Algebra Loudon
Algebra Loudon
OFFICE Cb
Presented to the
library of the
UNIVERSITY OF TORONTO
by
Gopp, Clark Pitman Ltd.
m
:
BY
TORONTO
COPP, CLARK & CO., FRONT STREET,
1876.
Entered according to Act of the Parliament of Canada, in the year one
thousand eight hundred and seventy-six, by James Loudon, M.A.,
Toronto, Ontario, in the Office of the Minister of Agriculture.
PREFACE.
September, 1875.
CONTENTS.
PAGE.
I. Introduction i
II. Addition..... 8
III. Subtraction 16
IV. The use of Double Signs and Brackets 20
V. Multiplication 23
VI. Division 30
VII. Examples involving the application of the first -
four Rules 39
VIII. Simple Equations 42
IX. Problems 49
X. Particular results in Multiplication and Division 55
XI. Involution and Evolution 61
XII. The Highest Common Measure 72
XIII. The Lowest Common Multiple 84
XIV. Fractions 88
XV. Simple Equations, continued 105
XVI. Problems, continued 108
XVII. Quadratic Equations 113
XVIII. Problems 119
XIX. Simultaneous Equations 123
XX. Problems 129
XXI. Exponential Notation 133
Answers 141
— ;
ALGEBRA.
CHAPTEE I.
INTBOD UG TION.
1. The operations of addition and subtraction, which in
Arithmetic are stated in words, are denoted in Algebra by
the signs + and — respectively. ,
2. The sign + is called the plus sign, and the sign — the
minus sign.
Thus, 24+2—15, is read 24 plus 2 minus 15.
Exeecise I.
(3.) From the sum of 11, 35 and 6 ; take 17; from the sum
of 81 and 75 take 69 and 42.
B
;
2 INTRODUCTION.
$150 to one man, and $280 to another and there are owing
;
INTROD UCTION. 3
Exercise II.
Exercise III.
(6.) a 2
+ F- + c 2
. (7.) 4a 2
+ 36 2 - c 2 . (8.) 5 a d + 46 3 - cU
/o \ a ^ /in\ c a cc /11 N ab ad bx
(9.) -
+? (10.) 3- ?+? (11.) 5-
e+
^--.
^ j
oF2 ""3?5
+ 8^ T
2 4,
a , %x 6a2 b •
= a 6"
= *X = ~~
a
%
2 i' >
~~~T
>
Exekoise IY.
5x
+§«, -lie.
(7.) Name the like quantities among 2x, ax, x, 3cx2 .
—a2x.
(9.) Name the like quantities among —3a?x, ax2 abx2 , ,
+ 2a 2
a?, — ax2 .
( 8 )
CHAPTEE II.
ADDITION.
I. Figure Symbols.
+2+|+|+5 =+8ft.
The Algebraical statement
+5 + 6+J+3i = +14f
ADDITION. 9
-200-60-500 = -760
may be read, if a dollar is the unit understood, the sum of a
loss of 200 dollars, a loss of 60 dollars, and a loss of 500 dollars
is equivalent to a loss of 760 dollars. It may also be read, the
subtraction of a gain of 200 dollars, a gain of 60 dollars, and a
gain of 500 dollars is equivalent to the subtraction of a gain
of 760 dollars.
lO ADDITION.
+ 5-2 = +3.
In Algebra +5— 2, or +3, is called the sum of +5 and
-2.
Thus, +7-5, or +2, is the sum of +7 and -5 ; +f -i,
or +i, is the sum of +t and —
Again, since to add 2 to a number and then subtract 5
is equivalent to subtracting 3, we may write
+ 2-5 = -3;
that is, in Algebraical language, to add +2 and —5 to a
number is equivalent to adding —3.
The statement
+ 7-5+2= +4
may therefore be read, in Arithmetical language, to add 7 to,
(i.) When the signs are all alike— Find their Arithmetical
sum, and prefix the common sign.
Examples.
+4+3+^+7= + 14i.
(2.) The sum of -5, -12, -f, and -3 is
-5-12-1-3= -20f.
(3.) The sum of +4,-2, -3, +5, and +7 is
+4-2-3 + 5 + 7- +4+5 + 7-2-3
= +16-5
= +11.
Here +16 is the sum of the positives, and —5 of the
negatives ; 11 is the numerical difference between these sums,
and has the sign of the numerically greater + 16.
(4.) The sum of + i, -2, -i, +1, and -f is
EXEECISE V.
Find the sum of
(1.) + 2, + 5, +18. (2.) +i +3, +1.
(3.) - 8, -13, - 7. (4.) -f, -1, -f.
(5.) +18,-13. (6.) -26, +20.
(7.) +*, -f (8.) -f, +1, (9.) +2-5, -3-2.
(10.) +2, -3, +12. (11.) 3, +4, -6, +7.
(12.) +5, -8, -12, +3. (13.) +J, -1, +i, -f
(14.) -f, -i, +2, -i, + fc
(15.) +2-58, -3-26, +1*089, -0'067.
Examples,
Exercise VI.
Find the sum of
(1.) +a, + 2a. (2.) + 3a, +5a, + 7a. (3.) -a, -4a
(4.) -2^ -6a, -5a. (5.) + 5x2 -3a2
, .
(6.) -a2 + 4a
,
2
. (7.) + 4a, -7a. (8.) -*2c, + 5c, + 7c.
Examples,
7a + b.
2— 6&— 3cc*/
1 +4cc?/ + 2 cc
(4.) Add together \a— \b— lc, J& + Jc + ia, ^c— |a—
EXEECISE YII.
Find the sum of
(1.) 2a, -3b. (2.) -x, +32/. (3.) ~2x, -3y, -z.
(4.) 3a, 2x, -5y. (5.) 4, -a, 2y. (6.) a 2, -6 2 ,
(20.) + a +
&-
J +
f
—
( 16 )
CHAPTEE III.
SUBTRACTION.
Add the first quantity to the second with its sign or signs
changed.
The reason for this rule will appear from the following
Examples.
SUBTRACTION. 17
3x 2 + ?/
x 2 — 5?/
2x 2 + 6?/
Hero 2x2 is the sum of 3x 2 and — 2
; and + $y of +y and
Exercise VIII.
o2
— ;
( 20 )
CHAPTER IV.
sum of —hx, -rSy, and —1; 7a— +23 the difference between
7a and + 2>; — 2x 5 the difference between — 2x and —5;
4a 2 7 £Ae difference between 4a 2 and —7.
Exercise IX.
Eetaining the given quantities, denote by using the double
signs and brackets (when necessary) in the following opera-
tions :
— + , + —
USE OF DOUBLE SIGNS AND OF BRACKETS, 21
+ + = -- = +,
The sign + before a bracket does not change the signs within,
whilst the sign — changes every sign within.
Thus 4 + (5 - c) = 4 + 5 - c,
2a + (— cc + c— 2^)=2a— cc + c— 2d,
4a2 - 1 - (2 b 2 + c) = 4a 2 - 1 - 25 2 - c,
3 # - ( - 4?/ + 5 ) = 3# + 4?/ - 5
a— (#—3) + 4— (— 3# x)=x—y + s + 4 3y —as.
—
22 USE OF DOUBLE SIGNS AND OF BRACKETS.
Exercise X.
C 23 )
CHAPTEE V.
MULTIPLICATION.
(2a -1) (-b) the product of 2a -1 and -b; (x2 -3) (2a; + 5)
the product of cc
2
—3 and2sc + 5; and (x—1) (cc + 2) (2x— 5)
the product of x + 2, and 2x—5.
Exercise XT.
Express in Algebraical language, retaining the given factors
and using brackets when necessary :
-2x + 7.
(2.) The products of —2a2 , Z>
2
— 1; a2 — 1, —3a; 5x,
-a + 3. 2
Thus a • a 2 =a 1+2 =a 3 ,
a2 ' a s =a 2+3 =a 5 ,
a4 - a7 ==a4+7 =an .
Examples*
Exercise XII.
Find the product of
(1.) +37, -25; -a, +5c; -2a2 -35; ,
5cc, — G?/.
(2.) 2*&, -7c 2
;
-4a 2
,
+5fo; -2^,8^; -6, -8a.
(3.) — lx, By; |a, -2b; —\x —\y\
}
2a 2 , — |/
(4.) 2xy 2 , —3x2y ; — ax y, 2
—dxy*; \ab 2 c } — |a 2
Z>c
3
.
W a __2a 2
5* ~3~ '
a& a 2 5 3
5"'
T ;
_2xy 2 3x2y 3
"8""
~5~' J
__axy 2 __5x2
T' T'
44. II. T7*e product of a simple and a compound factor is the
Examples.
Exercise XIII.
Find the product of
(1.) 4a-3&4-c, -2x; 3a?-2x + l,4y; 2a5-3c, -d
(2.) x 2 -2x-5, 3x; 2a 2 -3a4-7, -a3 x 2 -ax + 2a 2 , -4acc. ;
2
(8.) |?(6a - 9a 4- 12) ;-
2
(- 10 4- 2x- 15a ). 3 -
to 8«c-12&c + 10arf-15fcc?.
The work may be conveniently arranged as in the following
Examples.
(1.) Multiply 2z2 -Bx + 5 by 4a-7.
2^2 -3x + 5
4a; -7
-Iix 2 + 2Ix-35
8x -26x2 + 41cc-35.
3
2$ MULTIPLICA TION.
.1— 2x + 3x-
2 + das— 5x 2
2a — a& + 5
2 2
a 2 + a&-3£2
Exercise XIV.
