18 2.16
10 3.29 2.92 2.73 2.61 2.52 2.46 2.41 2.38 2.35 2.32 2.30 2.28 2.27 2.26 2.24 2.23 2.22 2.22 2.21 2.20 2.18 2.16 2.13 2.11 2.08 2.06
11 3.23 2.86 2.66 2.54 2.45 2.39 2.34 2.30 2.27 2.25 2.23 2.21 2.19 2.18 2.17 2.16 2.15 2.14 2.13 2.12 2.10 2.08 2.05 2.03 2.00 1.97
12 3.18 2.81 2.61 2.48 2.39 2.33 2.28 2.24 2.21 2.19 2.17 2.15 2.13 2.12 2.10 2.09 2.08 2.08 2.07 2.06 2.04 2.01 1.99 1.96 1.93 1.90
13 3.14 2.76 2.56 2.43 2.35 2.28 2.23 2.20 2.16 2.14 2.12 2.10 2.08 2.07 2.05 2.04 2.03 2.02 2.01 2.01 1.98 1.96 1.93 1.90 1.88 1.85
14 3.10 2.73 2.52 2.39 2.31 2.24 2.19 2.15 2.12 2.10 2.07 2.05 2.04 2.02 2.01 2.00 1.99 1.98 1.97 1.96 1.94 1.91 1.89 1.86 1.83 1.80
15 3.07 2.70 2.49 2.36 2.27 2.21 2.16 2.12 2.09 2.06 2.04 2.02 2.00 1.99 1.97 1.96 1.95 1.94 1.93 1.92 1.90 1.87 1.85 1.82 1.79 1.76
16 3.05 2.67 2.46 2.33 2.24 2.18 2.13 2.09 2.06 2.03 2.01 1.99 1.97 1.95 1.94 1.93 1.92 1.91 1.90 1.89 1.87 1.84 1.81 1.78 1.75 1.72
17 3.03 2.64 2.44 2.31 2.22 2.15 2.10 2.06 2.03 2.00 1.98 1.96 1.94 1.93 1.91 1.90 1.89 1.88 1.87 1.86 1.84 1.81 1.78 1.75 1.72 1.69
18 3.01 2.62 2.42 2.29 2.20 2.13 2.08 2.04 2.00 1.98 1.95 1.93 1.92 1.90 1.89 1.87 1.86 1.85 1.85 1.84 1.81 1.78 1.75 1.72 1.69 1.66
19 2.99 2.61 2.40 2.27 2.18 2.11 2.06 2.02 1.98 1.96 1.93 1.91 1.89 1.88 1.86 1.85 1.84 1.83 1.82 1.81 1.79 1.76 1.73 1.70 1.67 1.63
20 2.97 2.59 2.38 2.25 2.16 2.09 2.04 2.00 1.96 1.94 1.91 1.89 1.87 1.86 1.84 1.83 1.82 1.81 1.80 1.79 1.77 1.74 1.71 1.68 1.64 1.61
21 2.96 2.57 2.36 2.23 2.14 2.08 2.02 1.98 1.95 1.92 1.90 1.88 1.86 1.84 1.83 1.81 1.80 1.79 1.78 1.78 1.75 1.72 1.69 1.66 1.62 1.59
22 2.95 2.56 2.35 2.22 2.13 2.06 2.01 1.97 1.93 1.90 1.88 1.86 1.84 1.83 1.81 1.80 1.79 1.78 1.77 1.76 1.73 1.70 1.67 1.64 1.60 1.57
23 2.94 2.55 2.34 2.21 2.11 2.05 1.99 1.95 1.92 1.89 1.87 1.85 1.83 1.81 1.80 1.78 1.77 1.76 1.75 1.74 1.72 1.69 1.66 1.62 1.59 1.55
24 2.93 2.54 2.33 2.19 2.10 2.04 1.98 1.94 1.91 1.88 1.85 1.83 1.81 1.80 1.78 1.77 1.76 1.75 1.74 1.73 1.70 1.67 1.64 1.61 1.57 1.53
25 2.92 2.53 2.32 2.18 2.09 2.02 1.97 1.93 1.89 1.87 1.84 1.82 1.80 1.79 1.77 1.76 1.75 1.74 1.73 1.72 1.69 1.66 1.63 1.59 1.56 1.52
26 2.91 2.52 2.31 2.17 2.08 2.01 1.96 1.92 1.88 1.86 1.83 1.81 1.79 1.77 1.76 1.75 1.73 1.72 1.71 1.71 1.68 1.65 1.61 1.58 1.54 1.50
27 2.90 2.51 2.30 2.17 2.07 2.00 1.95 1.91 1.87 1.85 1.82 1.80 1.78 1.76 1.75 1.74 1.72 1.71 1.70 1.70 1.67 1.64 1.60 1.57 1.53 1.49
28 2.89 2.50 2.29 2.16 2.06 2.00 1.94 1.90 1.87 1.84 1.81 1.79 1.77 1.75 1.74 1.73 1.71 1.70 1.69 1.69 1.66 1.63 1.59 1.56 1.52 1.48
29 2.89 2.50 2.28 2.15 2.06 1.99 1.93 1.89 1.86 1.83 1.80 1.78 1.76 1.75 1.73 1.72 1.71 1.69 1.68 1.68 1.65 1.62 1.58 1.55 1.51 1.47
30 2.88 2.49 2.28 2.14 2.05 1.98 1.93 1.88 1.85 1.82 1.79 1.77 1.75 1.74 1.72 1.71 1.70 1.69 1.68 1.67 1.64 1.61 1.57 1.54 1.50 1.46
Appendix
40 2.84 2.44 2.23 2.09 2.00 1.93 1.87 1.83 1.79 1.76 1.74 1.71 1.70 1.68 1.66 1.65 1.64 1.62 1.61 1.61 1.57 1.54 1.51 1.47 1.42 1.38
