Chap 7
Chap 7
Sensors
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 1
Architecture
Destination, Map
obstacles
Path planner
Waypoints
Status
Path manager
Path Definition
Tracking error
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 2
Sensors for MAVs
• The following types of sensors are commonly used for
guidance and control of MAVs
– accelerometers
– rate gyros
– pressure sensors
– magnetometers (digital compasses)
– GPS
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 3
MEMS Accelerometer
Newtons 2nd law gives
<latexit sha1_base64="X5UtJhXucfxDUkfoF/mKZ3MBt6E=">AAAPr3icrVdtU9w2EFbS0KaXtiTtp06/eALJ5JXhLkzayUxmwtDJ2+StCRA6GKhsr8/K2ZaRZOAw7v/s9M90pTOgk2DSDzmPfdI+z65W65VWjqqcSbW4+M+Fi19dmvn6m8vf9q589/0Ps1ev/bgueS1iWIt5zsVGRCXkrIQ1xVQOG5UAWkQ5fIxGKxr/uAdCMl6uqnEFWwUdlixlMVUo4tcuPiJvCJB9oggnJZEkIPNkQLZJg72EtNgLSE4oMgIyJIzsIVuSHgnJJj4L/E/w4qjfkAPkB+Qx3iNyi4zJfZTcNtwtfL4xLEBUkQwtqq6lJZTEeAGOBEQYjBl/AnymFq9ClHeyAnnSeDyRVniLE02KtnpmVgH6B6ihbcfnWpakxrvCto7ChNMz1yraGqGkxPmf8l+htDKRibs5ab+1bmr8KLx4RdgaGjuN8Y5hryR3MGY9chPZGxgzifGaRDBEO8JYb0gfOc2UpDCSET4lvqsBuWs4AfnzxEaIlx6VIbcyo4GJ1U0zV63zZUYMTVxTnP+tE7vHXoSorWeZIfo5n5bJzhfxR9s5Hl+PBSaP/YgvT2UcR3tgslMYjzRbmtzRmbpn3nCE+rRDtc2AHHa6gdGmJque4X9t8pJ1khIZDPtAFrAXYD5lRg+6TAFybyoPJxmoEW2Xm+zNsc2sdaeziePqAjO3Mc5ZR0f7f2BW4ul6aq01+TkWxfuuiXxkokE/qzFh/w9u8DPOvj3eC3auzi0uLJpf4Df6XWOOdL93O9d618OEx3UBpYpzKuVmf7FSWw0VisU5tL2wllDReESHsInNkhYgtxqzP7bBDZQkQcoF3qUKjNTWaGgh5biIkFlQlUkX08KzsM1apb9tNaysagVlPBkorfNA8UBvtkHCBMQqH2ODxoKhr0GcUUFjhVty7wZeYQn7MS8KWiZNWCXQbg62mjBFCnb17Gg+129P24O2ndZRSEWtPmopOFBNCEWgRHtrrn/bYcZ8r7VIuusw9qiwGbrrMKRKYMrKROCwEkhht9VsjJOAXHvJaDnEF9U8dsklF8XE/xxSFR7N9UPBhhm2HCKN5CnvhOayBI7RhPpVRVHzvvXDpb3nlSPOaJ62Xdwx3F6UC0y5dmJWpk3hwssxzY+HxWaz7I274jBWPMYzh/HMYzx3GM89xkuH8dJjvHIYrzzGe4fhx/CDw/jgMdYcxprH2DCME8KGi9Mo7eAobaiLRjYauWhso7GLgo2Ci6Y2mroos1Hmop9s9JOLjmx05CWYjXr5Vdlo5aK7NrrrLVkblS5a22jtbQg26i3zfRvdd9EDGz1w0UMbPXTRpzb61EVf2OgLbw3Y6EsXfW2jr1101UZXXXTdRtf9rTE73hhluxOqDBR1E/OUEp9DkdWUlSpjro1qyoZPkJWcsiB9C3LKgkdIIFeT9RfxPNGFkeed1J00L2DoU43Upb49k/r2LOohnDG+FvqFZigAJmWhwTq5HcZMxO58BTebt2J4JnD9L2EMpuqJOoemv1gUbfOg8Bag2ueaZ2pAnWMd53ldlFgnmqP46Fh78PBE21XP0M2zDDyYMrC0dJ4BpjNnnm137w177d/zyMFKG1aC8xRLmMRTCU4B0ATyg3da/ChoOxaUyRTxDu51LM/RTBjlWKblbk0FzOuDhuZiwd7Tn59hXcoR0+Xyd8CDl4DXmP5vKxBUcYHJxoZl25jnOQyqaIlhmvydx5EMrZhnL8zGVYbnN/152lQS6oTfF3h2wDNeD4v7aVBMJPZZorLmgVbs6VNl3z1D+o31wUL/4cLSH4O5J0vd+fIy+YVcx2+GPvmVPCHPyTuyRuJL/85cmOnNXJntz36c3Z79a0K9eKHT+YlM/WbZf9IUFnw=</latexit>
mẍ = k(y x)
0
yaccel = kaccel a + accel + ⌘accel .