Multiply together
(5.) xy + 2 cc?/ — x
tu
, + x?/ y 2 x — 2?/.
2
; cc ,
2
(8.) x — I, x 2 — % a +
1
a— -J; 2a — a-fj.
; 7r,
Examples.
x3 —3x 2 + 2jc
cc
3
— 6x + llcc— 6.
2
Exekcise XV.
Multiply together
(5.) as
2
-f 2ax -f a2 , x 2 — 2ax + a2, cc
4
+ 2a x2 + a\
2
( 30 )
CHAFTEK VI.
DIVISION.
by x 3 — 4x + 3.
DIVISION. 3*
Exercise XVI.
Eetaining the given quantities and employing brackets only
when necessary, express in Algebraical language
(1.) Divide 2a-5 by -3a; 4a 2 -3a + l by 3a-4.
(2.) Divide 2a by -3b; -x 2 by +2x; 3x by 2a.
(3.) Divide Ax2 by 2x— 5; —ax 2 by x—a.
The mode of performing the operation of division
51.
whereby quotients are expressed as mononomials or polyno-
mials will now be explained. We shall consider in order
three cases
I. W hen the Dividend and Divisor are Mononomials.
II. When the Divisor only is a Mononomial.
III. When the Dividend and Divisor are Polynomials.
52. I. The quotient of one mononomial divided by another
The reason for this rule will he evident from the following
examples :
a3
From (10) — = aaa = act =cr =crn_i ? 1 *
a a
5
a aaaaa
-=aa = a'=a°
cr acta
a 7 aaaaaaa
-=aaa = a3 =»7 " 4 :
aaaa
So likewise
a — ay«_9^ — rr* 4.
a1
eiual
1
to unity. Thus ~=1 ;
and, by the rule, %=za2 ~2 =a° :
cr cr
Examples.
+*-r— >- j- v.
Exercise XVII.
Divide
——
6x 2 + 8x divided by — 2x
3
Thus the quotient
sum of the quotients 3x 3 -i
of 3cc
— 6x2 ~ 2x, +8x-i
2x, — is the
2x;
and is therefore equal to — fx2 + 3o5— 4.
Examples.
— 4x + 2.a5.—l.2
Thus 2ax-3x=(2a-3)x.
(4.) Collect coefficients of x2 in 5ax 2 — bx + x
2 2
.
Sax2 — bx 2 + x2 = (5a b + 1) x 2 .
EXEECISE XVIII.
Divide
^=i(2a^3%
DIVISION. 35
Examples.
3x + 2) 6x 3 - 5x 2 - 3x + 2 (2x2 - 3x +
6x 3 + 4-x2
"~-9®2 -3®+2
— 9cc — 6x
2
~~3x + 2
3x + 2
2x - 1) 6x 4
+ 5a; 3 + 6x - 17 x + 6 (3a)3 + 4a; 2 + 5a; - 6
2
6a4 - 3a3
8x3 + 6x2
8a;3 — 4a; 2
10^1703
10a;
2
- 5a;
-12a; + 6
-12a; + 6
1 - 2x + a; 2) 1 - 2a; 3 + x (1 + 2x + 3x 2 + 2a; 3 +
6
a;
4
l-2a; +a; 2
2a;— a; 2 — 2x 3
2a; - 4 + 2a;
a;
2 3
3
3a;2 -4a;
2a;
3
-3a; 4
3
2a; -4a 4 + 2a; 5
;
a;
4 — 2a; + 5
a;
6
x*—2x 5 + x 6
2 2
4ta b -6ab3
1 a a
DIVISION. 37
EXEECISE XIX.
Divide
(8.) a4 + a2 6 2 + Z>
4
by a2 -ah + 2 .
Example.
Exercise XX.
CHAPTEE VII.
(1.) I buy goods for 2a+3&— c dollars, and sell them for
4:a—b + 2c dollars what do I gain ?
;
4a— h + 2c
2a + Sb-c
2a-46 + 3c
.•.the gain, which is the selling price less the cost price, is
2a— 4&-l-3c dollars.
cc+2)3xH7a; + 2(3^ + l
Sx 2 +6x
cc+2
£
does he walk how far will he walk in 5 hours and how long
; ;
. „ „ ~ „ „ 1 hour,
y
and 1 mile in ^ hours.
x
Again, Y he walks - miles in 1 hour,
y
:. „ » - » „ 5 hours;
y
and v he takes ^ hours to walk 1 mile,
x
„ „ — x
» » „ 12 miles.
y y
hours.
Exercise XXI.
he on the road ?
(6.) A has x dollars, B 50y cents, and C 75z cents ; how
many dollars have A, B, and C together ?
EXAMPLES OF THE FIRST FOUR RULES. 41
altogether?
CHAPTER VIII.
SIMPLE EQUATIONS.
SIMPLE EQUATIONS, 43
I. Transposition of Teems.
II. Clearing of Fractions.
44 SIMPLE EQUATIONS.
I. Transposition of Terms.
an equation contains no fractions it may be solved by
73. If
transposition of terms, which consists in talcing the unknown
quantities to one side of the equation and the known to the
other, the signs of the quantities which are so transposed being
changed.
Thus, if the equation is 4cc + 5=10, by subtracting 5 from
each side we get
4^ + 5-5=10-5,
or 4cc=5;
and so any quantity may be transposed from one side to the
other by changing its sign.
Examples.
(1.) Solve 5^ + 15=25.
Transposing + 15 we get
5^=25-15=10.
The value of x is then found by dividing both sides by its
coefficient 5.
.\ x=2.
(2.) Solve 8#-4=2x + 20.
Transposing —4, 8x=2as + 20 + 4.
Transposing 2x, Sx — 2x = 20 + 4 ;
6x=24.
;.x =4.
SIMPLE EQUATIONS. 45
2ab — c
— ; ;
46 SIMPLE EQUATIONS.
Exercise XXII.
= L
l-g g~
(1.) Solve
/0
(2.)
N a
Solve _+^
x—1 ,
2^ + 3
__,
= 6x + 19
Multiplying by 24, the l.c.m. of 2, 3, 8,
SIMPLE EQUATIONS. 47
X + 3 = i(2a> + 3),
It must be observed that ~^\(x-Y\ ??£
A o
18-3(x-l)+2(a + 2)=0;
whence on clearing of brackets and transposing we get
o;=25.
EXEKCISE XXIII.
x/
(4.) ^ 4
+ ^=10.
6
(5.)
y
5=§ + «=20-2^.
2 3 2
(13.) *+f£^-^-9*=0.
(14.) 4x+2Jx +-(-~-) =^+lf.
/1^\ -+ ^ - — 2
£C : 305 i__05 —
T
,
(15.) g-.
(ib.) --+.
5
_+__ g -,,
/i q \ ^__2:c_L 3a?__4i; 2(^ — 3) _^
^ ;
2 "3 T 5" 9
'
(20.) | (*-8)-?^-g=a
—
( 49 )
CHAPTER IX.
PROBLEMS.
PROBLEMS.
find them.
x + 3cc + ^=50.
o
.\ 8 = 12,
3cc=36,
PROBLEMS. 5i
will they meet, and how far will each have walked ?
4a + 5a =90.
x=lQ.
»\ 4a =40, and 5a =50, are the distances in miles walked by
A and B, respectively.
(5.) How much tea at 90 cents per lb. must be mixed with
50 lbs. at $1*20, that tbe mixture may be sold at $1*10?
Let x = the number of lbs. at 90 cents, the value of which
will be *90a dollars.
Exercise XXIV.
(1.) Divide 25 into two such parts that 6 times the greater
exceeds twice the less by 70.
(2.) Divide 135 into two parts such that one shall be f the
other.
(4.) A fish weighed 71bs. and half its weight ; how much
did it weigh ?
(5.) At a meeting 43 members were present, and the motion
was carried by 9 how many voted on each side ?
:
e 2
52 PROBLEMS.
(6.) Divide 326 into two parts, such that f of the one shall
be equal to the other diminished by 7.
(7.) What is the number whose 4th and 5th parts added
together make 2J ?
(8.) Forty-two years hence a boy will be 7 times as old as he
was 6 years ago how old is he ?
:
(15.) Two men receive the same sum but if one were to
;
(21.) How many lbs. of tea at 2s. 6d. per lb. must be mixed
with 18 lbs. at 5s. per lb. that the mixture may be sold for
4s. per lb. ?
(22.) How much sugar at 4^d. per lb. must be mixed with
50 lbs. at 6£d. per lb., that the mixture may be worth 5d.
per lb. ?
A bag contains a certain number of sovereigns, twice
(23.)
as many shillings, and three times as many pence and the ;
and pence.
(24.) I wish to divide £5 4s. into the same number of
crowns, florins, and shillings ; how many coins must I have
of each sort ?
(25.) A
person gets an income of £550 a year from a
capital of £13,000, part of which produces 5 per cent, and
part 4 per cent. what are the amounts producing 5 and 4 per
:
cent., respectively ?
(27.) A
garrison consists of 2600 men, of whom there are
9 times as many infantry and 3 times as many artillery as
there are cavalry how many men are there of each ?
:
54 PROBLEMS.
been born 100 years ago, I should have been born 15 years
before my grandfather how old am I ?
:
was he absent ?
(31.) A contractor finds that if he pays his workmen
2s. 6d. per day, he will gain 10s. per day on the job if he ;
pays them 3s. a day, he will lose 18s. how many workmen :
are there, and what does the contractor receive per day?