60 2.79 2.39 2.18 2.04 1.95 1.87 1.82 1.77 1.74 1.71 1.68 1.66 1.64 1.62 1.60 1.59 1.58 1.56 1.55 1.54 1.51 1.48 1.44 1.40 1.35 1.29
120 2.75 2.35 2.13 1.99 1.90 1.82 1.77 1.72 1.68 1.65 1.63 1.60 1.58 1.56 1.55 1.53 1.52 1.50 1.49 1.48 1.45 1.41 1.37 1.32 1.26 1.19
192
∞ 2.71 2.30 2.08 1.94 1.85 1.77 1.72 1.67 1.63 1.60 1.57 1.55 1.52 1.51 1.49 1.47 1.46 1.44 1.43 1.42 1.38 1.34 1.30 1.24 1.17 1.00
192
Appendix
F values for α = 0.05
Degrees of
Freedom for Degrees of freedom for numerator(ν1)
193
Denominator (ν2)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 24 30 40 60 120 ∞
1 161 199 216 225 230 234 237 239 240 242 243 244 245 245 246 246 247 247 248 248 249 250 251 252 253 254
2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.39 19.40 19.40 19.41 19.42 19.43 19.43 19.43 19.44 19.44 19.44 19.45 19.45 19.46 19.47 19.48 19.49 19.50
3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81 8.79 8.76 8.74 8.73 8.72 8.70 8.69 8.68 8.67 8.67 8.66 8.64 8.62 8.59 8.57 8.55 8.53
4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00 5.96 5.94 5.91 5.89 5.87 5.86 5.84 5.83 5.82 5.81 5.80 5.77 5.75 5.72 5.69 5.66 5.63
5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77 4.74 4.70 4.68 4.66 4.64 4.62 4.60 4.59 4.58 4.57 4.56 4.53 4.50 4.46 4.43 4.40 4.37
6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10 4.06 4.03 4.00 3.98 3.96 3.94 3.92 3.91 3.90 3.88 3.87 3.84 3.81 3.77 3.74 3.70 3.67
7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68 3.64 3.60 3.57 3.55 3.53 3.51 3.49 3.48 3.47 3.46 3.44 3.41 3.38 3.34 3.30 3.27 3.23
8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39 3.35 3.31 3.28 3.26 3.24 3.22 3.20 3.19 3.17 3.16 3.15 3.12 3.08 3.04 3.01 2.97 2.93
9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18 3.14 3.10 3.07 3.05 3.03 3.01 2.99 2.97 2.96 2.95 2.94 2.90 2.86 2.83 2.79 2.75 2.71
10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02 2.98 2.94 2.91 2.89 2.86 2.85 2.83 2.81 2.80 2.79 2.77 2.74 2.70 2.66 2.62 2.58 2.54
11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90 2.85 2.82 2.79 2.76 2.74 2.72 2.70 2.69 2.67 2.66 2.65 2.61 2.57 2.53 2.49 2.45 2.40
12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80 2.75 2.72 2.69 2.66 2.64 2.62 2.60 2.58 2.57 2.56 2.54 2.51 2.47 2.43 2.38 2.34 2.30
13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71 2.67 2.63 2.60 2.58 2.55 2.53 2.51 2.50 2.48 2.47 2.46 2.42 2.38 2.34 2.30 2.25 2.21
14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65 2.60 2.57 2.53 2.51 2.48 2.46 2.44 2.43 2.41 2.40 2.39 2.35 2.31 2.27 2.22 2.18 2.13
15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59 2.54 2.51 2.48 2.45 2.42 2.40 2.38 2.37 2.35 2.34 2.33 2.29 2.25 2.20 2.16 2.11 2.07
16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54 2.49 2.46 2.42 2.40 2.37 2.35 2.33 2.32 2.30 2.29 2.28 2.24 2.19 2.15 2.11 2.06 2.01