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 4
MEMS Accelerometer
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 5
Acceleration Measurement
Tricky concept: Measured acceleration is the total acceleration of the accelerometer casing minus the
acceleration of gravity
1
a= (Ftotal Fgravity )
m
Accelerometers measure components of linear, coriolis, and externally applied acceleration. They do not
measure gravity, since both the proof mass and the casing are acted on by gravity in exactly the same way
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 6
Acceleration Measurement
Said another way, accelerometers measure specific force, which is defined as the sum of the non-
gravitational forces divided by the mass
1 ⇣X ⌘
ameasured = Fnon-gravitational
m
1 ⇣X ⌘
= F Fgravitational
m
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 7
Acceleration on Fixed-Wing Aircraft
Flift
Fthrust
Fdrag
Fgravity
1
ameasured = (Ftotal Fgravity )
m
1
= ((Flift + Fdrag + Fthrust + Fgravity ) Fgravity )
m
1
= (Flift + Fdrag + Fthrust )
m
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 8
Acceleration on Fixed-Wing Aircraft
Recall from Chapter 3, that
✓ ◆
dv
m + ! b/i ⇥ v = Ftotal .
dtb
ax = u̇ + qw rv + g sin ✓
ay = v̇ + ru pw g cos ✓ sin
az = ẇ + pv qu g cos ✓ cos
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 9
Accelerometer Models
<latexit sha1_base64="mqZDWVYBSHk29Z/TBIl9xujosB0=">AAAQH3icnVddb9s2FHW7Zqu1ZWm2x70ISzukaxPYbpYVAwK0y9AvtGjXJmna0DEombLU6MsUZcdmuP+yX7O3YXvsv9mlJNs0aQfFBNgieQ7PJS8veSknDYOMNRofr1z97NrK519cr1tffrX69dqN9W+OsiSnLjl0kzChxw7OSBjE5JAFLCTHKSU4ckLy1jnbl/jbAaFZkMQHbJSSdoR7ceAFLmbQ1Fm/9q+FHNILYk6i1Cd9ceIk53vIg/82x2HQi4U16nDEyDnj2HVJKO6eC/uHPRt1E8ZzYd+x+8MtOoB3D2VBjJhPGIYagpfZEcVJnEcOoTZChvBoJjyQwjTfSof2Fgi7SVYKFyZSP1hsAAQutzCeWRhKC+lgq59rFmRpqYWxMgULkbg78ZtlJdT6v76sr1q2+iCPYpcj6if2UQeftuw3grdQhLMMzIfEYyerVn1G3+/wY2FvIhymPr6tQHcKqMP7YgZPxB1MuSvsPihLI2JBN9QlIXiACDHrXDUpbESDns/aaveDTrpZMdldqT4b1CWBwXAP1mx1SVjU67qXLncU+jXoSTfV65WL3nUaopzaOzDgwCjAK8V70pqKStCxU9CRXplAdApNJemEMmm4U0mXEy/Uq+LMbNlAZxid6skBt8vaZcG9zEvj5V765JCqT9cQhvteKBFVnw+O90VMfUJImf0uD6q6HlZyNst24nblj/mN2Lmx0dhuFI9tFppVYaNWPa8669ZPcCK4eURi5obgkZNmI2WwZSkL3JAIC+UZSbF7hnvkBIoxjkjW5sXhK+xb0NK1vYTCL2Z20ar24DjKslHkADPCzM90TDYuwk5y5t1v8yBOc0ZitzTk5aHNElue5HY3oMRl4QgK2KUBjNV2fQwLweC8n7MyPaJuWSgmQzeJIgwOQ2mXiJNWm1fLl8oJ43CjKWbllhDzfRhQoVezXa0GIpHNqNjcaN7WmG4yEApJVjXGAFOVIasaI2NdMqdSNmisLvFgepINE6YklKMMcNyDteN7OjlOaFSOX0Y9utholpGGLjQidrIZb0rTWRRscCRXz3H4a2G6S44+SbVmH4eeqPwO7ja8XOzLUjbzeKTDD10cTsxCkT807O5rjH2D8VhjPDYYTzTGE4PxTGM8MxjPNcZzg/FaY5g+fKMx3hiMQ41xaDCOC8aUcKzj2PEq2PE41lFHRR0ddVXU1VGiokRHPRX1dDRQ0UBHP6joBx09U9EzI8BU1IivVEVTHe2raN/Ysiqa6WiuorlxIKiosc2HKjrU0XMVPdfRsYqOdfSRij7S0acq+tTYAyr6TEdfqOgLHT1Q0QMdPVLRI/No9CcHYyY65d1VD8wZxV1CydI5Fbj36hrpnIZJyNJsTiEzFbI5BYNQZP9irk4SdmWuTMKqVZ90EpGeSS1aderLhdSXi6hjssD+mJjmu6RHCSnTAoc8eYrcgLr6fGlSHN4sgGuCPv6YjEiR9WgeEt5sRJHg9yJjA7JhInlFDshDSO1JmEcx5Al+4V5Merd2p7317j4Mc5HAvTmBnZ1lAoGMnJvBabVuUBN/3AQOZFqU0iTxIIVlcL2AKRCQAL79Sjb/YouKBTeyOeKPcNYFYQgyyAkhTWf9HFNyU140JBcS9kB+7qI8zs4CmS5/I3AXo+QFhP/LlFDMEgrBJj+iePG/hIEZjsFN5WsZBz4igSL/LeSP4HIUF5/DPM1I3k22KNwd4NpnQXKfOaXwxDDoMp/vyo6WvGg29WulWThqbTd3t3d+b2082KmunNdr39W+r23WmrWfaw9qT2qvaoc1d+X+yulKb8Vf+3Ptr7W/1/4pqVevVH2+rc09ax//A/QY3dI=</latexit>
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 10
Accelerometer Models
or
fx
yaccel,x = + g sin ✓ + ⌘accel,x
m
fy
yaccel,y = g cos ✓ sin + ⌘accel,y
m
fz
yaccel,z = g cos ✓ cos + ⌘accel,z
m
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 11
MEMS Rate Gyro
Point translating on a rotating rigid
body experiences a coriolis acceleration:
aC = 2⌦ ⇥ v
Vgyro = kC |aC |
= 2kC |⌦ ⇥ v| = 2kC ⌦|v|
= 2kC ⌦|A!n sin(!n t)| = 2kC A!n ⌦
= kgyro ⌦, where kgyro = 2kc A!n
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 12
MEMS Rate Gyro
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 13
Rate Gyro Model
The manufacturing process implies that rate gyros will have a