An officer on drawing up his men in a solid square
(32.)
findshe has 34 men to spare, but increasing the side by 1
man he wants 39 to make up the square how many men :
had he ?
(33.) If the mean velocity of a cannon-ball at effective
ranges is 1430 feet per second, and that of sound 1100 feet,
how from a fort who hears the report of a gun
far is a soldier
9
To of a second after he is hit ?
(34.) An army in a defeat loses one-sixth of its number in
killed and wounded, and 4000 prisoners. It is reinforced by
3000 men ; but retreats, losing a fourth of its number in
doing so. There remain 18,000 men. What was the
original force ?
CHAPTER X.
(a + b) 2 =a + b + 2ab,
2 2
la-b) 2 =a + b2 -2ab,
2
(a + b-c) 2 =a + b + c2 + 2ab-2ac-2bc,
2 2
&c. = &c.
Thus in the last example a2, +b2} + c2, are, respectively, the
squares of a, +b, —c; +2ab is twice the product of a and
+ — 2ac is twice the product of a and c, and 2bc is twice — —
the product of +b and — c.
Examples.
(1.) (a + 2x)
2
=a2 + 4a + 4aa.
2
Exercise XXV.
Write down the squares of
(1.) x— 1, x + a, cc— 5, x + 3.
(2.) 2a; + 1, to-l, 2x + 3, 3x-2.
(3.) x2 -a, 2xy + l, Zx -2a, ax2 -kb.2
0 +l)0
2 2
-l) =a -l; 4
2 2 4 2
(5cc +4?/) (5x -4?/) =25cc -16*/ ;
(2x3 + a 4 ) (2x 3 -a ) =4;x -a s
4 6
;
=249999.
MULTIPLICATION\AND DIVISION. 57
Exercise XXVI.
Write down the products of
(1.) x— 1, + 1;cc a + 3,a—3; 2 + x,2—x.
(2.) 2x + l, 2a?— 1; 5a + 2, 5a-2; 4x + a, 4cc-a.
(3.) a 2 + x, a2 -cc; a 3 + l, a 3 -l; a 5 + x 2 , a 5 -x2 .
2 2
(4) 3a + 26, 3a -26; 4a3 + 2x 2, 4a 3 -2x- 2 ;
7a 4 -5a 3 ,
7a4 + 5a3 .
(5.) Find the products of 48, 52; 95, 105; 695, 705.
( a a
+ &2 + a&) a -6)
( =a3 -b 3
,
Examples.
(1.) (x -cc + l)
2
0 + 1) =cc 3
+ l.
Here the two quantities are x and 1.
(4.) (x*-a 2 x 2 + a 4 ) (x 2 + a 2 ) =x + a 6 G
.
2
Here the two quantities are 2x and —3y } the cubes of
which are 8x 6 and —21 y 3 .
58 PARTICULAR RESULTS IN
Exercise XXVII.
Write down the products of
(1.) m — mn + n m + n; p +pq + q ,p—q.
2 2
,
2 2
(2.) m — m + 1, m+1; 1 + q + q 1— q,
2 2
,
(6.) a;
4
+ as
2
+ 1, cc
2 —1 ; a?
6 -— a 2 x 3 + a*, x 3 + a2 .
x
-±i
Thus, =i,
x+y
t±yl= X*- Xy + y\
x+y
x ~^~y
= — x y + x y — xy
cc
4 3 2 2 5
+ w4 ,
&c.=&c.
It will be observed that the signs of the quotient are
alternately + and — and , that the successive powers of x
are in descending whilst those of y are in ascending order.
Thus, —
x—y
V- =1,
^J^JL=x2 + xy + y 2
x-y ,
x—y 9
&c.=&c.
x y .
83. VI. The difference between any the same even powers of
tivo quantities is exactly divisible by the sum of the quantities
and also by their difference.
Thus (i.)
K }
~~zt=x-y,
Ji
v+y
4
oc —y*_
' •x 6 —x y-\-xyl —i
l
x+y
x —y 6 Q
x 5 — x*y + x 3y 2 — x2y 3 + xy* — y 5 ,
x+y
&C.=&C
(ii.) ^= x + y 3
x-y
x^—y 4-
x3 + 2
y + xy
2
+ 3
x-y ,
x —y 6 G
x 5 + x*y + x 3y 2 + x2y 3 + xy* + y 6 ,
x-y
&c.=&c.
Exercise XXVIII.
(7.) |a 4 -x 6 divided by ha 2 + x 3 .
CHAPTER XI.
f
84. The process by which the powers of quantities are
Impressed as mononomials is called Involution. The powers
If polynomials when so expressed are said to be developed, or
mjoanded.
Exercise XXIX.
j
Eetaining the given quantities, denote
Thus, (a 2
y=a 2
-a -a
2 2
=a 6
;
3
(a y=za 3
*a
3
=^a (i
(a 3 ) 4 =a 3 'a 3 -a 3 -a 3 =:a 12 ;
(a±y=a12 ;
(a 5 ) 3 =a 15 ;
88. So also
(am bPc*ys£safm 'VM 'cz n 9
&c.
(aW) ~a<W 3 2
;
(ab 3 c 5 y=2a 4 b l2 c 20 .
parts are arranged in rows. In the first row occurs the square
of the first term of the given quantity ; in the second row the
product of twice the first term added to the second and the
second; in the third row the product of twice the first term
added to twice the second term added to the third term and the
third ; and so on*
Examples,
(1.) (a + 5) =a
2 s
-.2
(2.) (b-cy~b 2
+ (2&-c) (-c)=&c.
INVOLUTION AND EVOLUTION. 63
2
+ (2a -&)(-&)
+ (2«2 -2Z> + c )c2 2
Exeecise XXX.
Express as powers or products of powers
(1.) O) 2 3
,
(2x2) 3 , (a 3) 3 , (2x3) 8 , (3a 2 ) 4 .
(2.) (ax2 )2 } (A ) 3 2
,
(a2 *; 3 ?/ 4 ) 2 .
(3.) (abc
2 2 2
)\ (a bc f } (2aW)3 .
Expand
(5.) (a; + l)2 (2x-3) 2 (*2 -5)
, ,
2
,
(cc -2a2) 2
3
.
(6.) (x + 2x + 3) 2 (x 2 -3x + 4) 2
2
, ,
(2x3 -x2 + 5) 2 .
*I 5a 2 „ cube „ 5a2 ;
4/^2T3 „ fourth „ a 2 + 3;
^ # (a»-2a + 3) denotes the fifth root of a -2a + 3. 2
64 INVOL UTION AND E VOL UTION.
a/Vcc 5 —x + 1
8
„ cube „ vV— £c
3
+l.
V
a*/ nf
V« =
mn
va.
I
95. The reason of this rule will appear from the following case t—
Let \/ fj a~x. Then on cubing both sides of this equation we have
tj a = x z .
Squaring a = x6 .
Exercise XXXI.
it follows that
J a — 2ab-\-b t=za—
2 2
}
or —a-\-b ;
~±{a-b);
*J {p? i- b
2
+ c2 — 2ab -f 2ac -- 26c) =a—b + c, or — a + b—c
= ±(a—b + c).
In the following examples we shall only determine that
square root of a polynomial whose leading term is -h, the
other being derivable by a mere change of signs.
(ii„) The first term of the root is the square root of the leading
term of the given quafitity, from which its square is subtracted^
(iii.) The first divisor is twice the first term of the root added
F
1 1
(iv.) The second divisor is twice the sum of the first and
second terms of the root added to the third term. The third
term is the quotient of the leading term of the second difference
divided by the leading term of the second divisor. The product
of the second divisor and the third term of the root is then sub"
traded from the second difference, leaving the third difference.
Examples.
6a;-2)-12a;+4
4a;
4
- 12x + 5a;
3 2
+ 6a; + 1 (2a; - 3a; -
2
4
4a?
— 4a; + 6a: + 1
2
INVOLUTION AND EVOLUTION 67
2x 2 -2xy)-4:x 5y + 10x 2y 2
—4:X 3y-{- A.x
2
y
2
2x -4ay + 3y 2 2
) 6ctV-lW + V
6^y~12^ 3
+% 4
99. The reason for the rule given in the preceding Article will
appear from the following method of considering the last example.
The given quantity is there seen to be equal to
a*
~-4:X 5 y+4x2y 2
+ 6x y 2 2
-12xy z -{-9y 4 '
that is, to
(x 2 ) 2
+ (2x 2 ~2xy)(-2xy)
+ (2x2 -4xy+3y ) 3y* 2
Now, since a?
4
= (# 2 2
) , the first term, x 2 , of the root is the square root
of a?
4
, the leading term of the given quantity. Also since — 4cX 8
y as
2x 2 (—2xy\ it follows that the second term ~-2xy is the quotient of
p 2
i
y — 2x (?>y
2 2 2 2
leading term of the first divisor. Again, since <ox it '),
2
follows that the third term 3y is the quotient of 6x 2 y 2 the leading ,
second divisor.
Example.
1— 2x (I—as— 2~
1
2-a;)--2a>
-2x+x2
2-2x-%- )-*2
— x* + ar + -r
4
3 &
2
The square root is, therefore, 1— and remainder
A
Exercise XXXII.
(5.) ^ 2
+ | + TV (6.) aM*+f.
INVOLUTION AND EVOLUTION. 69
(12.) 4cr;
6
-4x - llx* + 14x + 5a - 12sc + 4.
5 3 2
comparing the examples given below. We shall first show how the
number of figures in the root is determined by dividing the given
quantity into periods.
Since ^1 = 1, V^ = 10 V 10000 =
0 > 100, ^0000000 = 1000, &c,
it follows that the square root of a number between 1 and 100, that is,
1 figure ; the square root of a number between 100 and 10000, that is
containing 3 or 4 figures, lies between 10 and 100, and therefore con-
tains 2 figures ; so likewise the square root of a number containing
5 or 6 figures contains 3 figures ; and so on. If, therefore, we divide
a number into periods of 2 figures each, beginning at the units, the
number of such periods, whether complete or not, will be the number
of figures in the root.
Examples.
(1.) a a 2
+2a5+6 2 +2ac+26c+c2 (a+b+o
600 + 20 ) 1 69 29
20 124 00
600+40+7 ) 45 29
45 29
3 10'69'29 (327
3 9
62 )169
2 124
647 )4529
4529
the root, and the product is subtracted from 169. To the remainder
is annexed the third period to form the second dividend 4529.
Under the divisor 62 is written its last digit, and the sum forms
the second trial-divisor 64. The third and last figure of the root
is 7, because when annexed to the trial-divisor to form the
INVOL UTION AND E VOL UTION. 71
second divisor, the product of 64-7 and 7 is equal to 4529, the last
dividend.
4825 27023
5 24125
48306 289836
289836
( 72 )
CHAPTEE XII.
2
of 5x2 (x-1) (?/ -l).
108. When
one quantity is a measure of two or more others,
it is common measure of those quantities.
said to be a
Thus 2x is a common measure of 4x 2 and 2x 2 — 4cc, and cc—
is a common measure of 2cc— 2, cc 2 — 2x + 1, and cc 2 — 1.
Examples.
99 99
b
U 99 39
b2 1-
U
(2.) Find the h.o.m. of 12x y 3z*, 16x3y 2z3, and 28x *yz\
2
99 99 V 99 93 2/ >
99 99 & Jf 9f Z3 j
h.o.m. is &x2yz\
rule:
Examples.
(2.) Find the h.c.m. of 15xy 2z3 and 1Q# 3 ^V— 15a%V
+ 20x2y 2z 3 .
Exekcise XXXIII.
(ii.) Divide this into the other multiplied by the least number
which will make its leading term a multiple of the leading term
of the divisor. When this number is unity, actual multiplication
may be dispensed with.
(iii.) Divide the first difference by the highest mononomial
(iv.) Bepeat the steps (i.), (ii.), (iii.), with respect to this last
quotient (or difference) and the first divisor; and so on, until there
is no difference.
Examples.
2
(L) Find the hx.m. of 2x2 -7cc + 5 and 3cc -7cc+4.
2oc
2
-7a; + 5)6x 2 -14x+ 8 (3
6cc -21x + 15
2
7)7a>- 7
a- 1
x-l)x-l(X
0-1
:
The process thus terminates and the h.c.m. is the last divisor
as-1.
2cc
2 — 2x
—5a? + 5
3x2 -7x+ 4
2
2x2 -7x + 5) 6x 2 -Ux + 8(3
6x2 -2Ls + 15
,7 )7s-~7
x~ l)2.x 2 -7o:+ 5(2a-*5
2a;
2
-2a
-5£c + 5
H.C.M. ^03— 1. — 5cc + 5
(2.) Find the h.c.m. of a 2 +2jc— 3 and x2 +5x+6.
x 2
+2x-S)x + 5x + 6(I
2
x 2 + 2x-3
3) 3a; + 9
^ + 3)a 2 + 2a-3(cc--l
a: + 3a;
2
—x—3
H.C.M. —a: + 3. —x—3
Here the multiplication of x 2 + 5x + § by unity is unneces-
sary. The other steps are similar to Ex. 1.
x2 —x—2
2
2x 2 -2x-4:
2x 2 — x—Q
-l)-^+2
~~x~^2) 2x 2 -x-6 (2x+3
2x 2 —4a>
3x— 6
H.c.M.=cc— 2. 3.x—
2
4a; -}-3a;-10
4a;-5)4^ 2 + 3^-10(a;-f2
&c-10
H c.M.^4cc-5,
t 8x-10
Example.
Sx 2
*-4:xy-\-y 2
2
W + xy-Sy 2
) 6x 2 -8xy + 2y 2 (3
e>x + 3xy- 9y
2 2
~- lly)-llxy + ll y 2
x~~y) 2x 2
+ xy — By 2 (2x + Sy
2x 2 —2xy
3xy—3y 2
H.c.M. 3^2/ — 3?/ 2
Here the mononomial factor —11?/ is suppressed.
115. The reason for the rule in Art. 113 will appear from the follow*
ing proposition and its application in the next Art.
When one quantity is a measure of two others, it will measure the sum
and difference of any multiples of them*
Take any multiples pB, qC of B,C, where p and q are any whole
quantities whatsoever. Then, since pB —pmA, qG—qnA 1
B
a
A)aB(b
bA
c)Q
D
Mow, C being equal to aB—bA, or the difference of two multiples
of A and B, is a multiple of all the common measures of A and B, and
therefore of their H.C.M.
Again, every of C and A is a measure of C+bA, or
common measure
aB, and therefore of B, because A has no mononomial measure.
Hence the H.C.M. of A and B is the same as the h.c.m* of A and (7,
which is the same as the H.C.M. of A and Z), because A has no mono-
nomial measure.
The problem is thus reduced to finding the H.C.M. of A and D>
These two quantities, A and D, are then treated in precisely the
same manner as A and B and the
; process is continued until it
Exercise XXXIV.
Find the h.c.m. of
(18.) as
3
+ 2
as ?/ + xy-{-y2 and as
4 — ?/ .
2
(19.) 5cc
2
+26^+33?/ and7^ + 19^-62/2
2 2
.
(20.) 3as
4
-a%2 -2?/ 4
and 2a;
4
+ 3afy-2a;y-3a;2/s .
Example.
Find the h.c.m. of
Sx^y + 12x3y -f- Ax 2y and 6a% 2 — 6a%2 — 12xy2 .
Example.
4
Find the + 2£2 -3, and 2cc4 + 2cc3 + 3x + 3.
h.c.m. of cc^-l, cc
Exekcisb XXXV.
Find the h.c.m. of
(2.) 10cc
2
+40cc + 30and4« 3 -16x2 -84x.
Examples.
j> ?? ^ a » » ^I
55 55 X—\ 5> jj ,?
X — 1,
and the other factors x + l,x 2 + l, x 2 -\-x + l are not common.
,\ the h.c.m. required is 4ax(cc— 1).
Exeecisb XXXVI.
Find the h.c.m. of
(4.) x2 -l 3 x3 +l and }
cc
4
-l.
(5.) x + 2, x2 -4andx 3 + 8.
3
(6.) 3cc -81, cc
2
-6a+9, and 2x*-18x.
g2
—
( 84 )
OHAPTEK XIII.
Examples.
123. The following is the proof of the rule given in the preceding
Article :
Then, since the L.C.M. of a and b is ab, the L.C.M. of aC ( = ^-) and
ri/
bC(=B)
i r>. .
is
n aC.-bC = AB = A
abO=
7
—— r,
—
B A
~.B=-.A.
The l.c.m. of four quantities is the L.C.M. of any one and the
L.C.M. of the remaining three.
And so on.
'
Example.
125. When
the component factors of the given quan-
all
tities are known
or can be found, their l.c.m. may also be
obtained by multiplying the l.c.m. of the numerical factors by
the highest poiver or powers of the several factors that, occur in
the given quantities.
86 THE LOWEST COMMON MULTIPLE.
Examples.
and z 2 .
4 3 2
Therefore the l.c.m. required is 24:X y z .
Here x 2 -l = (x + l)(x-l);
x 3 -l = (x-l)(x 2 + x + l);
x3 + l = (x + IXx 2 --x + V).
Exeeoise XXXVII.
(5.) mcu 2
,
IQcav 2 , 20abiv 2 , 40aW.
(6.) x 2 -7x + 12,x 2 -x-6. (7.) 2x 2 ---5x-3,4a2 +4a;+l.
2
(8.) 3x -llx + 6, 2x -7cc+3.
2
(11.) cc
2
-l,(a-l) 2,(a + l)2 .
p + q ,p —q ,p + q
2 2 2 2 3 3
(15.) .
(16.) f-l,^-l,^-L
(17.) (a-&) (a-c), (6-c) (6-a), (c-a) (c-6).
(18.) %a2b(a-b), 12a&(&-a), 3(a2 -6 2), &W(5 2 -a2).
—
( 88 )
CHAPTEE XIV.
FBACTIONS.
—3a?
the quotient of -2a divided by -3x;
x
^
or— dec + 4
the
quotient of x— 1 divided by cc
2
— 3a; +4.
127. A fraction is not altered in value by multiplying
or dividing the numerator and denominator by the same
quantity.
—2 -2x3 _ -6 +6 + 6x-4 _ -24
Thus,
+3 - +3x3 - +9 ; __ 8
- _ 8x _ 4 - +32 ;
-25 ~ -25^4—5 ~ +5 ;
+5 ~ + 5xf ~ +y'
a ac — acc
&
~~
&c
~~ — '
a? -J Q-l) + _ Ov
2 -!
2a- 3 (>-3) (a> + l) ~ 2a 2 -a-3*
"x»=™
O 0
.
'
. . . (1)
TTW
0
=-
mb
.... (2)
a _ma /(rv
But by
ma mac
(3),
1 be
. a
"b' ~c~Tc~
mc_mac
* ' *
^
^ ;
. a c __ac
'
"V'dTbd ^
bd d b
acd , /ox
ac d .
