Dce En17
Dce En17
17
SOFiSTiK | 2023
VERiFiCATiON
DCE-EN17 Stress Calculation at a Rectangular Prestressed Concrete CS
SOFiSTiK AG
This manual is protected by copyright laws. No part of it may be translated, copied or reproduced, in any form or by
any means, without written permission from SOFiSTiK AG. SOFiSTiK reserves the right to modify or to release
new editions of this manual.
The manual and the program have been thoroughly checked for errors. However, SOFiSTiK does not claim that
either one is completely error free. Errors and omissions are corrected as soon as they are detected.
The user of the program is solely responsible for the applications. We strongly encourage the user to test the
correctness of all calculations at least by random sampling.
Front Cover
Volkstheater, Munich Photo: Florian Schreiber
Stress Calculation at a Rectangular Prestressed Concrete CS
Overview
1 Problem Description
The problem consists of a rectangular cross-section of prestressed concrete, as shown in Fig. 1. The
stresses developed at the section due to prestress and bending are verified.
h d My
Np
zp
Ap
2 Reference Solution
This example is concerned with the design of prestressed concrete cs, subject to bending and prestress
force. The content of this problem is covered by the following parts of DIN EN 1992-1-1:2004 [1]:
• Stress-strain curves for concrete and prestressing steel (Section 3.1.7, 3.3.6)
NP / A NP · zp / W2 M/ W2
+ + =
zp
Ap
NP / A NP · zp / W1 M/ W1
In rectangular cs, which are prestressed and loaded, stress conditions are developed, as shown in Fig.
2, where the different contributions of the loadings can be seen. The design stress-strain diagrams for
prestressing steel is presented in Fig. 3, as defined in DIN EN 1992-1-1:2004 [1] (Section 3.3.6).
A
σp
ƒpk
ƒp0,1k
ƒpd = ƒp0,1k / γs
B A Idealised
B Design
εp
d = 95.0 cm
L = 20.0 m
Ap = 28.5 cm2
1
0.916 0.00
3572.3 0.057
0.917
3574.2
0.917 0.057
1.00
3576.1 0.057
0.918
3578.1
0.918 0.114
2.00
V
3580.2 0.057
0.919
3582.6
0.171
Case
0.920 3.00
3585.6 0.055
0.920
1
1
0
0
CS
3604.2
0.926 0.313
6.00
3608.5 0.038
0.927
3613.1
0.928 0.347
7.00
3618.0 0.031
0.929
3623.0
0.931 0.374
8.00
3628.3 0.022
0.932
3633.8
0.933 0.390
9.00
3639.5 0.011
0.935
10001 1001 10002 1002 10003 1003 10004 1004 10005 1005 10006 1006 10007 1007 10008 1008 10009 1009 10010
3645.4
0.396
2
0.937 10.00
0.000
My [kNm]
My [kNm]
My [kNm]
My [kNm]
σc,b [MP]
Result
3651.6
0.938
3657.8
0.940 0.390
11.00
Stress Calculation at a Rectangular Prestressed Concrete CS
3663.8 -0.011
0.941
3669.6
0.943 0.374
1.000 = 1368 N/mm2
12.00
3675.1 -0.022
Table 2: Results
0.944
3680.5 0.944
0.944 0.347
3682.2 13.00
3678.8 -0.031
0.942
3673.9
0.313
Figure 5: Tendon Geometry
0.941 14.00
3669.2 -0.038
−156.08
−4.51
−1406.08
−11.76
−185.88
−4.82
−1435.88
−12.47
SOF.
0.940
3664.8
0.939 0.271
15.00
3660.6 -0.045
0.938
3656.6
−156.11
−4.51
−1406.11
−11.76
−185.91
−4.82
−1435.91
−12.47
Ref.
