100%(1)100% found this document useful (1 vote) 100 views21 pagesModel Generation
Different types of model generation in transportation system.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
‘STAAD.PRO CONNECT Ealtion Fundamentals ENGR. JOHN PAUL DELA ROSA
Model Generation
In this section, you will learn how to create, edit, and view structure geometry in STAAD.Pro.
1), Open STAAD.Pro and create a model with the file name xstructurest.std.
‘STAAD.Pro CONNECT Edition
New e
ie 4 S
“@ a!
;
“a 4
OULD LLL L Al AOL gt LOL af Oo fo LO"
FIGURE 2-1 Creating STAAD.Pro model
2) Input your first node at coordinates 0,
. Press Shift + N to show node numbers.
FIGURE 2.2 Adding the first node at 0,0,0STAAD.PRO CONNECT Eattion Fundamentals Pe
Press Shift + N to show node numbers. Set the cursor to Ne "8h
3) Press Shift + N to show node nut "or to Node Cursor. “a
Select node 1 and do a translational repeat.
wane
| sod
t aa
! ‘ioc ORL
Le
FIGURE 2-3 Modeling the first column using Translational Repeat
4) ‘Press Shift + B to show beam numbers, Set the cursor to Beam Cursor.
Select beam 1 and do a translational repeat,
(Career Wo vce
wane
FIGURE 2-4 Modeling 20 frame using Translational Repeat‘ENGR. JOHN PAUL DELA ROSA
can PRO CONNECT EON Fundamentals
«_selectyour first frame and do 2 translational repeat
a —— =
| I 1
FIGURE 2-5 Modeling 30 frame using Translational Repeat
6) Modeling the second floor.
Select the 3D frame, right-click, and select for Copy and Paste Beams commands. You may also
use the keyboard shortcuts CTRL + € and CTRL + V to perform the same commands.
eee EF
Sa _ Quick Commancs ‘Space Bar |
ts hae el |
Boye tangh Yand2 vee . Sescion tose . |
xe jm | viet Nece_
i Je Foo ember
>svgn tou |
resanee-
comecien os *
ew |
bee |
soutee Dara |
say Opn
‘Scars Optom
Figure.
2-6 Modeling the second floor using copy and paste commandsSTAAD.PRO CONNECT Edition Fundamentals ENGR. Jon»
i "AU Og,
7) Adding slope to Roof frame level.
Press Shift + N to show node numbers. Set the cursor to Node Cursor,
Select nodes 17,18,19 and 20 and move by 0.5m towards Y-direction.
FIGURE 2-7 Adding slope to Roof Frame level
8) Select the 3 members highlighted in red and do a translational repeat 6 meters 1018
direction.a —_
SA
STAD PRO CONNECT Esition Fundamentals ENGR, JOHN PAUL DELA RO:
49). Insert midpoint nodes on 2 beams to establish bracing nodes.
Press mouse right-click and select Insert Node command
Qecommncs Suc bt
oo ox
or cue |
Fomuerset
sgn eas
ceomecteos *
ere.
bees
Some.
sense aga
ity Open
Soeur Tosi Opto
FIGURE 24 Inserting midpoints on beams
10) Do right-click, select Add Beam command and then add braces. It is recommended to model
the members always in a positive direction. In this case, the modeling of braces should start
from down to up.
1 Qiacenmns Soucy |
bie Peawe
[sod oon a
| =
omen ,
1 Sette #
Sc oa
FIGURE 2-10 adding braces
7
| eeSTAAD.PRO CONNECT ation Fundamentals
11) Select the 4 beams and insert 2 nodes between each beam.
12) Adding secondary beams,
Do rightclick, and select
fo model the members always in a positive direction. in this case, the model
Should start from left to right,
Soenaien.
Scee Dagon
Open
Secs Cor
Sul ooosraao PRO CONNECT Elon Funes
13) befining and assigning concrete sections
‘00x60 - rectangular columns
soodia - circular columns
‘600x400 - rectangular beams
ENGR. JOHN PAUL DELA ROSA
FIGURE 2-13 Defining concrete sections
a
ZMasnat
concrete
FIGURE 2-14 Rectangular Section for columns
©
aaenat
concrete.