<latexit sha1_base64="gEDYfE5S8Htw40O3rnXwdgVdq40=">AAAP9niclZdbc9w0FMfVQqCYyzbwxPDiISlTaAnZNC1MZwrthOlt2klpkzQz8TYj27KtxrYcSc5m1zUfhTeGV74O34Yj2Um0UtI2u7O2dP6/c3R0saUNq5wKubz834WLH3w499HHlz7xPv3s8y8Gl+e/3BKs5hHZjFjO+HaIBclpSTYllTnZrjjBRZiTl+HemtJfHhAuKCs35KQiowKnJU1ohCWY2PzFDbSBMkSQjwqEUYlqlMA9QhJKHFGwpKBVUGZgJUjA1wd7AbYc7kTXJcTAcPWBU3cVL0UT7aX0MZA5fH3NHWgdwy/WbSTaU3lxiHtda50X6b26+lQTTOdKdLY+egD3WmdFe0sJBIU6QbeRhwK0o6+FzitDIbTWQGYt2oV7oFs9hGtznG8LXx/dgd/eO5gAretMUt2Xa9oSQl1C/e2eHftO0v8aRkNlP4LrWM8T12O3CLZNmAGhx5VBn9/W3qKesW7e1AjVcKVAKQuD8fBhRhjEUdmkEGEJLD5ag5qa4bCf06O1IPUMuDEUFaOftCUF7UCvDa8fk1T7N1BSK0f1ZB8y2wGNQcZ3gEr68gioruUUPFqIMHlL766DRY3od3rGqnPMw5Hn+83FER3o9aWek0K3wbUteGeWEyPL/XNlOTlXlpMzsnyfHKdGjvxcOU7PleP0jBw97V3CKrLXiYe83csLy0vL+uO7hWFfWED959nuvHcziFlUF6SUUY6F2BkuV3LUYC5plJPWC2pBKhzt4ZTsQLHEBRGjRr9TW/8KWGI/YRx+pfS11fRocCHEpAiBLLDMhK0p42naTi2TX0YNLatakjLqGkrq3JfMVy9oP6acRDKfQAFHnEKufpRhjiMJr/GZVkhRZWS/9bwrXlCSccSKApdxE1QxaXdWRk2QgBdUVYdxvjBsT8orbTvrIwEFryF4SXIom4AUvuTt1YXh9xYZsYPWgFTVIg4wNwlVtQghYzITpTNYVEwS6J6iocOc5CpLissU5q65Y8Ml40WXf04SGbxZGAacphmULBCH4oQ7xmyKQxtNoGYvDJvnrTtcKntWWeYM50nbjzsMtzPKBazCtgsrkqaw5XsRzo+ahWJzz2l3zSLWHOKBRTxwiIcW8dAhHlvEY4d4YhFPHOK5Rbhj+MIiXjjEpkVsOsS2Jo6BbVvHYdLLYdJgWw1NNbTVyFQjWyWmSmw1MdXEVqmpUlt9baqvbXXPVPecBWaqzvqqTLWy1X1T3XceWVMVtlqbau28EEzVeczHpjq21UNTPbTVqalObfW+qd631Uem+sh5Bkz1sa0+NdWntrphqhu2umWqW+6rMTt6MYp2N5AZkdhemCdIdAYiqpkoVUbtGNVMDBcQlZiJINwIYiaCA8Qkl93zF7I8Vnsly3ur3WlWkNRFtdVG109F109Dp+SU9pXR3WhSTki3LTSwT74KIsoju7+c6Ze3pHBMsPMvyYToXY/XOWmGy0XRNjcK5wGUY6Y4vQfUOWztLK+LEvaJ5k305sh75daxt+2eQZqnBbgxE2B19awAVK2cRfqqnzeotX8uAgM7bVBxxhLYwgQcL6ALBEIA7z9T5tt+21OkjGfAH+BdR/McwgRhDtu02K8xJ4vqoKFY2LAP1L/YoC7FHlXb5e8EzmKcPIXlv14RjiXjsNhoWraNvp5BYIlLGKbudhYjKETRVy/IJnA4KvW/3KYSpI7ZjxzODnDs82BzPxkUPRJjGsusWVWOnjpoDu1jpVvYWlka3lpa/WNl4e5qf+S8hL5B36KraIh+RnfRQ/QM/qJFc4O5m3O/zv02OBz8Nfh78E+HXrzQ+3yFZj6Df/8HR7w2BQ==</latexit>
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 14
Pressure Measurement
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 15
Pressure Measurement
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 16
Altitude Measurement
The basic equation of hydrostatics is
