Open navigation menu
Close suggestions
Search
Search
en
Change Language
Upload
Sign in
Sign in
Download free for days
0 ratings
0% found this document useful (0 votes)
11 views
5 pages
772 (Copy)
txt for json-1
Uploaded by
xasocep603
AI-enhanced title
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here
.
Available Formats
Download as TXT, PDF, TXT or read online on Scribd
Download
Save
Save 772 (copy) For Later
Share
0%
0% found this document useful, undefined
0%
, undefined
Print
Embed
Report
0 ratings
0% found this document useful (0 votes)
11 views
5 pages
772 (Copy)
txt for json-1
Uploaded by
xasocep603
AI-enhanced title
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here
.
Available Formats
Download as TXT, PDF, TXT or read online on Scribd
Go to previous items
Go to next items
Download
Save
Save 772 (copy) For Later
Share
0%
0% found this document useful, undefined
0%
, undefined
Print
Embed
Report
Download
Save 772 (copy) For Later
You are on page 1
/ 5
Search
Fullscreen
{
"session_name": "test_script 2",
"session_description": "DL testing for UI integration",
"design_state_data": {
"target": {
"prediction_type": "multiclass",
"target": "species",
"target_treatment": "Error"
},
"train": {
"time_ordering": false,
"time_variable": "",
"time_ordering_type": "ascending",
"sampling_method": "No sampling",
"number_of_records": 0,
"random_percent_to_use": 60,
"rebalance_method": "SMOTETomek",
"train_ratio": 0.8,
"random_seed": 47
},
"metrics": {
"optimize_model_hyperparameters_for": "AUC",
"optimize_threshold_for": "F1 Score",
"compute_lift_at": 0
},
"feature_handling": {
"sepal_length": {
"feature_name": "sepal_length",
"is_selected": true,
"feature_variable_type": "numerical",
"feature_details": {
"numerical_handling": "Keep as regular numerical feature",
"rescaling": "No rescaling",
"missing_values": "Replace with",
"impute_with": "Median of values",
"impute_value": 0,
"threshold_type": "Average of values",
"threshold_value": 0
}
},
"sepal_width": {
"feature_name": "sepal_width",
"is_selected": true,
"feature_variable_type": "numerical",
"feature_details": {
"numerical_handling": "Keep as regular numerical feature",
"rescaling": "No rescaling",
"missing_values": "Replace with",
"impute_with": "Median of values",
"impute_value": 0,
"threshold_type": "Average of values",
"threshold_value": 0
}
},
"petal_length": {
"feature_name": "petal_length",
"is_selected": true,
"feature_variable_type": "numerical",
"feature_details": {
"numerical_handling": "Keep as regular numerical feature",
"rescaling": "No rescaling",
"missing_values": "Replace with",
"impute_with": "Median of values",
"impute_value": 0,
"threshold_type": "Average of values",
"threshold_value": 0
}
},
"petal_width": {
"feature_name": "petal_width",
"is_selected": true,
"feature_variable_type": "numerical",
"feature_details": {
"numerical_handling": "Keep as regular numerical feature",
"rescaling": "No rescaling",
"missing_values": "Replace with",
"impute_with": "Median of values",
"impute_value": 0,
"threshold_type": "Average of values",
"threshold_value": 0
}
},
"species": {
"feature_name": "species",
"is_selected": true,
"feature_variable_type": "categorical",
"feature_details": {
"categorical_handling": "Frequency encoding",
"missing_values": "Drop rows",
"impute_with": "Most frequent value",
"impute_value": "",
"drop_dummy": "Default",
"min_frequency": 1,
"max_categories": 50,
"search_string": ""
}
}
},
"feature_generation": {
"linear_interactions": {
"linear_interactions": [],
"impute_with": "Average of values",
"impute_value": 0,
"linear_scale": "robust"
},