FI
'GURE 2-16 Circular Section for columns
——
6
(al
|
3
vo [06 ie
9
Mater
concrete
FIGURE 2-15 Rectangular Section for beamsSTAAD.PRO CONNECT Edition Fundamentals
14) Assigning 600x600 mm column sections
eae
[%) =
Figure 24
RE 2-17 Assigning Rectangular Section to, ‘columnsSTAAD PRO CONNECT Eaition Fundamenta’s ENGR. JOHN PAUL DELA ROSA
16) Assigning 600 mm diameter column sections
ik
FIGURE 2-19 Assigning Circular Section to columns
17) Adding and assigning steel sections
HP12x89 - columns sections
W16x67 ~ girder sections
W14x53 - secondary beam sections,
2L100x100x10 ~ brace sections (double angle back to back)
¢
ie
ie
a
[
Et
ume
FIGURE 2.20 Adding steel sections using Section Database
41D.PRO CONNECT Edition Fundamentals
18) Assigning HP12x89 to columns
Eemgreey
URE eT eT
19) Assigning W16x67 to girders
ao =
FIGURE 2-22 Assigning girder steel sectionISTAAD.PRO CONNECT Edition Fundamentals
20) Assigning W14x53 to secondary beams
ey Emeae
ENGR. JOHN PAUL DELA ROSA
rw
4 eae
FIGURE 2-23 Assigning beam steel section
21) Assigining 2L 100x100x10 (double angle back-to-back sections) to chevron braces
[Devens Wale " a
ff J A _
“ = he sy “
Pe
Ye 1
#FIGURE 2-25 Assigning beta angle to columns
23) Press right-click and show 3D rendered View
FIGURE 2-26 Assigi
ning beta angle to columns Structures rendered view
ENGR JOM Pat
st ea
S|
Sutentioce
vapeur
oes
Ooeaion 4
Since Doors
aol Open
Sac Tot On
eestAAD.PRO CONNECT Eatlion Fundomentots ENGR. JOHN PAUL DELA ROSA
The past exercises aim to train the users on how to model concrete and steel columns, beams, and
the users on how to model finite plate element applications for slabs,
braces. The next exercises will tr
‘and mat foundation analysis.
walls,
24) Modeling suspended slab.
on Geometry Tab > Generate Mesh > Create Mesh
: LP aloe TC, omen
4S eh Ror & lignes i 7S Gocmg oe qatar
outa ae
= - as ee
: ; ere
(B booscal Mode the meh speciation i
ce
FIGURE 2-27 Generate Mesh command to model meshed plates
25) Pick the 4 nodes in counter-clockwise rotation starting from node 1. Then Choose quadrilateral
meshing
Rion cacy ay Pons — namin panos hee toe hes a
SEE al
FIGURE 2-28 Slab modeling sequence; ENGR. Jb Pg
6) We
wane snesh the plate into a t-meter size mesh. User may also refine the mesh Size
wa S. Better Accuracy can attain using smaller sizes of mesh, however, this will att, ity,
"© which will take longer. ie
‘Alvuniserein
FIGURE 2.28 Mesh Parameters to control the sizeof mesh ofthe suspended slab
FIGURE 2-30 STAAD.Pro model with suspended meshed slab
46STAAD.PRO CONNECT Eaifon Fundamentats ENGR, JOHN PAUL DELA ROSA
27) The next exercise applies to modeling either slab-on-grade or mat foundation. In this example
model, a mat foundation will be used.
Pick the 4 nodes in counter-clockwise rotation starting from node 1. Then Choose quadrilateral
meshing.
Donne woe sane
FIGURE 2-31 Mat foundation modeling sequence
28) Mesh the mat foundation plate into a 1-meter size mesh.
Mode! Neme I
canes Legh es 8 Dison EtenentTyp0
| x ¥ z Long (mi) OT
| oa, OThengle
| sB Re] #6 a
: : @ ove
alas ja fe sc 6 @odaion
e138 | 4 |e a 6
O54 | ox 6
Allunits rein om Apply Cancel
FIGURE 2-32 Mesh Parameters to control the size of mesh of the mat foundation
aBe ee eee
STAAD.PRO CONNECT Eatin Fundamentals ENGR, JOHN Pay
X
29) Copy and paste some of the plates to complete the whole mat foundation whose eq,
meter offset from the columns. Sal Coe
: wo
. °
7 |
] 8
T |
+ 4|
al
Ss Ses 64
FIGURE 233 STAAD.Pro model with complete mat foundation model
30) The next exercise applies to modeling shearwall, basement wall, and retaining wall. In this
training, the plate model will be used as a retaining wall.