FRACTIONS.
Also
bd b d
= 2*2
abd
by
y (3)w
=o-- by (5)
—
d
is equal to the product of
be
~ and — ; that is,
ct^c _a d__ad
K '
6
'
d~b '~c~bc ' '
(ii.) Now, let a, &, m be fractional, which will include the case
where some of them may be integers.
mr
And '=£_J?=±by(5)
mb c z cz
d u du x
cxdu ,
/CN
=2^ by (3)
yz
m a __ma
b mb"
quantities, the sign of the fraction depends on the signs of the nu-
merator and denominator. These signs will be either like or unlike,
and on multiplying or dividing by a positive or negative quantity they
will still be like or unlike, and the sign of the fraction will therefore
remain unchanged.
1 +
FRACTIONS. 91
f 3 —3
-
3
;
—
_l_3
-
-4 +4 4'
—
= 3 = — -3 a negative
S fraction. ,
24x2
Examples.
Sa 2 b 3x
Eeduce
(1.)
YM&y to lowes^ terms.
The h.c.m. of Sa 2 b 3 x and 12a s b 2y is 4a2 & 2 .
Sa 2 b 3 x _ 2fo
12a 3 b 2y ~~ Say
'
'
x2 —
(2.) Eeduce 3^-^ to lowest terms.
x
The H.C.M. = x + 1.
_ x—1
x 2 —l
4
* '
+ 1 ~ X2 — X-\-l
£C
3
%x 2 + 3x 2
(3.) Eeduce 2
— 5% 2 to lowest terms.
2a?
Exercise XXXVIII.
Keduce to lowest terms
h
(2.)^. (i.)-^ -
(Djjft
4:5ax 2'
acy '
8xy 2 z^' 2'
a b—ab2
~
w 9a& 3
6a 2 £ 2
-18^ ^
*
;
x+1
2 -!*
a;
/
K7 %J
n ^—2
x 2 -£
m
&s x ^-7^+10
C9.)
|eJ-
n9A}
do-)
x +7x + 12
2
3 ,:i3-
K J K
x 2 -x-2' x2 -x-20'
1 ;
3+8x-3a2 ' U ;
x3 -39x + 70*
fl*nJ
cc
3
— 6a3 — 9 ,-in\ 12x 2 —15x + 3
K
xT+3x 3 -9x-9' K }
6x 3 -6x 2 + 2x-2'
r-jn-N
_ x 4 —4:X 2y 2 /inx x 3 — 3cc 2 ?/ + 3xy 2 — y 3
x 3 —6x 2y + 12xy 2 —8y 3 ' '
x 3 —x 2y—xy 2 + y 3
Thus
a;
-
cc
are like fractions, as are also -f^,
cr— 1 or— 1
; ^
3*/
.
2a
=j- are unlike fractions.
ox
132. Unlike fractions are reduced to like fractions by mul-
tiplying the numerator and denominator of each fraction by the
quotient of the L.C.M. of the several denominators divided by
its denominator.
Examples.
2a 3 c
CI.) Eeduce j^, to like fractions.
FRACTIONS. 93
IQbd
The multiplier for the second fraction is ~~ = 3b
b— a a—b'
(3.)
v J Eeduce -i_ to like fractions.
x—V x2 + x + l x 3 —l
x— 1 = x2 —2^ + l
9
x2 + x + l x 3 -l
x—2x _x—2x
2 2
x —l x 3 —l
3
Exeecise XXXIX.
Eeduce to like fractions :
4
a 6
(2.) \,\.
a* ab
(3.)
x
1,
xy
-
xyz
.
//In
(4:.)
2
a
J
—a
/k \
(5.) —1
acc
,
— xy
2
,
3
axy
/£
(6.)
\ c&
cc—-1
,
2c&
—o —
cr—
,
nn^ 4 8 1
g;n _L_ _J^_
CiU,;
ra* v ;
a^-^+l ' *+l *3 +l*'
2 3 1
(12-)
(x + 2) (as-1) '
(2-as) '
0-2) (s+2)"
rm
±0
^
L___ L. _ _J:
-''
(c _a) '
(a-6) (c-6) '
(a-c) (&-c)
1 1
aiv a(a— (a;— a) '
b(b—a) (x—b) '
a&x
&)
x-1 iSx-5'
x
and the difference between . f
3ar-— 1
<mc2
oa;—
—
^ ^, by
4cc _ cc—
m1
1 iius, — 4
-r
=-
—x ,
,2x— 3 _4z—x-\-2x— 3__x + l-.
- -t-
X — 1 £C — 1
—CC — 1 03 — 1 CC —
Examples.
5x-4:__ 6 _5a;-4-6_5x-10
(1.)
2x-3 2cc-3 2x-3 2aj-3*
(2.) l'
X2 — 1 cc
2
—1 ~cc
2 —1 CC
2
—
It will be observed that the — before the second fraction
changes the sign of — 2cc.
n 3cc
2
— + 5___£c — 6cc— 8_3x — + 5—(cc
cc
2 2
cc
2
—6cc— 8)
_ 3x 2 -^ + 5- + 6cc + 8
2
cc
a3 + l
_ 2s 2 + 5s + 13
[
x3 + l
In this case the — before the second fraction changes the
signs of all the terms of x 2 —6x—8.
c c
Thus, _^+g
—
= + -«' + fc-8
X6 — 1 X6 1
— 2cc + 5_ __ 2cc- 5
3x 2 -7~ 3x 2 -7'
Examples.
l+^ + ^
-
(1.) Simplify
h
— a
96 FRACTIONS.
a+b+c
~~
abc abc a&c a&c
1 2^_ _1_
1+0 + I- a ~ 1-a2
'
1 1 1+a 2a
2a 1—a
" l+a
+ 1-a "1-a2 ~ 1-a* + 1-a2 ~ 1-a2
l + a— 2&
= 1—a +l^a 2
_ 2-2a
~ 1-a2
2
~~
1 +a
(3.) Simplify
^-y - 2
-
Ill
l.c.m. of the is
(x 2
-y )2 2
.
(x+y) 2 y
2
-x 2
(x—y)2
(x—y) 2y
2
—x2 (x+yf
~ (x -y ) ~ (x -y )
2 ~ (x -y )
2 2 2 2 2 2 2 2
__ Q-?/) - + ^ - Q+ 2
2/
2 2
2/)
2
(a 2 -*/ 2 ) 2
_ x —2xy + y —y + x —x —2xy—y
2 2 2 2 2 2
(x 2 -y2)2
2 2
x —4:xy—y
= (x2 -y2f~'
Exercise XL.
Simplify
a b ,~ v x 1 ,n x a? 1 2
-
a-) 6 +r; <
2 -)
s*V 3
< -> 3+2«+$?-
C " "
FRACTIONS. 97
1 2 2 3a cc-1 x-3
^'\x"3x2 '
W« + xr ^' 1^
tf>.;
2x a2
2a-3& Sa-2Z> a-36 /ON a + 5 a-6
rrTN
< 7 ') — S
^ .
a+& a— & ; 2a 1
^ & e2
a + a + & + a 2 + a&
*
^ 2 __3_ 2a~3
a;""2cc-l~4a; 2 -l
^ 13 -^ + a;
1
+ l + ^-^Tl" W 2(«--l).""2(a? + l>^?'
nsS 1 a?
2a)-%""2^4-42/
+ cc
2
-42/2
"
_2 _1_ *+3 o
^ x 2 + xy + y2 x 2 —xy + y 2 x^ + x^+y*
^ 1 q \
a
^—1
a; -a; + l
1 +1 1
+ aj + l + {»*+aJ + l + a-l
2 2 1
( 19 0 (a-lXa; + 2)">- 1)(<b-2)
+ (a-2)0* + 2) *
/Ol N _
^ _ C
*
(cc— b)(x—c)~*~ (x—c)(x— a)~*" (x>—a)(x--b)
a 2 + ^2 + c 2
*
a 2 — be b
2
—ac c
2
—ab
t^O + (6~aX6-c) + (?^(7-^)
( C5 -&)(a-c)
Examples.
„ 12x1 2ax + l
T + -=-^-'
N O
2*+-=
(J.)
.
-I
1 x—1 1 x2 m
(2.) *-i+5+i=-r +x + l=xTl
W x2 + i
v + 1- X2 + 1 x -a.2 + 1
(4.) Express — ^
— as a mixed quantity.
On dividing 2cc
2 — 3cc + 4: by cc + 1 we get quotient 2x~5 and
remainder 9.
2J5!=^±4 =
... 2z-5+-A_.
cc +1 ce +1
. a3 + a2 -2cc + 3_ .
9j_ -x + 1
" x*^x+i
CC
2
— +1 £C
'
Exercise XLI.
Simplify—
(1.)
f-+5.
(2.) j-L (3.) 2-1
SC CI LI
(4)y
x
(5.) ??-o+L
x
(6.) 2+^.
x-
(12.) (13.)
x+6 x—y
Express as mixed quantities
a *- 1
CM.) ^±5. (i5.) . (16.)^=M.
/lr7 s
(17.)
2a;
2
— +3
cc /in
(18.)
\
—
4— 3a;
g-
+ 6cc2
or— -1 cc— 1 1 + a;
/0 o\ a;
3 — 3a; + 2 2
/0Q n 6a;
2 — 4a; + 5 s a;
5 —x + 5
< 22 ->
n?=g— (23 } '
2*^+1 •
/0/(
(24)
wr-
Multiplication.