17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49 2.45 2.41 2.38 2.35 2.33 2.31 2.29 2.27 2.26 2.24 2.23 2.19 2.15 2.10 2.06 2.01 1.96
18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46 2.41 2.37 2.34 2.31 2.29 2.27 2.25 2.23 2.22 2.20 2.19 2.15 2.11 2.06 2.02 1.97 1.92
19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42 2.38 2.34 2.31 2.28 2.26 2.23 2.21 2.20 2.18 2.17 2.16 2.11 2.07 2.03 1.98 1.93 1.88
20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39 2.35 2.31 2.28 2.25 2.22 2.20 2.18 2.17 2.15 2.14 2.12 2.08 2.04 1.99 1.95 1.90 1.84
21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37 2.32 2.28 2.25 2.22 2.20 2.18 2.16 2.14 2.12 2.11 2.10 2.05 2.01 1.96 1.92 1.87 1.81
22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34 2.30 2.26 2.23 2.20 2.17 2.15 2.13 2.11 2.10 2.08 2.07 2.03 1.98 1.94 1.89 1.84 1.78
23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32 2.27 2.24 2.20 2.18 2.15 2.13 2.11 2.09 2.08 2.06 2.05 2.01 1.96 1.91 1.86 1.81 1.76
24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30 2.25 2.22 2.18 2.15 2.13 2.11 2.09 2.07 2.05 2.04 2.03 1.98 1.94 1.89 1.84 1.79 1.73
25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28 2.24 2.20 2.16 2.14 2.11 2.09 2.07 2.05 2.04 2.02 2.01 1.96 1.92 1.87 1.82 1.77 1.71
26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27 2.22 2.18 2.15 2.12 2.09 2.07 2.05 2.03 2.02 2.00 1.99 1.95 1.90 1.85 1.80 1.75 1.69
27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25 2.20 2.17 2.13 2.10 2.08 2.06 2.04 2.02 2.00 1.99 1.97 1.93 1.88 1.84 1.79 1.73 1.67
28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24 2.19 2.15 2.12 2.09 2.06 2.04 2.02 2.00 1.99 1.97 1.96 1.91 1.87 1.82 1.77 1.71 1.65
29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22 2.18 2.14 2.10 2.08 2.05 2.03 2.01 1.99 1.97 1.96 1.94 1.90 1.85 1.81 1.75 1.70 1.64
30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21 2.16 2.13 2.09 2.06 2.04 2.01 1.99 1.98 1.96 1.95 1.93 1.89 1.84 1.79 1.74 1.68 1.62
40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12 2.08 2.04 2.00 1.97 1.95 1.92 1.90 1.89 1.87 1.85 1.84 1.79 1.74 1.69 1.64 1.58 1.51
60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04 1.99 1.95 1.92 1.89 1.86 1.84 1.82 1.80 1.78 1.76 1.75 1.70 1.65 1.59 1.53 1.47 1.39
120 3.92 3.07 2.68 2.45 2.29 2.18 2.09 2.02 1.96 1.91 1.87 1.83 1.80 1.78 1.75 1.73 1.71 1.69 1.67 1.66 1.61 1.55 1.50 1.43 1.35 1.25
∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88 1.83 1.79 1.75 1.72 1.69 1.67 1.64 1.62 1.60 1.59 1.57 1.52 1.46 1.39 1.32 1.22 1.00
F values for α = 0.025
Degrees of
Freedom for Degrees of freedom for numerator(ν1)
Denominator
(ν2)
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 24 30 40 60 120 ∞
1 648 800 864 900 922 937 948 957 963 969 973 977 980 983 985 987 989 990 992 993 997 1001 1006 1010 1014 1018