<latexit sha1_base64="NUAbKsbtyYromJlMOchPPzHQn9g=">AAAOJXicdZdbb9s2FMfdZpdOW7Z2e9wLsaRD2yWBnabdUKBDuw69IUG9NEkDRI5BUUcSG+oSkorrKNrX2afZ27BhT/sqO5Qdh6YSPdgS/z8ekofniEdBIbjS3e6/164vfPTxJ5/e+Mz7/IvFL7+6eevrPZWXksEuy0Uu9wOqQPAMdjXXAvYLCTQNBLwLjp4Z/d0JSMXzbEePCxikNM54xBnV2DS8df2fnQQIWuCMwHHZtJI8Isk4lLnS+MwU4Yp4/oHXH66TVdIf9shj4sskJzG5c9q0nQ57dz1/4O0qnsVEo8VY5mUWEqqIhAgkZAxWCG1aVJkaiuUZ2s80oVySEDLF9ZjE/ASU5wcQ86yigsfZvdrrr/aHla/hg64mZuvaI3h9/3j1fBrJauIid4nvO9iMefpis659z4csnI3yC4h8RHq9lW63S9IVwmhGSmV8I/MUtEQHRblMS0EfNc5AJ/SHXeILiPQB8SNJWbUz7Nbm54dNVC5Ge4uj1egyHid6QA4nbEy26mqbIFmvGN+NEnST52c5z9Ab2ltG68uPiPFRSGVIcFvRdRII1UQBJQJOQJg1Lu/MgxrSAiTVl7KbDYsqmF220RAYBg4u2GAxQrGkJ1w3EUHFxXYZeRvlMuMmsFCKcZdnMvqo2VGDbdnTSnNBJUlx/83IVKe5KnDJ6FbEV5A3XUYJZwnR9Agw6jKdE8oYbqcmLKFZDNg2C5UR1wmhAmO+DKEJLWs1a97w5lJ3rdtcpH3Tm94sdaZXf3jLe+CHOStTdD4TOM2DXrfQg4pKzAEBtedjNBSUHdEYDvA2oymoQdWkYE1uY0vYLD7KzXRNq92joqlS4zRAMqU6Ua5mGi/TDkod/TSoeFaUGpNoMlBUCoK+MflMQi6BaTHGG8okx7kaX2GAadycuVHQOwkc1553G6MMRixPU/Ra5Rch1Afrg2oSln5hFkzFUq++uF/HjJvroxHFXr3BNMR9SImW9Z2l3l2HZPlJbUHm0SFOqLQJ8+gQSocwZ2XS4FAhvmiOa0PjgiUIM0uOUYN7Vz124QxTeTJ/k7/+2VJvkp7+mQPSQF1wM8ylJI5R+Wb3gqDartvuMrPPC6c5oSKqp35Hd7e8bJKlnphVUZW68lNGxfmweFs9bY37zCGetYgXDvGiRbx0iJct4rVDvG4Rmw6x2SK2HaLtw7cO8bZF7DrEbovYb4gZsO/qNIimchBV1FUDWw1cldkqc1WwVXDVyFYjV+W2yl31va2+d9UjWz1qBZittuKrsNXCVY9t9biVsraqXLW01bL1QrDVVpqPbHXkqh9s9YOrntrqqas+t9XnrvrKVl+1csBWX7vqlq1uueqOre646p6t7rVfjcn5i1HVQx9LL03dwLxA2BUInsS2lSLhro1izkYbUIWas6DaFtSchRYQgtCT/AtyEZqzMhfTVnfRWI/FbbRpddE3l6JvLkNP4ZLxTWP7oIklwORYqPCcPPQZl8xdL5bPzYo5lgnu/DMYQ3PqyVJA1eumaV3dT1sJqEe54ZozoMRKB6uKMs3wnKjO2Nl57/WHs95u9wSneZmB+3MGNjauMsBN5Czzw+m+4VP9+zIyeNL6hczzCI8wheUFLgHQBPKkb5ofkXpKYYE9B97Ddx0XAs34gcBjWuEnh4RlU2gYFg/sE/PR45eZOuLmuPwVsBaTsIXh/6Yp7nKJwYYVe101v1cQFKtOdNPk7yoGP1YQMb+en4yxOMqaYrcqFJRhvipNxYnlEh7uF05pPDHioU6qB6ajZwrNnltWtm/21td6D9c2fltferIxLTlvdL7tfNe50+l1fuw86bzs9Du7Hbbw80K4kC5ki38s/rn41+LfE/T6tWmfbzpz1+J//wNtOVGW</latexit>
P2 P1 = ⇢g(z2 z1 )
Using the ground as reference, and assuming constant air density gives
which takes into account change in density with altitude and temperature.
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 17
Altitude Measurement
We usually assume density is constant:
Is this valid?