"polynomial_interactions": {
"polynomial_interactions": [],
"impute_with": "Average of values",
"impute_value": 0,
"polynomial_scale": "robust"
},
"explicit_pairwise_interactions": {
"explicit_pairwise_interactions": [],
"explicit_pairwise_scale": "robust"
}
},
"feature_reduction": {
"feature_reduction_method": "No Feature reduction",
"No Feature reduction": {
"is_selected": true,
"num_of_features_to_keep": 5
},
"Correlation with target": {
"is_selected": false,
"num_of_features_to_keep": 3
},
"Tree-based": {
"is_selected": false,
"num_of_features_to_keep": 3,
"depth_of_trees": 2,
"num_of_trees": 10
},
"Principal Component Analysis": {
"is_selected": false,
"num_of_features_to_keep": 3
},
"LASSO regression": {
"is_selected": false,
"num_of_features_to_keep": 3,
"regularization": []
}
},
"hyperparameters": {
"search_method": "Grid Search",
"No Grid Search": {
"is_selected": true,
"random_state": 47
},
"Grid Search": {
"is_selected": true,
"random_state": 0,
"max_iterations": 0
},
"Randomized Search": {
"is_selected": false,
"random_state": 0,
"max_iterations": 0
},
"Bayesian Search": {
"is_selected": false,
"random_state": 0,
"max_iterations": 0
},
"cross_validation_strategy": {
"strategy": "StratifiedKFold",
"StratifiedKFold": {
"is_selected": true,
"random_state": 1000,
"n_splits": 3,
"shuffle": false
},
"KFold": {
"is_selected": false,
"random_state": 1000,
"n_splits": 3,
"shuffle": false
},
"StratifiedShuffleSplit": {
"is_selected": false,
"random_state": 1000,
"n_splits": 3,
"test_size": 0.1
},
"ShuffleSplit": {
"is_selected": false,
"random_state": 1000,
"n_splits": 3,
"test_size": 0.1
},
"TimeSeriesSplit": {
"is_selected": false,
"n_splits": 3
}
}
},
"weighting_strategy": {
"weighting_strategy_method": "No weighting",
"No weighting": {
"is_selected": true
},
"Sample weights": {
"is_selected": false,
"weighting_strategy_variable": ""
},
"Balanced": {
"is_selected": false
}
},
"probability_calibration": {
"None": {
"is_selected": true
},
"Sigmoid - Platt Scaling": {
"is_selected": false
},
"Isotonic Regression": {
"is_selected": false
}
},
"algorithms": {
"NeuralNetwork": {
"model_name": "NeuralNetwork",
"is_selected": true,
"code_block": "# Following Modules have been configured and
imported in the backend\nimport torch.nn as nn\nimport torch.nn.functional as F\n\
n\n#
###################################################################################
###############\n# Define the neural network architecture within the '__init__'
method. Method signatures and returns\n# should not be altered. Utilize the
'forward' method for implementing activation functions in each layer.\n#
###################################################################################
###############\n\nclass NeuralNetwork(nn.Module):\n\n # Do not change the
method signature. Input and output features are essential parameters.\n # Modify
the body of this method as needed for defining the neural network architecture.\n
def __init__(self,\n number_of_input_features,\n
num_output_features):\n super(NeuralNetwork, self).__init__()\n\n #
number_of_input_features: The total number of features in the dataframe after
preprocessing.\n # The backend ensures that this value is accurately set
after the preprocessing steps.\n self.number_of_input_features =
number_of_input_features\n\n # num_output_features: The expected number of
output features. For regression, set to 1; for classification,\n # set to
the number of target categories.\n self.num_output_features =
num_output_features\n\n #
##################################################################################\