0.933
3638.2
0.933 0.057
19.00
3636.3 -0.057
0.932
10011 1010 10012 1011 10013 1012 10014 1013 10015 1014 10016 1015 10017 1016 10018 1017 10019 1018 10020
3634.3
0.000
3
20.00
-0.057
0.944
0.932
5
Stress Calculation at a Rectangular Prestressed Concrete CS
4 Design Process1
Design with respect to DIN EN 1992-1-1:2004 (NA) [1] [2]:2
Material:
19 wires with area of 150 mm2 each, giving a total of Ap = 28.5 cm2
Cross-section:
Ac = 1.0 · 1.0 = 1 m2
The force applied to a tendon, i.e. the force at the active end during
5.10.2.1 (1)P: Prestressing force during tensioning, should not exceed the following value
tensioning - Maximum stressing force
5.10.2.1 (1)P: Eq. 5.41: Pm maximum Pm = Ap · σp,m
stressing force
where σp,m = min 0.80ƒpk ; 0.90ƒp0,1k
(NDP) 5.10.2.1 (1)P: σp,m maximum
stress applied to the tendon
Pm = Ap · 0.80 · ƒpk = 28.5 · 10−4 · 0.80 · 1770 = 4035.6 kN
5.10.3 (2): Eq. 5.43: Pm0 initial pre- Pm0 () = Ap · σp,m0 ()
stress force at time t = t0
1 The tools used in the design process are based on steel stress-strain diagrams, as
Load Actions:
→ g1 = γ · A = 25 · 1 = 25 kNm
Safety factors at ultimate limit state DIN EN 1990/NA [4]: (NDP) A.1.3.1 (4):
Tab. NA.A.1.2 (B): Partial factors for ac-
tions
Actions (unfavourable) Safety factor at final state (NDP) 2.4.2.2 (1): Partial factors for pre-
• permanent γG = 1.35 stress
• prestress γP = 1.00
Mg = g1 · L2 / 8 = 1250 kNm
Calculation of stresses σc,b at = 10.0 m middle of the span: The concrete stresses may be deter-
mined for each construction stage un-
Position of the tendon: z = 0, 3901 m der the total quasi-permanent combina-
tion σc {G + Pm0 + ψ2 · Q}
In this Benchmark no variable load Q is
• Case : Prestress at construction stage section 0 (P cs0)
examined
−σc
Mp
Np
zp
Pm0,=10
+σc
Np = −3653.0 kN
• Case : Prestress and self-weight at con. stage sect. 0 (P+G cs0)
−σc
Mg + Mp
Np
zp
Pm0,=10
+σc
−3653.0 −185.91
σc,b = + = −4.82 MP
0.9926 0.1633
Np My
W1,cs1 cross-section moduli for con- σc,b = +
truction stage 1 Ade W1,cs1
−3653.0 −1406.11
σc,b = + = −11.76 MP
1.013 0.172
• Case V: Prestress and self-weight at con. stage sect. 1 (P+G cs1)
−3653.0 −156.11
σc,b = + = −4.51 MP
1.013 0.172
5 Conclusion
This example shows the calculation of the stresses, developed in the concrete cross-section due to
prestress and bending. It has been shown that the results are reproduced with excellent accuracy.
6 Literature
[1] DIN EN 1992-1-1/NA: Eurocode 2: Design of concrete structures, Part 1-1/NA: General rules and
rules for buildings - German version EN 1992-1-1:2005 (D), Nationaler Anhang Deutschland - Stand
Februar 2010. CEN. 2010.
[2] F. Fingerloos, J. Hegger, and K. Zilch. DIN EN 1992-1-1 Bemessung und Konstruktion von
Stahlbeton- und Spannbetontragwerken - Teil 1-1: Allgemeine Bemessungsregeln und Regeln für
den Hochbau. BVPI, DBV, ISB, VBI. Ernst & Sohn, Beuth, 2012.
[3] Beispiele zur Bemessung nach Eurocode 2 - Band 1: Hochbau. Ernst & Sohn. Deutschen Beton-
und Bautechnik-Verein E.V. 2011.
[4] DIN EN 1990/NA: Eurocode: Basis of structural design, Nationaler Anhang Deutschland DIN EN
1990/NA:2010-12. CEN. 2010.