Thus ^x- 7,
or % •
4 denotes that % is to be multiplied by
o a o d b
x—1 —3 2
—— and — — 2
c
-7;
a
.
— —x —
n-
cr —1 *
2a;
„
6
-
-, ,
a?—ax + x2 ;
-?L-(x + -) denotes the product
x + a\ xl
of— —
x\a
and
2%
2 x x
Examples.
v x2 — 2
t
ax _(x 2 —a 2 )ax_x—a
2ax x-\-a 2ax(x + a) 2
-49) =
x (x + 7)(x-7)
0+6)0 + 7)0
2
(3.)
0 + 6)0 + 7)' 1
_x (x-l)
+6 £C
(4) (S-**=1\
x 2 -l x2 + l
x2 + l x-l
"0+1)0-1) a2 +l
1
"aj+1'
Exebcise XLXL
Simplify
(2-)f
be
.
- -4
ca ab
2
/o>, c a a2 ^
2/2
2 "
zx2 '
xy 2
' (4.) 1— " l +#
*
a3 — b z a-\-b
(5.) (6.)
a— ab a3 + 6 3 *
a— b"
a2 —ab + b2 9
as b—ab 3 a 3 —6 s
(8.)
1 a? +l a2 +l x 2 -l x 3 -l x4 - l
(9.) (10.)
cc +1 '
a2 + l '
a 3 + l* cc
3
+l "
x2 + l '
X Q -V
3 as.) (s±»+^±gy«jt».
05
8
+ 2/
; '
102 FRACTIONS.
Division.
ia • Q„ *? o •
f-H>-l) „ \ „ „ 2a-l;
&C .
• /
f o
2
3
3cc\
*\ x n Sx
y "
\ a / " "2/ .a '
(ic
2 — 5)~— „ „ x
2
5 „ „
—
The same thing may also be denoted by writing the
quantities which are the objects of division in the form of
a fraction.
2x a
Thus, f ra -^(2^-l),
Ttas
lows that
'
1
• 1 • != 1 •
£a •
fer=Mt foi-
— ;
FRACTIONS.
Examples.
4za b
2
2ab2 _ 4a 2 b 15x 2y _ (5ax
a) hxy 2 '
lbx 2y bxy 2
m
2ab 2 by
a 2
_^ a 2
+ ax _ a2 a 2 -\-ax-\-x2
(2.)
a8 —x 3 '
a 2 -tax+x 2 6
a' —x 3
a 2 + ax
_ a2 o
a 2 -{-ax + x2
(a — x) (a 2
4- ax + x2) a(a + x)
a
<r-— or
bx-\-ay . bx—ay
<3
->(MMH)= ab *
ab
__bx + ay ab
ab bx—ay
_bx + ay
bx—ay
\ar xy y j
2
\ar xy y*/x3 + i
2 2
_y —xy-\-x
x2y 2 (x + y) (x 2 —xy + y2 )
1
x2y 2 (x+yY
5
lOf FRACTIONS.
Exercise XLXII.
Simplify-
(3.) JL . 1 . (4.)
x a 3 —b 3 m
a—b ,n x a4 — 4
. a2 —ah
(1 1\ . 1 /a+5 . « 3 -^3
a— p a-i-p
y L_jL,L
x y ' <W 11"
cc— 2/ a; -4-2/ a3 +£&3
(
^
m)0 '
0.
X X+X X
oa)SZ2JO.
X X Xy
X
4+5 6+G 3+10 10+12
t
- h
( io 5 )
CHAPTEE XV.
SIMPLE EQUATIONS (continued).
equation separately.
Examples.
Solve
cc—-a x—b
(1.)
b ~ a
Multiplying by ab, the l.c.m. of the denominators, we get
Collecting coefficients of x,
(a—b)x = a2 —b 2.
Dividing by a— 5,
a 2 -b2
a—b
Solve
3x-l 4cc-2
(2.)
Clearing of brackets,
54x 2 - 54a; + 12 - 48x 2 + 48 X _ 1 2 = 6x 2 - 7x + 2.
Transposing,
54a2 -48x 2 - 6x 2 - 54x + 48a; +7^=2-12+ 12,
.\ cc=2.
-1 -1
(aj-2)(aj-3) (a-5)(a>-6)'
Multiplying by the l.c.m. (cc—2)(^— 3)(cc— 5)(a;— 6), clearing
of brackets, and solving,
£C=4.
Exekoise XLIY.
Solve
n v 12 1 _*a /9 n 42 _ 35
/on 16
3x— 4
_ 27
5cc— 6*
m + *
y
45
2cc 3
_ 57 5*
4cc—
,r v
1 ;
cc— l_7cc— 21
^2 ~ 7a; -26 '
W 2%— 6_23^7
^ \
3x~=$ ~
cs—
/•i-i v eg— _ i ,
cc— /-jqx a;— 14 _ 2%— 29__ 1
^ ;
a;
~ 2^-5' * *
;
x "2^20
25'
^ (2a+3) (x-5)
2 :=
3
(3a;-2) (a-ll)
'
SIMPLE EQUATIONS. 107
v = 0.
dec
2
—! 2cc+l
x x — 1 __x — 3 5c — 5*
4-
(15.)
a;— 1 a;— 2 as— 4 a;—
(16.)
.« -|=l-f=? = l. (17.) ?-"=c.
b—x 5— ft; 4— X'
a b
/to \ x—a
r— +
a;— &
= a b
5 + «=£ + *.
— abba
.
,
(le.) (19.)
CHAPTEE XVI.
PROBLEMS (continued).
Examples.
» » -° » ""40
» AandB „ =~ *
•'•
www
S
= +
60 40
^
Divide by
1.
111
Multiply by 120x, 120 = 2a + 3a>.
,\ cc = 24.
(3.) A grocer bought 200 lbs. of tea and 1000 lbs. of sugar,
the price of the sugar being ^ of that of the tea. He sold the
tea at a profit of 40 per cent., and the sugar at a loss of 2^
per cent., gaining on the whole $45 "50. What were his buy-
ing and selling prices ?
Let the cost price of the sugar per lb. =x dollars.
2i
The loss „ sugar = jqq- 1000& == 2ox
480x-25x=45-50
X-'10
Exekcise XLY.
rank?
(3.) A man has a number of cents which he tries to
arrange in the form of a square on the first attempt he has
;
(7.) A
person invests £14,970 in the purchase of 3 per
90 and 3i per cents, at 97. His total income being
cents, at
£500, how much of each stock did he buy ?
(8.) A and B join capital for a commercial enterprise, B
contributing £250 more than A. If their profits amount to
10 per cent, on their joint capital-, B's share of them is 12 per
cent, on A's capital. How much does each contribute ?
second does, and the second f of what the third does in what :
(14.) What is the first time after 7 o'clock when the hour
and minute hands of a watch are exactly opposite ?
112 PROBLEMS.
greater part of the distance, and then doubles his pace, win-
ning by a second how far did A run before changing his
:
pace?
(27.) A boy swam half a mile down a stream in 10 minutes;
without the aid of the stream it would have taken him a
quarter of an hour. What was the rate of the stream per
hour and how long would it take him to return against it ?
;
pulls 42 strokes a minute, the other 38, and the latter does
the distance in 25 minutes; supposing both crews to row
uniformly, and 40 strokes of the former to be equivalent to
36 of the latter, find the position of the losing boat at the end
of the race.
t "3 )
CHAPTER XVH.
QUADEATIC EQUATIONS.
Examples.
(1.) Solve rc
2
-4=0.
2
Transposing, cc =4.
Since the square root of a positive quantity is either + or
— , we have, extracting the square root,
x=±2.
Thus the two roots are + 2, —2.
(2.) Solve x 2 +5=^°x 2 ^m
Clearing of fractions,
3x 2 +15=10x2 -48.
U4 QUADRATIC EQUATIONS.
*
(i.) When the equation is in the form of the product of two
factors, each containing the unknown, equated to zero, the solu-
tion is effected by equating to zero each factor in turn.
Examples.
Factoring, x (x — 5) = 0.
/. either x=0,
or x— 5=0, and cc=5.
4&
or ax—4:b=0, and £=~ #
Exercise XL VI.
(1.) ce
2
-36=0. (2.)
2
5x =45. (3.) | =27.
(4.) 2(x 2 -7)+3(cc 2 -ll)=33.
*
(5).
jCa + 4)+K^+8)=^+l. (60 J^=ra'
2
K^ -^)= 5 ^
2
(7.)
2
x =3x. (8.) |- + 6x=0. (9.)
(10.) a;
2
-^ 0 - C 11 -) ^ +|=0.
2
Examples.
;
2
-12x+6 2 =36-35=l.
Extracting the square root,
rc-6=±l;
that is, cc— 6=1, and ,\ x=7,
or x— 6=—l, and .*. cc=5.
x 2 + %x=\.
-o±7 , q
By (ii.), transposing,
X 2 +pX= —q.
2
--4 g
= -j)=fc yV /i>
2
QUADRATIC EQUATIONS. 117
2 2
(4.) Solve 2x 2
+5x=3 by rule (iiL).
Multiplying by 4 x 2=8,
16x 2 +40cc=24.
2a 2a
• Exbeoise XLYIE.
(1.) cc
2
-6a-!-8 = 0. (2.) x2 -4:X-5=0.
2
(3.) a +4a--21=0. (4.) 2^ 2 ~5a3 + 2=:0.
QUADRATIC EQUATIONS,
a=5-
3a-2 __ 2x-5 _
(17.) (18.)
cc-3' 2^-5 3a-2
^ + 4 _ 5 (^ + 2 ) -8. CC +2 7 _4r— X
(19.) (20.)
as— 2x
CHAPTEE XVIIL
PROBLEMS.