2 38.51 39.00 39.17 39.25 39.30 39.33 39.36 39.37 39.39 39.40 39.41 39.41 39.42 39.43 39.43 39.44 39.44 39.44 39.45 39.45 39.46 39.47 39.47 39.48 39.49 39.50
3 17.44 16.04 15.44 15.10 14.88 14.73 14.62 14.54 14.47 14.42 14.37 14.34 14.30 14.28 14.25 14.23 14.21 14.20 14.18 14.17 14.12 14.08 14.04 13.99 13.95 13.90
4 12.22 10.65 9.98 9.60 9.36 9.20 9.07 8.98 8.90 8.84 8.79 8.75 8.72 8.68 8.66 8.63 8.61 8.59 8.58 8.56 8.51 8.46 8.41 8.36 8.31 8.26
5 10.01 8.43 7.76 7.39 7.15 6.98 6.85 6.76 6.68 6.62 6.57 6.52 6.49 6.46 6.43 6.40 6.38 6.36 6.34 6.33 6.28 6.23 6.18 6.12 6.07 6.02
6 8.81 7.26 6.60 6.23 5.99 5.82 5.70 5.60 5.52 5.46 5.41 5.37 5.33 5.30 5.27 5.24 5.22 5.20 5.18 5.17 5.12 5.07 5.01 4.96 4.90 4.85
7 8.07 6.54 5.89 5.52 5.29 5.12 4.99 4.90 4.82 4.76 4.71 4.67 4.63 4.60 4.57 4.54 4.52 4.50 4.48 4.47 4.42 4.36 4.31 4.25 4.20 4.14
8 7.57 6.06 5.42 5.05 4.82 4.65 4.53 4.43 4.36 4.30 4.24 4.20 4.16 4.13 4.10 4.08 4.05 4.03 4.02 4.00 3.95 3.89 3.84 3.78 3.73 3.67
9 7.21 5.71 5.08 4.72 4.48 4.32 4.20 4.10 4.03 3.96 3.91 3.87 3.83 3.80 3.77 3.74 3.72 3.70 3.68 3.67 3.61 3.56 3.51 3.45 3.39 3.33
10 6.94 5.46 4.83 4.47 4.24 4.07 3.95 3.85 3.78 3.72 3.66 3.62 3.58 3.55 3.52 3.50 3.47 3.45 3.44 3.42 3.37 3.31 3.26 3.20 3.14 3.08
11 6.72 5.26 4.63 4.28 4.04 3.88 3.76 3.66 3.59 3.53 3.47 3.43 3.39 3.36 3.33 3.30 3.28 3.26 3.24 3.23 3.17 3.12 3.06 3.00 2.94 2.88
12 6.55 5.10 4.47 4.12 3.89 3.73 3.61 3.51 3.44 3.37 3.32 3.28 3.24 3.21 3.18 3.15 3.13 3.11 3.09 3.07 3.02 2.96 2.91 2.85 2.79 2.73
13 6.41 4.97 4.35 4.00 3.77 3.60 3.48 3.39 3.31 3.25 3.20 3.15 3.12 3.08 3.05 3.03 3.00 2.98 2.96 2.95 2.89 2.84 2.78 2.72 2.66 2.60
14 6.30 4.86 4.24 3.89 3.66 3.50 3.38 3.29 3.21 3.15 3.09 3.05 3.01 2.98 2.95 2.92 2.90 2.88 2.86 2.84 2.79 2.73 2.67 2.61 2.55 2.49
15 6.20 4.77 4.15 3.80 3.58 3.41 3.29 3.20 3.12 3.06 3.01 2.96 2.92 2.89 2.86 2.84 2.81 2.79 2.77 2.76 2.70 2.64 2.59 2.52 2.46 2.40
16 6.12 4.69 4.08 3.73 3.50 3.34 3.22 3.12 3.05 2.99 2.93 2.89 2.85 2.82 2.79 2.76 2.74 2.72 2.70 2.68 2.63 2.57 2.51 2.45 2.38 2.32
17 6.04 4.62 4.01 3.66 3.44 3.28 3.16 3.06 2.98 2.92 2.87 2.82 2.79 2.75 2.72 2.70 2.67 2.65 2.63 2.62 2.56 2.50 2.44 2.38 2.32 2.25
18 5.98 4.56 3.95 3.61 3.38 3.22 3.10 3.01 2.93 2.87 2.81 2.77 2.73 2.70 2.67 2.64 2.62 2.60 2.58 2.56 2.50 2.45 2.38 2.32 2.26 2.19
19 5.92 4.51 3.90 3.56 3.33 3.17 3.05 2.96 2.88 2.82 2.76 2.72 2.68 2.65 2.62 2.59 2.57 2.55 2.53 2.51 2.45 2.39 2.33 2.27 2.20 2.13
20 5.87 4.46 3.86 3.51 3.29 3.13 3.01 2.91 2.84 2.77 2.72 2.68 2.64 2.60 2.57 2.55 2.52 2.50 2.48 2.46 2.41 2.35 2.29 2.22 2.16 2.09
21 5.83 4.42 3.82 3.48 3.25 3.09 2.97 2.87 2.80 2.73 2.68 2.64 2.60 2.56 2.53 2.51 2.48 2.46 2.44 2.42 2.37 2.31 2.25 2.18 2.11 2.04
22 5.79 4.38 3.78 3.44 3.22 3.05 2.93 2.84 2.76 2.70 2.65 2.60 2.56 2.53 2.50 2.47 2.45 2.43 2.41 2.39 2.33 2.27 2.21 2.15 2.08 2.00