Pick the 4 nodes in counter-clockwise rotation starting from node 1. Then Choose quadrilated
meshing. }
Bsrcarst ioe Scere Sea ewe rere
| [esac weve wee x
| avgeeateanag |
i 7 | womans |
é z : co = |
FIGURE 2-34 Retaining wall modeling sequenceaS.
STAADPRO’ CONNECT Edition Fundaments ENGR. JOHN PAUL DELA ROSA
31) Mesh the retaining wall plate into a 1-meter size mesh.
Select Meshing Parameters *|
NodelNeme (Guede ieee )
cone Leng ies & Oren Element Type
x z Longin) Bet OM hae
75 2 os 6 ca
fe | @ovedsaterl
29 @>
FIGURE 2-35 Mesh Parameters to control the size of mesh of the retaining wall
| |
FIGURE 2-36 STAAD.Pro model with 2 complete retaining wall model
4”STAAD.PRO CONNECT Eeiion Fundamentals ENGR, JON ogy
h
32) Defining and assigning plate thicknesses
Suspended slab = 200mm
Retaining wall = 300 mm
Mat Foundation = 600 mm
FIGURE 2-37 Defining plate thicknesses
33) Assigning thickness to the suspended slab which is 200 mm
[eames Geos Natens Socios Suppor tasng Ansar
z Ls
[
Sen Gani
] 2 Pa Scien on
2 ea |
% :
‘ce q
j
ale rnc ped Geomery
ja NS et oe
Veer SectenDaabe
" sesrnntitos nee
Wis ToSuncasPns Ou
mgs tot One
waa
(rece Tomo Tos
y sacs
FIGURE 2-38 Assigning thickness to suspended slab
50ition Fundomentos ENGR. JOHN PAUL DELA ROSA
{AAD PRO CONNECT
34) Assigning thickness to retain wall which is 300 mm
depend
Siertosuntrens — QUteCe Tokay
[nto
FIGURE 2-39 Assigning thickness to retaining wall
35) Assigning thickness to mat foundation which is 600 mm
[emmenemng Gomer Tames ears Sipps tonto
[Dass woes
fi
|
| x“
= Seto |
* 2 3 Se Bee won
|S ie i
“ "e 5 Eiemosen He
: Per eee
5 i i |
i. ee |
Pam aN |
| strom oan. ||
|:
| ” oem |
! | Girrosacnonan — Ovecetone |
FIGURE 2-40 Assigning thickness to the mat foundation
fetire, eeea ENGR. J
APLFRO CONNECT edniin pundarnantoh Or Pa
My
36 \
» APPlying fixed and pinned supports:
revent any translati
At fixed suppor, all degrees of freedom is restrained t0 prevent any on ora,
freedom are restrain
ACa pinned support, the three translational degrees of f bate
Fotational degrees of freedom are unrestrained.
——— =a —
ee
a oct
FIGURE 2-41 Defining fixed and pinned supports
ie =a
Bosses - noe ste
Fixed supports
AGURE 2-42 Assigning fixed and pinned SUPPOrS
FlTAAD.PRO CONNECT Edition Fundamentals ENGR, JOHN PAUL DELA ROSA
37) Defining and applying foundation(spring) supports
‘A Foundation type of support is available in STAAD.Pro to model the effect of soil acting as a
linearly elastic spring. A discrete spread footing or a mat foundation can be modeled using this
support specification, Foundation supports incorporate the Modulus of Subgrade Reaction (Ks),
‘a quantity that specifies the amount of force required to displace a unit area of soil by a unit
distance.
Below is a quick calculation of the value of Ks,
Ks
ks
SBC
SF
8
SBCxSF/5
subgrade modulus in kN/m2/m.
= soil bearing capacity in kN/m2
= safety factor = 3 (See Foundation Analysis and Design by Joseph E. Bowles)
= allowable settlement = 25mm
(See Foundation Analysis and Design by Joseph E. Bowles)
hence, Ks = SBC x 120
‘Assuming SBC = 100 kN/m2,
Ks would be 100 x 120 = 12,000 kN/m2/m.
| create Supper
x
Fued Pred —“FawdBut —Eovcad—_ErforacBut
inner Sping Foundation Incined_Tension/Compression On Spings
sete
ox ov oz
ae |
[lhinstence aes tenho |
Gane Conersson Onna ping
Snene Carpressin Ol
FIGURE 2-43 Foundation spring supports
parameters
Aaa Cancel Hep
Tick Compression-Only option to have the support behave as compression-only springs, so it will not resist any
developing uplift forces.
53