n # USER MODIFIABLE SECTION: Modify the code below as needed for building
out layers\n #
##################################################################################\
n\n\n # Dropout: % of random weights in each layer that are set to 0. Set
the probability ('p') for\n # zeroing random weights. Example: p = 0.1\n
self.dropout = nn.Dropout(p=0.1)\n\n # out_features : This variable can be
changed by the user\n self.input_layer =
nn.Linear(in_features=self.number_of_input_features,\n
out_features=10) # Value set to 10 as an illustrative example\n\n # NOTE:
Number of neurons in each of the layers can be changed as required.\n #
Ensure that the number of \"out_features\" neurons in the previous layer is the
same as\n # \"in_features\" neurons in the next layer\n
self.hidden_layer_1 = nn.Linear(in_features=10, # Output of the previous layer\n
out_features=50) # Value set to 50 as an illustrative example\n
#self.hidden_layer_2 = nn.Linear(in_features=50,\n
#out_features=30)\n self.output_layer = nn.Linear(in_features=50,
out_features=self.num_output_features)\n\n\n\n\n #
###################################################################################
#######\n # Define the activation functions for each layer. Do not change the
method signature.\n # Users can modify this method as needed for customization.\
n #
###################################################################################
#######\n def forward(self, x):\n x = self.input_layer(x)\n\n #
##################################################################################\
n # USER MODIFIABLE SECTION: Modify the code below as needed for defining
activation functions\n #
##################################################################################\
n\n # Apply ReLU activation to x\n x = F.relu(input=x)\n\n x =
self.hidden_layer_1(x)\n #x = F.relu(input=x)\n #x =
self.hidden_layer_2(x)\n x = F.relu(input=x) # User can change as needed\n\
n # Output layer does not require activation function\n x =
self.output_layer(x)\n\n # For binary/multiclass experiments: Uncomment the
line below to apply softmax activation to x\n x = F.softmax(x)\n\n
return x\n",
"param_grid": "{\n 'NeuralNetwork__max_epochs': [200, 100],\n
'NeuralNetwork__lr': [0.01, 0.001],\n 'NeuralNetwork__batch_size': [16, 32]\n}"
}
},
"session_info": {
"project_name": "Deep learning testing",
"project_id": "127",
"experiment_id": "542274047268950852",
"experiment_name": "deep learning testing 2",
"dataset": "iris_DL_test",
"session_name": "test_script 2",
"session_id": "7",
"session_description": "DL testing for UI integration",
"session_mode": "deeplearning"
}
}
}
You might also like
769 (Copy)
PDF
No ratings yet
769 (Copy)
5 pages
775 (Copy)
PDF
No ratings yet
775 (Copy)
5 pages
Algoparams From Ui - Json
PDF
0% (1)
Algoparams From Ui - Json
7 pages
Lorentzian Classification Strategy - Teamviewer
PDF
No ratings yet
Lorentzian Classification Strategy - Teamviewer
9 pages
Lorentzian Classification Strategy by StrategiesForEveryone Modded
PDF
No ratings yet
Lorentzian Classification Strategy by StrategiesForEveryone Modded
25 pages
B58 Random Forest
PDF
No ratings yet
B58 Random Forest
4 pages
Experiment01 Baseline Models Accuracy
PDF
No ratings yet
Experiment01 Baseline Models Accuracy
35 pages
B58 - Handling Missing Values, Feature - Selection
PDF
No ratings yet
B58 - Handling Missing Values, Feature - Selection
4 pages
Pramkk
PDF
No ratings yet
Pramkk
10 pages
Slip
PDF
No ratings yet
Slip
5 pages
Ai Predictor (SAB)
PDF
No ratings yet
Ai Predictor (SAB)
9 pages
ML Lorentzian Classification Script
PDF
No ratings yet