23 5.75 4.35 3.75 3.41 3.18 3.02 2.90 2.81 2.73 2.67 2.62 2.57 2.53 2.50 2.47 2.44 2.42 2.39 2.37 2.36 2.30 2.24 2.18 2.11 2.04 1.97
24 5.72 4.32 3.72 3.38 3.15 2.99 2.87 2.78 2.70 2.64 2.59 2.54 2.50 2.47 2.44 2.41 2.39 2.36 2.35 2.33 2.27 2.21 2.15 2.08 2.01 1.94
25 5.69 4.29 3.69 3.35 3.13 2.97 2.85 2.75 2.68 2.61 2.56 2.51 2.48 2.44 2.41 2.38 2.36 2.34 2.32 2.30 2.24 2.18 2.12 2.05 1.98 1.91
26 5.66 4.27 3.67 3.33 3.10 2.94 2.82 2.73 2.65 2.59 2.54 2.49 2.45 2.42 2.39 2.36 2.34 2.31 2.29 2.28 2.22 2.16 2.09 2.03 1.95 1.88
27 5.63 4.24 3.65 3.31 3.08 2.92 2.80 2.71 2.63 2.57 2.51 2.47 2.43 2.39 2.36 2.34 2.31 2.29 2.27 2.25 2.19 2.13 2.07 2.00 1.93 1.85
28 5.61 4.22 3.63 3.29 3.06 2.90 2.78 2.69 2.61 2.55 2.49 2.45 2.41 2.37 2.34 2.32 2.29 2.27 2.25 2.23 2.17 2.11 2.05 1.98 1.91 1.83
29 5.59 4.20 3.61 3.27 3.04 2.88 2.76 2.67 2.59 2.53 2.46 2.48 2.43 2.39 2.36 2.30 2.27 2.25 2.23 2.21 2.15 2.09 2.03 1.96 1.89 1.81
30 5.57 4.18 3.59 3.25 3.03 2.87 2.75 2.65 2.57 2.51 2.33 2.41 2.37 2.34 2.31 2.28 2.26 2.23 2.21 2.20 2.14 2.07 2.01 1.94 1.87 1.79
40 5.42 4.05 3.46 3.13 2.90 2.74 2.62 2.53 2.45 2.39 2.26 2.29 2.25 2.21 2.18 2.15 2.13 2.11 2.09 2.07 2.01 1.94 1.88 1.80 1.72 1.64
Appendix
60 5.29 3.93 3.34 3.01 2.79 2.63 2.51 2.41 2.33 2.27 2.22 2.17 2.13 2.09 2.06 2.03 2.01 1.98 1.96 1.94 1.88 1.82 1.74 1.67 1.58 1.48
120 5.15 3.80 3.23 2.89 2.67 2.52 2.39 2.30 2.22 2.16 2.10 2.05 2.01 1.98 1.94 1.92 1.89 1.87 1.84 1.82 1.76 1.69 1.61 1.53 1.43 1.31
∞
194
5.02 3.69 3.12 2.79 2.57 2.41 2.29 2.19 2.11 2.05 1.99 1.94 1.90 1.87 1.83 1.80 1.78 1.75 1.73 1.71 1.64 1.57 1.48 1.39 1.27 1.00
F values for α = 0.01
Appendix
Degrees of
Freedom Degrees of freedom for numerator (ν1)
195
for
Denominator
(ν2) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 24 30 40 60 120 ∞
1 4063 4992 5404 5637 5760 5890 5890 6025 6025 6025 6025 6167 6167 6167 6167 6167 6167 6167 6167 6167 6235 6261 6287 6313 6339 6366
2 98.50 99.00 99.15 99.27 99.30 99.34 99.34 99.38 99.38 99.38 99.42 99.42 99.42 99.42 99.42 99.42 99.46 99.46 99.46 99.46 99.46 99.47 99.47 99.48 99.49 99.50
3 34.11 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.34 27.23 27.13 27.05 26.98 26.92 26.87 26.83 26.79 26.75 26.72 26.69 26.60 26.51 26.41 26.32 26.22 26.13
4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66 14.55 14.45 14.37 14.31 14.25 14.20 14.15 14.11 14.08 14.05 14.02 13.93 13.84 13.75 13.65 13.56 13.46
5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16 10.05 9.96 9.89 9.83 9.77 9.72 9.68 9.64 9.61 9.58 9.55 9.47 9.38 9.29 9.20 9.11 9.02
6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98 7.87 7.79 7.72 7.66 7.60 7.56 7.52 7.48 7.45 7.42 7.40 7.31 7.23 7.14 7.06 6.97 6.88
7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72 6.62 6.54 6.47 6.41 6.36 6.31 6.28 6.24 6.21 6.18 6.16 6.07 5.99 5.91 5.82 5.74 5.65
8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91 5.81 5.73 5.67 5.61 5.56 5.52 5.48 5.44 5.41 5.38 5.36 5.28 5.20 5.12 5.03 4.95 4.86