4 4
x 10 x 10
10.2
10 constant density
ideal gas law
10.1
8
10
pressure (N/m )
pressure (N/m2)
6
2
9.9
4
9.8
2
9.7
0
9.6
2
9.5
0 2000 4000 6000 8000 10000 0 100 200 300 400 500
altitude (m) altitude (m)
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 18
Airspeed Measurement
From Bernoulli’s equation:
⇢Va2 ⇢Va2
Pt = Ps + or = Pt Ps
2 2
Pitot-static pressure sensor measures dynamic pressure:
⇢Va2
ydi↵ pres = + di↵ pres + ⌘di↵ pres
2
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 19
Magnetometer
magnetic
north
north
iv mi
<latexit sha1_base64="UCGMrBkAnn2alUkhsR/U8G7hOzQ=">AAACD3icbVC7TsNAEDzzxrzCo6OxiJCoIpsU0IFEAWWQSECKDTqf18mJ89m6WwPBykfQ0MIXUCHRIVo+gZIf4Bu4JBSQMNJKo5ld7WjCTHCNrvthjY1PTE5Nz8zac/MLi0ul5ZWGTnPFoM5SkaqzkGoQXEIdOQo4yxTQJBRwGl4e9PzTK1Cap/IEOxkECW1JHnNG0Ui+n1Bsh3GRdM/5RansVtw+nFHi/ZDy3vPt5+HTWlG7KH35UcryBCQyQbVuem6GQUEVciaga/u5hoyyS9qCpqGSJqCDop+562waJXLiVJmR6PTV3xcFTbTuJKHZ7GXUw15P/M9r5hjvBgWXWY4g2eBRnAsHU6dXgBNxBQxFxxDKFDdZHdamijI0Ndm2r8GUKFvYLnyEG7zmkXlUVLnsmoK84TpGSWO74lUr7rFb3nfJADNknWyQLeKRHbJPjkiN1AkjGbknD+TRurNerFfrbbA6Zv3crJI/sN6/AYFYocE=</latexit>
declination m
Let e1 = (1, 0, 0)> be a unit vector pointing north.
<latexit sha1_base64="LNB9m8/drbzSfEuocWbkLykqnGk=">AAANZXicdZdtb9s2EMdd76nTmq3d05u9GLGkQNK1hp1m7TCgQIsMbVq0aJcmaYAoMSjpZLGRRIWknDiK9mH2dvtC+wT7GjvSTkOTiRDY9P1/PN5RJx0TVTmTqt//91r3o48/+fSz658HX9xY+PKrm7e+3pG8FjFsxzznYjeiEnJWwrZiKofdSgAtohzeRYfrWn83BiEZL7fUpIL9go5KlrKYKjQNb3W/ewmKLIUFVVmUNtAOB+QRWR7cJX38WzkIFa+WSASEkrpkiowhVlyQirNSsXJESi5U1gsC42VzGSfdCxlX9C4JE8gVXTGTVQZEoFWvSXApwU5IKnihhUBHBIrFaKEFstzgmI9QjOZTa4+QrQzKINwLzkMt2gOGoW6aEC9ZmNg5BeF+wKRxbKehMqqmuUhc0MgJE6jpOHlqDBjeNDoGeXKXCJA8H0NyzjtxBvrCUPXGFDRnp0heJKhdkAKorMWFh4gnk1nuTDoZRjrDYXTQMJ1lS+zkezopvdTMYQGlQg9kxMZQkmhiu5q0wwbDaNHdnPefSRjxPJGTAr+aEBRtjdvhzcV+r28u4g8Gs8FiZ3a9Gd4KHoYJj2sdRJxTKfcG/UrtNxQ3J86hDcJaQkXjQ9zNPRyWmK7cb0wBt+Q2WhKS4h1JOSZhrPaMhhZSx4ikjl66mjZepu3VKv11v2FlVSso4+lCaZ2bIsOnYXa38wkOaCyYvklxRgWNFT4zc6tAUWVw1AbB7SAs4TjmRUHLpAmrBNq91f0mxDsY409qqmFx0F6MV9t2fo5CFGcNcJaCE4X7jk+CaJcXBysOGfNxa0H6p0OMqbAJ/dMhpEpgzsvU4FAJpJiepjFhAbmOktFyhPeueeTCurin8eeQqvBscRAKNspw5IA0khfcB8ylBK7RTOsyajZbf7t09Fj+8+aM5mk723fcbm+XC6zCdupW6nJ35Ccxzc+XxWHzxFt33SHWPeKZQzzziA2H2PCIFw7xwiNeOsRLj9h0CH8P3zrEW4/Ydohtj9g1xAdg19VplM