Examples,
••• 24 -
fir*-
2
x -10Gb=-2400.
cc=40 or 60.
• (x + ^)x-x*=lOO;
a2 = 10000.
/, x = + 100, or -100.
Exeecise XL VIII.
(1.) A rectangular room which contains 1800 square feet is
(4.) Divide 15 into two parts such that their product shall
be 4 times their difference.
PROBLEMS. 121
(8.) A
horse is sold for £24, and the number expressing
the profit per cent, also expresses the cost price of the horse
what did he cost ?
is the number ?
The sides of a rectangle are 12 and 20 feet
(14.) : what is
the breadth of the border which must be added all round
that the whole area may be 384 square feet ?
CHAPTEE XIX.
SIMULTANEOUS EQUATIONS.
I. Substitution.
II. Comparison.
III. Cross Multiplication.
I. Method of Substitution.
Example.
Example.
• (3);
3 7
,\ x=4z.
Substituting this value of x in (3),
28-19 o
Examples.
9% = 19,
Exekcise XLIX.
(4.) ^+3 I, + 0.
3 2
° 5 + 6~2 + A 3
(5 4
"10 I*
(15.) x + «/ = a, x—y = h.
(16.) aa; + (M/=a2 +&2 , c»=a.
Example.
4a-%H-2z= 2 . . . . (7),
and 4o5 + 2?/ --32=13 .... (3).
EXEECISE L.
{ 129 )
CHAPTER XX.
PROBLEMS,
Examples.
(2.) Find three numbers such that the sum of the first,
one-fifth the second, and one-tenth the third, shall be equal
;
130 PROBLEMS.
Exekcise LI.
PROBLEMS.
GHAPTEE XXI*
EXPONENTIAL NOTATION.
and or* „ „ i
;
a2 =Va, a3 =^ 2
,
a?=ya\
-1 "3 -8
1 1 1
8'
a a3
L i 3 -
-3 2 -i 5_ -3 4
2a 5a =j a >
±a
X i> » ;
x~* „ X )} » 5*
Exercise LIL
(2.) x- 2 ,
x~\ x-10 .
_1 •
_ 5. _7.
(3.) m 3
, n 2
, p *.
W
m\ 1
ff
1
a*
1
W
1
a?
...Ill
—
EXPONENTIAL NOTATION. 135
(9.) K
m % 4
n p 2
x
s
2 5 7
(10,)
7% W 2
'
Examples.
(1.) a2 • a3 = a2 3 =a 6 .
x 3. 5. 3 +5 _U>
(2.) a* • =a l *.
a a ==a* a
~1
(3.) a 3
a~ =a =a 2 1 3
.
-3
(4.) cr 2 • a- 3 =a~ 2 =a' 5 .
§_ __3 5.-3. 1
(6.) a6 - a * = aQ * = a 12 .
a- 1 =a 1'1
(7.) a • =a°=L
(8.) a2 • a~i=a°=h
m
a .
n
a = am+n
where m a?i<2 n are any quantities whatsoever, positive or nega-
tive, integral or fractional , including zero ifaP =1.
.
+
(2.) a* • a^ = /Ja *fa 3 y~a 2 = fya^cfi ==a% *.
V « =V a
because each of these quantities when multiplied by itself np
times produces a™?.
a» •
a «=V am '
V^a* = \/
= \/amv +Pn ,
by Ex. la
m q+pn
(4.) <fi.a-*J#^=a-*=a**.
Exercise MIL
JTind the products of
;
a 2, 4x m ; 4a™ a2" 3
.
n
(3.) a , a? 2; 2a*, 3a"; S>f.
—
EXPONENTIAL NOTATION 137
3
(4) 2a , a~* ;
a~\ 3a3 ;
5a, 6a~ 2 .
Examples.
(5.)
a 3=^i +
t=aA, (6.) ^=a*-6=a0 =l.
am m ~n
-~=a
an
Exekcise LIV.
Divide
(1.) a2m bjam ;
a5n bja\
2 ! 2
3 3 3
(2.) a by a ; a by a .
2 2 6
(5.) or by or 1
; x~ by a?' .
8 3 2 1
(6.) a: by of ; a by or .
n 2n
(7.) x~ bjx- ; x* by x~*.
Examples.
(1.) 0 2 3
)
= a6 ;
(a 5y = a 10 .
(2.) (a
3
f=a 3 ;
(a
3
f = a\
4
(a* )i=a,i; (a*) =a*.
(3.)
1 2
(4.) (a- ) ^ 2
;
(a- 2 ) 3 = a- 6 .
1
(5.) (a- )'
2
-a2 ;
(a~*)-*=a12 .
(1.) 0) 2 3
=a2 • a2 • a2 =a 6 =a Zx2
11 =a*i+i =a
.
1 SL
(a m) n =a m am to n factors,
• . .
=amn .
Exercise LY.
Express the following as powers of a :
(1) (O 3
; (« )
2 4
;
(a 3)3.
(2.) (a- 1) 2 ; (a- 2) 3 ;
(a" 3) 4 -
2)- 3 -
(3.) (a ;
(a- 2)" 3 ;
(a- 3)" 4 .
(*) (a*) 5 ;
(a!)*
2 3 3 2 5 4
(5.) (a*)a ;
(a') 3 ;
(a*) 3 .
(6.)
2 _o2 „4 _ 5
s) 3
; (« 3)
168. The Index Laws (I., II., III.) are thus seen to be true
on the assumption that
I. am • a n =am+n .
III. (am )
n
=a mn
.
By. EL,
But
a+==tfc?.
By I., a? - a°=as .
But a3 x l=a3 .
.\ a°=l.
By L, a3 • a~ 3 =a0 =L
But «»xL3=L
( Hi )
ANSWERS.
1L
ni.
IV.
(1.) % 3a, a
Aa% la.he,
V*
VI.
VII.
vux
(1.) 4. (2.) 2. (3.) -9.
(4.) -3. (5.) 5. (6.) -3.
(7.) 10-6. (8.) -3-39- (9.) -216.
(10.) -0-960. (11.) -a. (12.) -7x.
2
(13.) 10a . (14.) 2c. (15.) 2a-|.
(16.) -3a 2
. (17.) lb 2
. (18.) 3a + b.
(19.) 2a. (20.) 3a-a+4. -5a& + 2&2
(21.) ,
-7a*+28a?-5».
(24.) (25.)
|+|+^
(26.) Ja+4*-4c
IX.
(13.) a
2
+ 4- (-26 + 3). (14.) 2a-5-(a -2a-f 3).
2
144 ANSWERS.
X.
XI.
XIL
(1.) -6c^; -5ac; +6a 2
5; -30^
(2.) -Uabc2 ;
-20a2 6c; -16a^s; +48a.
(3.) -f^; -f^; +±xy; -fa2 &.
(4) -6x 3
?/
3
;
+3a^ 6
; —|aW.
5
a 3
a 3 4
Z> 3cc
3
?/ abx sy 2
(5.) 5
3 '
15 12
XIII.
2
(3.)
2 2
4:x yz + 2xy z-6xyz -28a3 & 2 +4a263 -4<x2 & 2 ; .
(4.)
2
%a b + ab -%abc;
2 ~ a + %a 2 -~2a; ±ax*-ha2x2 + %a?x.
3
ANSWERS.
XIV.
2a; + 5a-12; -4:X -x + 5; 2-x-3x
2 2 2
(1.) .
aj -2a x + a
8 4 4 8
(5.) .
XYI.
XVII.
; A
146 ANSWERS.
2
4a; .
XVIII.
XIX.
(1.) a>-4; 3a; + 1. (2.) a? + l; 2a>-8.
(7.) cb— 2/ ;
x2 -xy+y*. (8.) a 2 +a& + 6 2 .
(11.) aj
2
-2^+^ 2
. (12.) face -2a;
2
.
XX.
(1.) 2a*-8»+¥, -I. (2.) cc-a, 2a2.
XXL
(1.) 3x—a miles. (2.) 50 + x dollars.
(3.) 21 miles. (4.) x 2 —y 2 square feel
ANSWERS, 147
(11.) ^+^-5.
A 0
(12.) 36 acres.
XXIL
(1.) 2. (2.) 10. (3.) 7.
(14:} 10
(17}
V-1 - 8
') v ' (18.) 6i
(9,6 } X.
{AD.) 1 (27.) a2 + ah + b 2 .
a—c
XXIV.
(1.) 15 and 10. (2.) 60 and 75. (3.) 20 and 17.
XXV.
2
(1.) x -2x + l, x + 2ax + a2
2
, x2 -10x + 25, x 2 + 6x + 9.
(2.) 4a2 +4cc + l, 9x 2 -6x + l, 4cc
2
+ 12cc + 9, 9cc
2
-12^+4.
(3.) x*-2ax2 + a2 &x2y2 + 4:xy +
3 1, 9x 4 - 12ax + 4a aV
2 2
,
-8a&x 2 + 16&2 .
2—
(4.) x + y + z
2 2
2xy + 2xz — 2yz, 4x 2 + 9y 2 +z 2 + 12xy— &xz
-6yz, x 2 + 4:y 2 + 25z 2 -4:xy-10xz + 20yz, 4x 2 + 16?/ 2 + l--16^
+4cc— Sy.
(5.) 4a + 4a + 13a +
4 3 2
6a + 9, 9a 4 - 24a 3 + 22a 2 - 8a + I,
a4
-4a 3
-4a 2
+ 16a + 16.