9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35 5.26 5.18 5.11 5.05 5.01 4.96 4.92 4.89 4.86 4.83 4.81 4.73 4.65 4.57 4.48 4.40 4.31
10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94 4.85 4.77 4.71 4.65 4.60 4.56 4.52 4.49 4.46 4.43 4.41 4.33 4.25 4.17 4.08 4.00 3.91
11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63 4.54 4.46 4.40 4.34 4.29 4.25 4.21 4.18 4.15 4.12 4.10 4.02 3.94 3.86 3.78 3.69 3.60
12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39 4.30 4.22 4.16 4.10 4.05 4.01 3.97 3.94 3.91 3.88 3.86 3.78 3.70 3.62 3.54 3.45 3.36
13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19 4.10 4.02 3.96 3.91 3.86 3.82 3.78 3.75 3.72 3.69 3.66 3.59 3.51 3.43 3.34 3.26 3.17
14 8.86 6.51 5.56 5.04 4.70 4.46 4.28 4.14 4.03 3.94 3.86 3.80 3.75 3.70 3.66 3.62 3.59 3.56 3.53 3.51 3.43 3.35 3.27 3.18 3.09 3.00
15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89 3.80 3.73 3.67 3.61 3.56 3.52 3.49 3.45 3.42 3.40 3.37 3.29 3.21 3.13 3.05 2.96 2.87
16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78 3.69 3.62 3.55 3.50 3.45 3.41 3.37 3.34 3.31 3.28 3.26 3.18 3.10 3.02 2.93 2.85 2.75
17 8.40 6.11 5.19 4.67 4.34 4.10 3.93 3.79 3.68 3.59 3.52 3.46 3.40 3.35 3.31 3.27 3.24 3.21 3.19 3.16 3.08 3.00 2.92 2.84 2.75 2.65
18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60 3.51 3.43 3.37 3.32 3.27 3.23 3.19 3.16 3.13 3.10 3.08 3.00 2.92 2.84 2.75 2.66 2.57
19 8.19 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52 3.43 3.36 3.30 3.24 3.19 3.15 3.12 3.08 3.05 3.03 3.00 2.93 2.84 2.76 2.67 2.58 2.49
20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46 3.37 3.29 3.23 3.18 3.13 3.09 3.05 3.02 2.99 2.96 2.94 2.86 2.78 2.70 2.61 2.52 2.42
21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40 3.31 3.24 3.17 3.12 3.07 3.03 2.99 2.96 2.93 2.90 2.88 2.80 2.72 2.64 2.55 2.46 2.36
22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35 3.26 3.18 3.12 3.07 3.02 2.98 2.94 2.91 2.88 2.85 2.83 2.75 2.67 2.58 2.50 2.40 2.31
23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30 3.21 3.14 3.07 3.02 2.97 2.93 2.89 2.86 2.83 2.80 2.78 2.70 2.62 2.54 2.45 2.35 2.26
24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26 3.17 3.09 3.03 2.98 2.93 2.89 2.85 2.82 2.79 2.76 2.74 2.66 2.58 2.49 2.40 2.31 2.21
25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22 3.13 3.06 2.99 2.94 2.89 2.85 2.81 2.78 2.75 2.72 2.70 2.62 2.54 2.45 2.36 2.27 2.17
26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18 3.09 3.02 2.96 2.90 2.86 2.82 2.78 2.75 2.72 2.69 2.66 2.59 2.50 2.42 2.33 2.23 2.13
27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15 3.06 2.99 2.93 2.87 2.82 2.78 2.75 2.71 2.68 2.66 2.63 2.55 2.47 2.38 2.29 2.20 2.10
28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12 3.03 2.96 2.90 2.84 2.79 2.75 2.72 2.68 2.65 2.63 2.60 2.52 2.44 2.35 2.26 2.17 2.06