5kfL1QV41sNXLV2FZjVwVbBVdNbTV1VWarzFXf2+p7Vz201UOvwGzVq6/KVitXPbLVI++RtVXpqrWt1t4LwVa9x/zYVo9d9cRWT1z11FZPXfWprT511ee2+tx7Bmz1hau+stVXrrplq1uuumOrO/6rMTt/Mcp2GGI3xgboFOYFEl+ByGrOS5Ux10c158MHZCXnPEjfg5zz4AHmzGNytfu5sbpJ8wJGPmqsLvr6UvT1ZegpXLK+NvqNZiQApm2hwT55EMZMxG6+gpuXt2J4THDjL2ECpuuJOodm0C+KtrlfeA+gOuaaMz2gzrG187wuSuwTzVl8dj579cGH2e70DMO8zMH9OQdra1c5YLpyltjB7L7hr/bPJWSw04aV4DzFFibxeIEpALpAnrzR5t9IO6OgTObAO/iuY3mObsIoxzYtj2oqYEkfNDSLDXus/2UI61IeMt0ufwc8iwl4heX/ugJB8cyLxcZGZduYzysIqmiJ2zT9uoqRDL2YzyDMJng4Ks3xvqkk1Am/J/DsgMe+AJv7xaaYnThmicqatd4vemqgj5oD92DpD3ZWe4MHvbU/Vhcfr80Ondc7P3R+6ix3Bp2Hncedjc6bznYn7p51/+r+3f3nxn8LCwvfLnw/RbvXZnO+6cxdCz/+D1MFDrU=</latexit>
Let R(0, ◆, ) be the rotation matrix from the magnetic frame to the
inertial frame. Then
mi = R> (0, ◆, )e1
is the unit vector that points in the direction of the magetic field, resolved
local in the inertial frame.
magnetic The normalized magnetic field measured in the body frame is
field
mb = Rbi> mi .
ymag = mb + ⌘.
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 20
Digital Compass
magnetic
north
north
<latexit sha1_base64="RFQZ+5bMLJcIkfegsEhRoiop78I=">AAAFZ3icrVTLbtNAFHVJA8U82oJASGwGKqoWmiiJKh4LpEpsukEqjz6kOETj8bUzdB7WzCRtauVf+Bq2sOUT+AuunXcCO2Zh3bmPc4+vz3WYCm5drfZr5VpptXz9xtpN/9btO3fXNzbvnVjdNQyOmRbanIXUguAKjh13As5SA1SGAk7D83d5/LQHxnKtPrt+Ci1JE8VjzqhDV3uz9CZQmqsIlCOHQCOuEsItsV1JdEzyZHCckQgYdihqCFWJAHxG03BnVOkHTT9ILSdvSRCBcJS8IPm9Lf2g5b9fTI/AgZHIPCKx0ZJIoLZrQCIZm7cPddSvxIZKIEzLVKtxYNI45iAikhr9FZhDGK2cJh1t+BVaVJBUUAVIK4SEq4wKnqjnAz+Q1HXCOJODL1mvPsjZDhNSDBh+OSCynV2OgkGQ3/pzt6vxDVQ0KfK3ESdHZlRkHwftLBxm7QRph+8FrgOO7pKZ3iEhOHxHE0RdKu41xtWzhXPQjSH0vzH/01v5BM8CVuFj7SE5sk3s2EQDOc162NCDfPKaGobYOKdi52IVOwVkS4BsHnDIao5q4ZmZhV+Ex1/9kxa9XHWxNhMFJrwHdqzatkQlVEjg4NJl1FGFA54OaW86vd1qLuf2xlatWisOWTbqI2PLG52j9ubKgyDSrJvrmwlqbbNeS10rowalLAB12bWQUnZOE2iiqVD4tpUVSz4gz9ATFeRj1DYpvLMVGZXW9mWImfkI7GIsd/4t1uy6+HUr4yrtOlBs2CjuCoKblP8xSMQNLpfoo0GZ4fnasQ41FBfOLHQRCa6e60jO9ib2wPcDAwoucIUl/jWyYr4XPEI62T5Xg3yQ9cWxLRsnjWr9ZXX/Q2ProDYa6Zr32Hvq7Xh175V34B16R96xx0rfSt9LP0o/V3+X18sPy4+GqddWRjX3vblTfvIHvo/MSQ==</latexit>
= + m
i v1
mv1
z
= Rv1 v2
v2 (✓)Rb ( )m
b
0 v1 1 0 1
local mx c✓ s✓ s s✓ c
magnetic @mv1 A=@ 0
field y c s A mb
mv1
z s✓ c✓ s c✓ c
m = atan2(mv1 v1
y , mx ).