XXVI.
(1.)
2
cd — 1; a2 -9;;4-a 2 .
ANSWERS. H9
(3.) a4 - 2
;
a 6 -l; a10 -a4 .
xxvn.
(1.) m + n p —q
3 3
;
3 3
.
(2.) m + l; 1-a
3 3
.
(4.) Sa + 1; 64a -a
3 3 3
.
(5.) 8a +27Z>3
27a - 125/; 3
;
3
(6.) a 6 -l; a 9 +a 6 .
XXYIII.
(1.) a 2 -a + l; a4 -a 3 +a 2 -a + L
(2.) a 2 + a+l; a 4 + a 3 + a 2 +a + L
(3.) a-1; a 3 -a 2 +a-l.
(4.) a + 1; a 3 + a2 +a + l.
(5.) 2a -35.
(6.) 3a 3 + 2a.
(7.) £a 2 -a 3 .
XXIX.
(1.) (-a) 3 (2a) 3 (3a?/2) 3 (2a4Z>V) 3
, , , .
(3.) {(a 3) 4 }
2
,
{(-2a) 3 }
2
, { (4aa) 5 } \ {
(3a 2 k)
4 3
} \
(4.) { (a-lf (x*-iy } j (x
} 3,
2_ 3a + 2) 2 j 3>
{
3 ,
3 2
(5.) (a ) ,
3
{(-2a) } 2
{(a%y\\ {(a-a) 3 } 2 , ,
XXX.
(1.) a 6 8x 6 a 9 8a9 81a8
, , , , .
(2.) a 2a 4 ,
a4 a 6 ,
a 4 a 6 ?/ 8 .
ANSWERS.
(5.) x 2 +2x + l }
4cc
2
-12a + 9, cc
4
-10a; 2 + 25, a 6 -4A; 3 +4a4.
4 4
(6.) + 4a + 10cc + 12^ + 9,
cc
3 2
cc -6ic 3 + 17^ 2 -24x + 16,
4a 6
-4a + a4 + 20cc3 - 10x2 + 25.
5
XXXI.
(2.)
^"^ 6
, .^3?, fftti ^(a -3a + 4).
3
(3.) a/^t, x +l 6
.
(6.) yS 4
^!, ^2x 3 -5, */a>
8
-6a; 4 + 7.
xxxn.
(1.) 2a26, 5xy s , 9x 2y\ (2.) 4a + 5.
(3.) 6x-3. (4.) 1+ 3^. (5.) cc+i,
(9.) x2 + 2x + l. (10.) cc
2
+ a + l.
(11.) x 2 -2xy + y 2 . (12.) 2a 3 -x 2 -3x+2.
2
XXXIY.
(1.) x+S. (2.) a-l. (3.) a-3.
(4.) x + 3. (5.) 2® -5. (6.) *-3.
ANSWERS.
XXXY.
(1.) acc(2a+3). (2.) 2(^+3). (3.) a(a-2).
(4.) (5.) &»-2.
XXXYI.
(1.) a(x-a). (2.) 2a(a?-3). (3.) a(x-l).
(4.) a+L (5.) a + 2.' (6.) a-3.
XXXVII.
(1.) 6afoy. (2.) 24a 2 a%. (3.) aW ?
(8.) (3x 2
-Ilx + 6) (2a-- 1) - (2x 2
-7x + 3) (3a^2).
(9.) (x - 4aa + 5a a - 2a ) (x + 2aa + 2a ) = (x - 2a?x
3 2 2 2 3 2 s
(12.) xhj (x -y )
2 2 2 2 2
(11.) (a-l) (x + l) . f
XXXVIII.
ANSWERS.
1
X ± x+y
(7-)
xT+l'
(8.) (9.)
x2 + xy + y2
I iQ
(10.) (11.) (12.)
X+ V cc—5
3+ft x—10 cc—
(13.)
3— a?" (14.)
x 2 -7x + lQ'
(15.)
ft
2
- 3"
3(4ft-l) x\x + 2y)
(16.) 2
(17.) (18.)
2(3ft +I)' ft + 2/'
XXXIX.
n n b 2a rcy v Z> a .
Q x 2?/z 3z 4
ab ab a*b a'b xyz xyz xyz
1
•
a(ft j> 1)
~ft
2
-l ' ft
2a
2
-l*
^ +3 ft
+ l)(ft + 3)
2 a?— 3 /q> a a—
Hfn 4(ft
2
— 1) 3ft (ft— 1) ft
1 ; 2 2 2
ft(ft -l) '
ft(ft -l) '
ft(ft -l)'
^-.^ft 2 — 1 x2 — x + 1 3ft
K } 9 ?
x*+l ~~^+T~ ft
3
+ l*
nQ x 2(s-2) 3(ft + 2)
'
(ft-l)(ft-2)(ft + 2) '
(a;-l)(cc-2)(aj + 2)
ft-1
'
(ft-l)(ft-2)(ft + 2)
/-.ox c— a—
^ 10 ^ *
(b- c)(c--a)(a--b) '
(&-c)(c-a)(a-6)
ANSWERS.
XL.
n
(L)
W
(A.\
\ a?+b
-sr-
Sx ~ 2
2
/Q v
(2)
vmw
ax+2
$x 2
(3 °
+ 1 2 ax~l
—
4a2cc + 6a+6
12^~" •
~dx^~' 4^
x2 —3x+6
W 2a;
2 '
1
/tt s
;
6£— 17a
60
'
«±*. ~ 2 1N 2 *S
(11.) (12.) (13.)
v
a
v
' cc(4cc — 1)
2
.
* v
cc
4
+ x2 + T
( M0 -27-^-
x (x2 —
2
1)
(15.) -V.
a— 2?/
(16.) ?|±|.
4
cc —
+% 4
n nx 2a(2x + l)
(19.) _—
(a>-l)(a>-2)(a + 2)'
/"^ —_ .
v V
(20.)
(a-6)(a-c)
"
ix s
-x +2x-3 2
1 + Sx
(8.) (9.) *
xs x— 1
a—a?+ab a + 3&
(10.) (11.) '
a—b a+6
4a2 +9x-4 x z —xy
(12.) " (13.)
x+3 x-y
ANSWERS.
(14) l+t.
a
(15.) a-±. < 16 ->
BT L
(17.) 2a-l + 3 (18.) 1-1+2,.
x'
2x
(21.) 4- (22.) ,-3 + 3£|.
1+x'
3- x-2 ^- ^t^T 5
(23.) (24.) .
sr+1
XLn.
4a
(1.) (2.) 1. (3.)
5x*
- a+b a 2 +«5 + 5 2
(4.) (5.) (6.) '
1-<b2 a 2 —ab + b 2
a?+ab+W (8^ (« + ^) («
2
+ a&+& ) 2
(7.) <
(a+by a?b\a-b)
1 (b " 1)2
(9.) 3
(10.)
V ;
aj +l" (a^-sc + l) 2
a4 -64
(13.) (14.) .
ab x-y
(15.) (16.) 1.
a(a2 -ab+b2)
XLIII.
4ax 2y
{ } (2) (3.)
3x 2y'
a—x a2 +62
(4) (5.) ' (6.)
a + x' a?—ab + b 2
a+x 2
(7.) (8.) *
a («-6) 2
. . a .
ANSWERS, 155
x 2 + 2xy—y 2
(10.) (11.)
x*+y 2
(13.) If. (14) A-
YT TT7"
A1j±V.
,1 rr \ die
(16.) f (17.) 5;
b—
.
ft2+
a+bf
(22.)
v J
XLV.
(1.) 40. (2.) 40. (3.) 355.
XLVI.
(1.) 6, -6. (2.) 3, -3. (3.) 9, -9.
(4.) 4, -4. (5.) 2, -2. (6.) V26, -V26.
(7.) 0, 3. (8.) 0, -12. (9.) 0, 19.
XL VII.
a.) % 4, (2.) 5, -1. (3.) 3, -7.
(4.) 2, J. (5.) i, -2. (6.) i, *.
XLYIII.
ANSWERS.
XLIX.
L.
LI.
i 58 ANSWERS.
(16.) 3h miles.
LII.
1 1
(1.) J* Ha, tf* Ja\ 9 (2.)
\h
1
—
tKi \Aj
-1
(5.) cc
2",
(gi) a; ,
cr 2 , a' 5 , a~ 8 .
3. 4- _1 _i _JL
(7.) cc
2
,
cc 3
,
x5 . (8.) x 2
, x 3
, x 5 .
(9.) 2m" 1
, dn~ 2
, lOp" 3
. (10.) 2af 2 , 5af * 7afl
MIL
(1.) to"* 1
2wj-l
;
4cc
w +2
3n
;
4cc
5re
3ttl
. (2.) 2.^; ; 30 A
(3.) x 2
; 6aT* ;
rc
T . (4.) 2a; 3a" 1 ; 30a" 1 .
1 __1 2 J> « 5n
a 6 2a 12 a 3. a 6
a 2
a 8
(5.) ; ; (6.) ; ; .
(7.) 1; 1; 6; ron.
LIY.
(1.) aM ;
a251 . (2.) at ; at (3.) ^. ^
3 5 3
(4.) cc ;
cc . (5.) x; cc .
(6.) cc; a?f.
Sn
2
(7.) cc»; SB .
LY.
(1.) a 12
;
a 8
;
a 9
. (2.) a~ 2 ; a" 6 ; a" 12 .
6 6 12 9 10
(3.) a" ;
a ;
a . (4) a 2 ;
a ; a .