29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09 3.00 2.93 2.87 2.81 2.77 2.73 2.69 2.66 2.63 2.60 2.57 2.50 2.41 2.33 2.23 2.14 2.03
30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07 2.98 2.91 2.84 2.79 2.74 2.70 2.66 2.63 2.60 2.57 2.55 2.47 2.39 2.30 2.21 2.11 2.01
40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89 2.80 2.73 2.66 2.61 2.56 2.52 2.48 2.45 2.42 2.39 2.37 2.29 2.20 2.11 2.02 1.92 1.81
60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72 2.63 2.56 2.50 2.44 2.39 2.35 2.31 2.28 2.25 2.22 2.20 2.12 2.03 1.94 1.84 1.73 1.60
120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56 2.47 2.40 2.34 2.28 2.23 2.19 2.15 2.12 2.09 2.06 2.03 1.95 1.86 1.76 1.66 1.53 1.38
∞ 6.64 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41 2.32 2.25 2.19 2.13 2.08 2.04 2.00 1.97 1.94 1.91 1.88 1.79 1.70 1.59 1.47 1.33 1.00
F values for α = 0.005
Degrees of
Freedom Degrees of freedom for numerator (ν1)
for
Denominator
(ν2) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 24 30 40 60 120 ∞
1 16211 19999 21615 22500 23056 23437 23715 23925 24091 24224 24334 24426 24505 24572 24630 24681 24727 24767 24803 24836 24940 25044 25148 25253 25359 25464
2 198.50 199.00 199.17 199.25 199.30 199.33 199.36 199.37 199.39 199.40 199.41 199.42 199.42 199.43 199.43 199.44 199.44 199.44 199.45 199.45 199.46 199.47 199.47 199.48 199.49 199.50
3 55.55 49.80 47.47 46.19 45.39 44.84 44.43 44.13 43.88 43.69 43.52 43.39 43.27 43.17 43.08 43.01 42.94 42.88 42.83 42.78 42.62 42.47 42.31 42.15 41.99 41.83
4 31.33 26.28 24.26 23.15 22.46 21.97 21.62 21.35 21.14 20.97 20.82 20.70 20.60 20.51 20.44 20.37 20.31 20.26 20.21 20.17 20.03 19.89 19.75 19.61 19.47 19.32
5 22.78 18.31 16.53 15.56 14.94 14.51 14.20 13.96 13.77 13.62 13.49 13.38 13.29 13.21 13.15 13.09 13.03 12.98 12.94 12.90 12.78 12.66 12.53 12.40 12.27 12.14
6 18.63 14.54 12.92 12.03 11.46 11.07 10.79 10.57 10.39 10.25 10.13 10.03 9.95 9.88 9.81 9.76 9.71 9.66 9.62 9.59 9.47 9.36 9.24 9.12 9.00 8.88
7 16.24 12.40 10.88 10.05 9.52 9.16 8.89 8.68 8.51 8.38 8.27 8.18 8.10 8.03 7.97 7.91 7.87 7.83 7.79 7.75 7.64 7.53 7.42 7.31 7.19 7.08
8 14.69 11.04 9.60 8.81 8.30 7.95 7.69 7.50 7.34 7.21 7.10 7.01 6.94 6.87 6.81 6.76 6.72 6.68 6.64 6.61 6.50 6.40 6.29 6.18 6.06 5.95
9 13.61 10.11 8.72 7.96 7.47 7.13 6.88 6.69 6.54 6.42 6.31 6.23 6.15 6.09 6.03 5.98 5.94 5.90 5.86 5.83 5.73 5.62 5.52 5.41 5.30 5.19
10 12.83 9.43 8.08 7.34 6.87 6.54 6.30 6.12 5.97 5.85 5.75 5.66 5.59 5.53 5.47 5.42 5.38 5.34 5.31 5.27 5.17 5.07 4.97 4.86 4.75 4.64
11 12.23 8.91 7.60 6.88 6.42 6.10 5.86 5.68 5.54 5.42 5.32 5.24 5.16 5.10 5.05 5.00 4.96 4.92 4.89 4.86 4.76 4.65 4.55 4.45 4.34 4.23
12 11.75 8.51 7.23 6.52 6.07 5.76 5.52 5.35 5.20 5.09 4.99 4.91 4.84 4.77 4.72 4.67 4.63 4.59 4.56 4.53 4.43 4.33 4.23 4.12 4.01 3.90