ML Lorentzian Classification Script
18 pages
Smart Factory Energy Prediction - Ipynb
PDF
No ratings yet
Smart Factory Energy Prediction - Ipynb
355 pages
Facebook Graph Link Prediction
PDF
No ratings yet
Facebook Graph Link Prediction
14 pages
Dsbda Assignment 6
PDF
No ratings yet
Dsbda Assignment 6
5 pages
CSET301 LabW8L2
PDF
No ratings yet
CSET301 LabW8L2
1 page
Visualize k6 Results in Grafana
PDF
No ratings yet
Visualize k6 Results in Grafana
36 pages
LRNTZ
PDF
No ratings yet
LRNTZ
11 pages
ML - LAB - 7 - Jupyter Notebook
PDF
100% (1)
ML - LAB - 7 - Jupyter Notebook
7 pages
4.baysian Network
PDF
No ratings yet
4.baysian Network
3 pages
Model Modified Day
PDF
No ratings yet
Model Modified Day
190 pages
G 203008076 - 4 - Christhian Quiñonez - Ex1 - 2 A PDF
PDF
No ratings yet
G 203008076 - 4 - Christhian Quiñonez - Ex1 - 2 A PDF
20 pages
1
PDF
No ratings yet
1
13 pages
Model Modified Night
PDF
No ratings yet
Model Modified Night
168 pages
Learning Framework
PDF
No ratings yet
Learning Framework
18 pages
S6 - Data Mining Lab Experiments (Except 1)
PDF
No ratings yet
S6 - Data Mining Lab Experiments (Except 1)
6 pages
Keeratsi HW8
PDF
No ratings yet
Keeratsi HW8
17 pages
Random Forest: Implementaciones de Scikit-Learn Sobre QSAR
PDF
100% (1)
Random Forest: Implementaciones de Scikit-Learn Sobre QSAR
11 pages
Random Forest Classifier on Banking Dataset
PDF
No ratings yet
Random Forest Classifier on Banking Dataset
7 pages
Model Evaluation Techniques
PDF
No ratings yet
Model Evaluation Techniques
5 pages
Modeling & Evaluation
PDF
No ratings yet
Modeling & Evaluation
1 page
Python 3
PDF
No ratings yet
Python 3
9 pages
Grid-Based Adversarial Bandit Control
PDF
No ratings yet
Grid-Based Adversarial Bandit Control
17 pages
Decision Trees
PDF
No ratings yet
Decision Trees
7 pages
Random Forest
PDF
No ratings yet
Random Forest
8 pages
Decision Trees for Data Scientists
PDF
No ratings yet
Decision Trees for Data Scientists
1 page
Ai Int-1
PDF
No ratings yet
Ai Int-1
6 pages
Import As Import As Import As Import: Pandas PD Numpy NP Matplotlib - Pyplot PLT Sklearn DF PD - Read - CSV DF
PDF
No ratings yet
Import As Import As Import As Import: Pandas PD Numpy NP Matplotlib - Pyplot PLT Sklearn DF PD - Read - CSV DF
9 pages
1 10
PDF
No ratings yet
1 10
4 pages
Hands On Practical Examples On Sequential Feature Selection in Python
PDF
No ratings yet
Hands On Practical Examples On Sequential Feature Selection in Python
26 pages
ML Journal External
PDF
No ratings yet
ML Journal External
14 pages
DWDM Lab 3
PDF
No ratings yet
DWDM Lab 3
10 pages
Dsbda Assig 6 Data Analytcs 3
PDF
No ratings yet
Dsbda Assig 6 Data Analytcs 3
6 pages
KNN For Classification
PDF
No ratings yet
KNN For Classification
5 pages
AI&ML
PDF
No ratings yet
AI&ML
9 pages
Import As Import As From Import Import As: - Init
PDF
No ratings yet
Import As Import As From Import Import As: - Init
5 pages
W2S3 DataVisualization 11323013 Winda Vanecya Sembiring - Ipynb
PDF
No ratings yet
W2S3 DataVisualization 11323013 Winda Vanecya Sembiring - Ipynb
231 pages
RICT PandC Example 2
PDF
No ratings yet
RICT PandC Example 2
13 pages
Heart Disease Classification Full-1
PDF
No ratings yet
Heart Disease Classification Full-1
3 pages
Lab Manual ML
PDF
No ratings yet
Lab Manual ML
23 pages
Code:: To Find Frequent Itemsets and Association Between Different Itemsets Using Apriori Algorithm
PDF
No ratings yet
Code:: To Find Frequent Itemsets and Association Between Different Itemsets Using Apriori Algorithm
28 pages
ML Functions
PDF
No ratings yet
ML Functions
12 pages
Copy of Final Project
PDF
No ratings yet
Copy of Final Project
