ADDIS ABABA UNIVERSITY
Department of Mathematics
Math2042 Applied Mathematics III
Worksheet 3
1. Find lim f (t ) if it exists.
t 0
sin t t2 1 cos t t
a) f (t ) i e j t k
2t
b) f (t ) t 2 i j k
2t e 3t t 1
2. Let u (t ) 3t i t k , v (t ) t 2 i 2 j (t 1) k and w(t ) 3t 2 i t 3 j t k . Find
a) ( u v ) b) ( u v ) c) [ v (u w)]
3. Find a parametric representation of
a) the curve (x 2) 2 y 2 9, z - 1 in counterclockwise direction.
b) the ellipse 4x 2 y 2 4 in the xy -plane.
4. Find the length of the curve parametrized by
a) r (t ) e t cos t i e t sin t j 5k for 0 t 1 .
b) r (t ) e t i e t j 2t k for 0 t 1
5. Find the definite integrals a) r (t )dt for r (t ) sin t i cos t j t k
0
1
b) r (t ) dt for r (t ) t i 1 t j e t k
0
6. Find the unit tangent vector T , the principal normal vector N , the binormal vector, the
curvature and radius of curvature to the curve traced out by
a) r (t ) e t i e t sin t j e t cos t k at t = 0
1 1
b) r (t ) t 2 i ( t 2 1) j t k at t = 0 c) r (t ) t i e 2t j at t ln 2
2 2
7. Prove that the following vector functions are solenoidal (or incompressible)
a) f ( x, y, z ) yz i xz j xy k b) g ( x, y, z ) 3x 2 i y 2 j (2 yz 6 xz ) k
8. Find the divF , curl F and curl (curl F ) of the following vector fields
a) F ( x, y, y) xe y i 2e yz j xe y k b) F ( x, y, z) xy 2 i ( y 2 z) j (3 zx)k
c) F ( x, y, z ) = grad(x2 + y2 + z2 – xyz)
9. Determine whether or not F is a gradient of some function f. If F = f, find f.
a) F ( x, y) y 3 i 3xy 2 j b) F ( x, y, z ) yz i xz j ( xy 1) k
c) F ( x, y, z) yzexy i + xze xy j + (e xy + z 2 ) k
10. Show that curl ( fF ) = f curl F + f F , where all the partial derivatives of the scalar
valued function f exist.
11. Show that F ( x, y, z ) y i ( z cos yz x) j ( y cos yz ) k is irrotational and if it exists find
the potential function of F .
12. Show that the curvature of the helix r (t ) a cos ti a sin tj btk where a 0, t is a
constant.
ADDIS ABABA UNIVERSITY
Department of Mathematics
Math2042 Applied Mathematics III
Worksheet 4
1. Evaluate the following line integrals
a) C
(2 xz xy 2 1) ds , where C is the line segment from (-1,0,2) to (3,2,1)
b) C
y 2 dx 3xdy , where C is the triangle with vertices (0,0), (1,0) and (1,1).
c) C
xydy y 2 dx , where C is the square with vertices at (-1,0), (1,0), (-1,2) and (1,2).
2. Evaluate C
F dr , where F ( x, y, z ) = xyi - x 2 j + sin zk , where C is the line segment
from P(1,3,1) to Q(3,1,2).
( 2,1, 2 )
3. Show that the line integral (1, 0, 0 )
(2 x sin y e 3 z )dx x 2 cos ydy (3xe 3 z 4)dz
is independent of path and then evaluate it.
4. Use Green’s Theorem to evaluate the line integrals.
a) C
xydx ((1 / 2) x 2 xy )dy , where C is the upper half of the ellipse x2 + 4y2 = 1
and the x -axis on [-1,1] oriented positively.
(e x y 2 )dx (e y x 2 )dy, where C is the boundary of the region between y x
2
b)
C
and y x , oriented counterclockwise.
5. Verify Green’s Theorem for F ( x, y) y i 3x j , where C is parameterized by
r (t ) 2 cos t i 2 sin t j for 0 t 2 . Using Green’s Theorem, find the area of the
region enclosed by C.
6. Evaluate the surface integral f ( x, y, z) dS , if
S
a) f ( x, y, z) x 1 and S = is the portion of the plane 2 x y 3z 6 in the first
octant.
b) f ( x, y, z ) 1 4 x 2 4 y 2 and S is the part of the paraboloid z x 2 y 2 below the
plane z y .
7. Find the flux of the vector field F across S oriented upward, F n dS
S
if
a) F ( x, y, z ) yi xj 4k and S is the paraboloid z 9 x 2 y 2 above the
xy-plane.
b) F ( x, y, z ) i j 2k and S is the lower hemisphere of x 2 y 2 z 2 1 .
8. Use Gauss Divergence Theorem to evaluate n dS , where n is the unit normal vector
S
F
to S directed outward if,
a) F ( x, y, z ) x 2 i xyj 2 xzk ; S is the tetrahedron with vertices (0,0,0), (1,0,0),
(0,1,0), (0,0,2).
b) F ( x, y, z) xi 2 y 2 j z 2 k ; S is the boundary of the solid bounded by the
cylinder x 2 y 2 4 between the planes z = 0 and z = 3.
c) F ( x, y, z) (2 x 3z)i ( xz y) j ( y 2 2 z)k and S is the surface of the sphere
having center at (3,-1,2) and radius 3 units.
2 xz
9. Evaluate F dS , where F ( x, y , z ) xy i ( y e ) j sin( xy ) k and S is the surface
S
of the region D bounded by the parabolic cylinder y 1 x 2 and the plane z 0 , y 0
and x y z 2 .
10. Verify Stokes’ Theorem for F ( x, y, z) (2 x 3 y)i y z 2 j y 2 zk and S in the upper half
(above the xy-axis) of the unit sphere.
11. Evaluate the line integral F dr using Stokes’ Theorem, where
C
a) F ( x, y, z ) xyi yzj zxk ; C is the triangle in the plane x y z 1 with
vertices (1,0,0) , (0,1,0) , (0,0,1) oriented positively as viewed from above.
b) F ( x, y, z ) ( z y)i yj xk ; S the upper part of the hemisphere of
x 2 y 2 z 2 4 and C is oriented by an upward normal n .
12. Use Stokes’ Theorem to evaluate
S
( curl F ) n dS , where F ( x, y , z ) yi zj xk ,
where S is the surface z 1 x y 2 for which z 0.
2
13. If F f and 2 f = 0, show that for a closed surface S = D, ) n dS = F
2
( f F dV
S D