13 11.37 8.19 6.93 6.23 5.79 5.48 5.25 5.08 4.94 4.82 4.72 4.64 4.57 4.51 4.46 4.41 4.37 4.33 4.30 4.27 4.17 4.07 3.97 3.87 3.76 3.65
14 11.06 7.92 6.68 6.00 5.56 5.26 5.03 4.86 4.72 4.60 4.51 4.43 4.36 4.30 4.25 4.20 4.16 4.12 4.09 4.06 3.96 3.86 3.76 3.66 3.55 3.44
15 10.80 7.70 6.48 5.80 5.37 5.07 4.85 4.67 4.54 4.42 4.33 4.25 4.18 4.12 4.07 4.02 3.98 3.95 3.91 3.88 3.79 3.69 3.58 3.48 3.37 3.26
16 10.58 7.51 6.30 5.64 5.21 4.91 4.69 4.52 4.38 4.27 4.18 4.10 4.03 3.97 3.92 3.87 3.83 3.80 3.76 3.73 3.64 3.54 3.44 3.33 3.22 3.11
17 10.38 7.35 6.16 5.50 5.07 4.78 4.56 4.39 4.25 4.14 4.05 3.97 3.90 3.84 3.79 3.75 3.71 3.67 3.64 3.61 3.51 3.41 3.31 3.21 3.10 2.98
18 10.22 7.21 6.03 5.37 4.96 4.66 4.44 4.28 4.14 4.03 3.94 3.86 3.79 3.73 3.68 3.64 3.60 3.56 3.53 3.50 3.40 3.30 3.20 3.10 2.99 2.87
19 10.07 7.09 5.92 5.27 4.85 4.56 4.34 4.18 4.04 3.93 3.84 3.76 3.70 3.64 3.59 3.54 3.50 3.46 3.43 3.40 3.31 3.21 3.11 3.00 2.89 2.78
20 9.94 6.99 5.82 5.17 4.76 4.47 4.26 4.09 3.96 3.85 3.76 3.68 3.61 3.55 3.50 3.46 3.42 3.38 3.35 3.32 3.22 3.12 3.02 2.92 2.81 2.69
21 9.83 6.89 5.73 5.09 4.68 4.39 4.18 4.01 3.88 3.77 3.68 3.60 3.54 3.48 3.43 3.38 3.34 3.31 3.27 3.24 3.15 3.05 2.95 2.84 2.73 2.61
22 9.73 6.81 5.65 5.02 4.61 4.32 4.11 3.94 3.81 3.70 3.61 3.54 3.47 3.41 3.36 3.31 3.27 3.24 3.21 3.18 3.08 2.98 2.88 2.77 2.66 2.55
23 9.63 6.73 5.58 4.95 4.54 4.26 4.05 3.88 3.75 3.64 3.55 3.47 3.41 3.35 3.30 3.25 3.21 3.18 3.15 3.12 3.02 2.92 2.82 2.71 2.60 2.48
24 9.55 6.66 5.52 4.89 4.49 4.20 3.99 3.83 3.69 3.59 3.50 3.42 3.35 3.30 3.25 3.20 3.16 3.12 3.09 3.06 2.97 2.87 2.77 2.66 2.55 2.43
25 9.48 6.60 5.46 4.84 4.43 4.15 3.94 3.78 3.64 3.54 3.45 3.37 3.30 3.25 3.20 3.15 3.11 3.08 3.04 3.01 2.92 2.82 2.72 2.61 2.50 2.38
26 9.41 6.54 5.41 4.79 4.38 4.10 3.89 3.73 3.60 3.49 3.40 3.33 3.26 3.20 3.15 3.11 3.07 3.03 3.00 2.97 2.87 2.77 2.67 2.56 2.45 2.33
27 9.34 6.49 5.36 4.74 4.34 4.06 3.85 3.69 3.56 3.45 3.36 3.28 3.22 3.16 3.11 3.07 3.03 2.99 2.96 2.93 2.83 2.73 2.63 2.52 2.41 2.29
28 9.28 6.44 5.32 4.70 4.30 4.02 3.81 3.65 3.52 3.41 3.32 3.25 3.18 3.12 3.07 3.03 2.99 2.95 2.92 2.89 2.79 2.69 2.59 2.48 2.37 2.25
29 9.23 6.40 5.28 4.66 4.26 3.98 3.77 3.61 3.48 3.38 3.29 3.21 3.15 3.09 3.04 2.99 2.95 2.92 2.88 2.86 2.76 2.66 2.56 2.45 2.33 2.21
30 9.18 6.35 5.24 4.62 4.23 3.95 3.74 3.58 3.45 3.34 3.25 3.18 3.11 3.06 3.01 2.96 2.92 2.89 2.85 2.82 2.73 2.63 2.52 2.42 2.30 2.18
40 8.83 6.07 4.98 4.37 3.99 3.71 3.51 3.35 3.22 3.12 3.03 2.95 2.89 2.83 2.78 2.74 2.70 2.66 2.63 2.60 2.50 2.40 2.30 2.18 2.06 1.93
60 8.49 5.79 4.73 4.14 3.76 3.49 3.29 3.13 3.01 2.90 2.82 2.74 2.68 2.62 2.57 2.53 2.49 2.45 2.42 2.39 2.29 2.19 2.08 1.96 1.83 1.69
120 8.18 5.54 4.50 3.92 3.55 3.28 3.09 2.93 2.81 2.71 2.62 2.54 2.48 2.42 2.37 2.33 2.29 2.25 2.22 2.19 2.09 1.98 1.87 1.75 1.61 1.43
Appendix
∞ 7.88 5.30 4.28 3.72 3.35 3.09 2.90 2.74 2.62 2.52 2.43 2.36 2.29 2.24 2.19 2.14 2.10 2.06 2.03 2.00 1.90 1.79 1.67 1.53 1.36 1.36
196