16 pages
Forest - Py
PDF
No ratings yet
Forest - Py
50 pages
Untitled Document
PDF
No ratings yet
Untitled Document
6 pages
Data Mining Assignment No. 1
PDF
No ratings yet
Data Mining Assignment No. 1
7 pages
Machine Learning Unit4
PDF
No ratings yet
Machine Learning Unit4
8 pages
54 Django Questions Answers
PDF
No ratings yet
54 Django Questions Answers
86 pages
Itp Precedure Siemens
PDF
No ratings yet
Itp Precedure Siemens
2 pages
Introduction of Schemas
PDF
100% (1)
Introduction of Schemas
36 pages
Coffee Production
PDF
No ratings yet
Coffee Production
9 pages
Jinx
PDF
No ratings yet
Jinx
11 pages
Session 9 - "Nonmotorized Transport and Climate Change" by Bob Noland
PDF
No ratings yet
Session 9 - "Nonmotorized Transport and Climate Change" by Bob Noland
9 pages
Table 23.5.3.4 Ordinary Hazard Pipe Schedule
PDF
No ratings yet
Table 23.5.3.4 Ordinary Hazard Pipe Schedule
1 page
RFQ Process
PDF
No ratings yet
RFQ Process
19 pages
Class 11 Biology Topic Wise Line by Line Chapter 4 Chemical Bonding and Molecular Structure
PDF
No ratings yet
Class 11 Biology Topic Wise Line by Line Chapter 4 Chemical Bonding and Molecular Structure
39 pages
Green Horn: Novel Design of Honking To Reduce The Effect of Noise Pollution
PDF
No ratings yet
Green Horn: Novel Design of Honking To Reduce The Effect of Noise Pollution
4 pages
Cpe101 3T1415
PDF
No ratings yet
Cpe101 3T1415
4 pages
Presentation Puna Ptipk Mapin 20151028 English
PDF
No ratings yet
Presentation Puna Ptipk Mapin 20151028 English
34 pages
Basic Concepts in Biochemistry A Students Survival Guide 2nd Edition by Hiram Gilbert 0071356576 978-0071356572 Instant Download
PDF
100% (3)
Basic Concepts in Biochemistry A Students Survival Guide 2nd Edition by Hiram Gilbert 0071356576 978-0071356572 Instant Download
56 pages
Sheet Metal Thickness Gauges
PDF
No ratings yet
Sheet Metal Thickness Gauges
2 pages
Principles and Objectives of Risk MGMT
PDF
No ratings yet
Principles and Objectives of Risk MGMT
8 pages
Noise Thinks The Anthropocene An Experiment in Noise Poetics Aaron Zwintscher Instant Download
PDF
100% (4)
Noise Thinks The Anthropocene An Experiment in Noise Poetics Aaron Zwintscher Instant Download
82 pages
The Church of San Marco in Venice. History, Architecture, Sculptureby Otto Demus (Review by D. Talbot Rice) (Z-Library)
PDF
No ratings yet
The Church of San Marco in Venice. History, Architecture, Sculptureby Otto Demus (Review by D. Talbot Rice) (Z-Library)
3 pages
SCFA
PDF
100% (1)
SCFA
35 pages
Amazon - Co.uk - Low Prices in Electronics, Books, Sports Equipment & More
PDF
No ratings yet
Amazon - Co.uk - Low Prices in Electronics, Books, Sports Equipment & More
1 page
Proformas IFRS Question 4
PDF
No ratings yet
Proformas IFRS Question 4
7 pages
Design and Build Procurement Guide
PDF
No ratings yet
Design and Build Procurement Guide
10 pages
Auto & Tyre Industry Trends & Analysis
PDF
No ratings yet
Auto & Tyre Industry Trends & Analysis
3 pages
Key Economic Terms Explained
PDF
100% (1)
Key Economic Terms Explained
5 pages
GCTG Lecture
PDF
No ratings yet
GCTG Lecture
7 pages
HFC1508EN - Hi-Force Condensed Catalogue PDF
PDF
No ratings yet
HFC1508EN - Hi-Force Condensed Catalogue PDF
76 pages
JK Tyre IR 2022-23
PDF
No ratings yet
JK Tyre IR 2022-23
164 pages
OS Notes1 Unit2
PDF
No ratings yet
OS Notes1 Unit2
25 pages
BW-Series Battery Scale Manual
PDF
No ratings yet
BW-Series Battery Scale Manual
24 pages
Contingency Approach MPV
PDF
No ratings yet
Contingency Approach MPV
45 pages
Mixed Species Exhibition of Neotropical
PDF
No ratings yet
Mixed Species Exhibition of Neotropical
14 pages