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 21
Magnetic Declination Variation
180° 210° 240° 270° 300° 330° 0° 30° 60° 90° 120° 150° 180°
-30
60° 60°
-10
0
-2 0
-1
30° 30°
-10
10
0° 0°
-1
-20 0
-30° -30°
20 -20
-30
-40
0
30
-1
0 -5
-60° -60°
-60
0
-80 -90
-7
180° 210° 240° 270° 300° 330° 0° 30° 60° 90° 120° 150° 180°
80 80
60°N 60°N
60
45°N 45°N
60 60
30°N 30°N
40 40 40
20 20
15°N 15°N
20
0
0
0 -20
0° -20 0°
-20 -40
-40
15°S 15°S
-40 -60
-60
30°S 30°S
-60
45°S 45°S
-80
-60
60°S 60°S
g
h
-80
-60
70°S 70°S
180° 135°W 90°W 45°W 0° 45°E 90°E 135°E 180°
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 24
GPS Error Sources
• Time of flight of radio signal from satellite to receiver used to calculate
pseudorange
– Called pseudorange to distinguish it from true range
• Numerous sources of error in time-of-flight measurement:
– Ephemeris Data – errors in satellite location
– Satellite Clock – due to clock drift
– Ionosphere – upper atmosphere, free electrons slow transmission of GPS signal
– Troposphere – lower atmosphere, weather (temperature and density) affect speed of
light, GPS signal transmission
– Multipath Reception – signals not following direct path
– Receiver Measurement – limitations in accuracy of receiver timing
• Small timing errors can result in large position errors
– 10 ns timing error à 3 m pseudorange error
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 25
GPS Error Characterization
• Cumulative effect of GPS pseudorange errors is described by user
equivalent range error (UERE)
• UERE has two components
138 SENSORS FOR MAVS
– Bias SENSORS FOR MAVS
– Random Table 7.1: Standard pseudorange error model (1- , in meters) [34].
Table 7.1: Standard pseudorange error model (1- , in meters) [34].
Error source Bias Random Total
Error source BiasdataRandom 2.1
Ephemeris Total 0.0 2.1
Ephemeris data Satellite2.1
clock 0.0 2.0
2.1 0.7 2.1
Ionosphere 4.0
Satellite clock 2.0 0.7 2.1 0.5 4.0
Troposphere monitoring 0.5 0.5 0.7
Ionosphere Multipath
4.0 0.5 4.0 1.0
1.0 1.4
Troposphere monitoring Receiver 0.5 0.5
measurement 0.7 0.2
0.5 0.5
Multipath UERE, 1.0rms 1.0 1.4 1.4
5.1 5.3
Receiver measurement Filtered0.5 0.2
UERE, rms 0.5 0.4
5.1 5.1
UERE, rms 5.1 1.4 5.3
Filtered
Beard UERE,
& McLain, rms Aircraft,”
“Small Unmanned 5.1Princeton University
0.4 5.12012,
Press, Chapter 7, Slide 26
GPS Error Characterization
• Effect of satellite geometry on position calculation is expressed
by Dilution of Precision (DOP)
• Satellites close together à high DOP
• Satellites far apart à low DOP
• DOP varies with time
• Horizontal DOP is smaller than vertical DOP
• Nominal HDOP = 1.3
• Nominal VDOP = 1.8
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 27
Total GPS Error (RMS)
Standard deviation of RMS error in the north-east plane:
10
10
20
30
0 2 4 6 8 10 12
time (hours)
1
altitude error (m)
2
100 110 120 130 140 150 160 170 180 190
time (s)
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 30
Project
• Add sensor models to the simulation
Beard & McLain, “Small Unmanned Aircraft,” Princeton University Press, 2012, Chapter 7, Slide 31