0 ratings0% found this document useful (0 votes) 56 views11 pagesMod 2 GT
Graph theory module 2 notes
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content,
claim it here.
Available Formats
Download as PDF or read online on Scribd
Pa be ot least one edge, whese One ond Uguter
is be & oth fn Vo -
wo thie: 3 a pontitten exist theufore arid
disconneted 4
Conuvsly’ det
Youre Ain &:
ju ve be the ger of aL vous that jane Ajotnedh
athy co a Sine wat auconneked Vi dou not Y
Gnade al Verte e| 4. the Femaiaing Nectcas
uid! a Se Va:
wl fem oN, ta foie do oh BY ah Bag
uence the partion:
Module 02
galadan .ond Hamiteons O” giobh: 0”
opeusien onde graphs d
unten ‘Consider two graphs Guz O€9 and. 69: (v8,
then the graph whose VUE Sek Ls V\UVg- and the
“a Get Js EVEg fs cole’ the unten ®} Gand hg
and t% Ls denvted by Gao / 4
GVGa = (UVa > YER) 4 t1__b be
v(6)=$a, bei dy , edu ols f >
V(Gr)= S br dey a t be,
pes) = {a,bcydie4 a b tc a4
(G,UGp) = Fe, @2123s eu es eg 4 Let we
a 1062
ANE otic cs i a0 gropha ae (Yn, yard
ae Ee) then the qvabh whose Uouer Get fs
his a See iu £Neg 'Ps cowed o
a bf Gland Gand 1 ds denoted by
SiN a= (vs NVe Ey NE2)
G be distonnertedl graph ,loystder a
5
(
=. TanahCTD
fs
rcs a a &6
& G2
Vlei) = fa, b, 65,43
V(G2)- Sp dyey
¥6G) Gr) HLbid%
EUG) = $e,,er,e3 eu Y 4 ey ;
ECG.) ~fLeurte ec3 Gey a
E(G@iN&r) = feyy
3. Re IG Gx
a acs ar. ahs nq yur ©| Duro qxaphy
Gaz (nes) and y= (aiE2) % qvaph Const ng 4
woder rd (ViUUs) and at edgtr that areth G (014
hur not tn both.
‘ (4) = Ve) ¥VCa2) 4
Eo ECq) u ElG) -E(@\)Nb(2) J
'b Mob vi
a i
M V k }
op cA
Va eS
Vud MS
VCG1) EXVVa Vay VurYs 3
VV LG2) 22M 2a uve 4
VWaduvlad = {NinV2,VaiVurvs 4
EG) < 8 arb, tid, is) fa
8G): ig hokidyaby | f
BlEr) UElem)=Saibievdiergs gshsKilh. o ,
Ela) nE(ar)= Lary vA Ne 4
{ 1 W. i
) E(o)= E(G\) velO2) - E(&.) nelor)g | eA o BY
eLby deh gihik LY Ny assition A Graph & = (416) vd Sasdhto bh,
wuboytophy Hit ts then '
4D 4wo 4 i
pe Oe
4, ave § dy = anudh graph .
a b: 4
b
Xe ae aM el!
9 ee Vu, ; cas, ‘
Gekarbic di er$1 43
Hye Lar be. 43
Wel cid, hy
Hutt, = Las bis As 1H 99.
eee Nu grabh
wempered qvabh:
Ey
o
ee pes os
Hy=2a,b,c,d& cathy, t+ a oF
| Meef cd, ey - decampssed ual
AW ={arb,c) die y
bie Us eee Nuw Deeb :
>- Dehetton Let G= Cv, E) beyarabh 4h aaiam
ef graph G, ther Gv v graph gal
& whtoined by daleteng Pela Vi ren
Hh er B On edge o| qraph & Shen G~@i Vf
oe ®| graph & obtained by duit
lean boa
#1. age id.
Ci ” e
G Ga GQ-ce:
6. Fuston- A podr of venttUs Vi 4a Sn a
G a said to be plused Jb true two wut wu
© meploced by stra aww verker VU gush Hat
an eploc.
thot txcunt do Atha Vor Vy 61
ene a aauine Ft ; thay Vy or
oO ko V
ae es & 2 .
= ‘ Gq (vive) We F ' |
wy 4 1 14s 2.0 2 oe
@ (142 6)¥, ah a |
+ Complemank =|_gnaph (e'enG) a
cempiemank (4! 97 &) t hae
du @(vie) be qroph 7
43 dehgned coo be a graph whiun hos Vas chs Se
e\ Vota and tuo ENte4 ane adjacent In G af
and enty 3} thay ax not aajanated fo Gon
£9 jee b Sd
(polaron x
fea,
Hei
AV "Ne a :
») , x ee ein bce 6) —aS ae amar
g.Sey Complemutt 24 groph G= (Ve) dh
~ on ih, at i somo why ¢ do Js complemen -
eg
Alani go
d.
Nefayb dy
\6) =3
“4
e
cen
<6
(Eas Ysemowphr cg
Self Compt
VeSaib,c dy BDO Bal, acrshe
cre cdsba ,
Beh empleo,
mar
Osa. bob, asc, 7
A 2] Seqy=Q 2 2Y deet.Sey~€1.2;2 03 dsq.
a a
a! iC
1G
Vefarbicrdye,4) NVeQa thier dies J y
18) yn
|) =9
Thus FORK Fs not § somprphi <
A not Self Complementary .
a(ereushondant at! edgy
AbS or, adisbd , chit b ey
Hk da Fsemstpryc ¢ cell @mplemuy , «
A Unsed walk surnne Hip
e) G exartly
ONLe Buch 4 aot Ba
aly Line. if eds existed Ahen Ge 5 Obed
Eula graph. ; vA
Note Edgus Wit exarely onu, vod may be
Supented 5 Start
Same
ul
P ae
ES
OG Re
!
in
a4 § éndiny) Liner should be
PeysesiRegTesPe snes qe,p
1b. Cosed walk and ities
euler line
Sle i ale gyabh.Cc
») 7 s q
Ee becdesc egb ce aeyal
5
eX)
ae, mee tena ,
As thi, graph bY not closed wad 4 a
ate eated .
/ Hb not Euler qsoph. bukit
Ae, Bec € ey Des Cea Bey Degh C1oE eg F eqgh*
; lene
LE dy closed walk and Hos exten
Ue Ww ahr groph
ay
| “ an|| SEGANe Pe AeggezBeyRes APEPo “6
d 1
Pea
, SE ds — wW ak & % ieee Terie
7, te oe elo graph
iV, vrgB : 1G uh. Be
‘) QRACBAR PQ, oe i
TR A c he 3
AM the edgis au sepeated
sl % mot elun aoph
A
ce) one, Berreycegdes herd “
Be, DES Ay alk edges ane not in watk $
ai ;
AdQu as sebeated
a Ue, Wot ene q7aPh. a
4 \ Pogwe AgLB
*) us t {LPs closed wotlk 4 wy Line: ‘
(yr lt wv ewe ! prabh
An open men walk ou.ning Hhtouah asouy
G Clankty ence , Suth a WOIK ds called “Untonual (
en etisied cated untwsyal graph et
ar 7 Se oi cadeethed 3aup
cg mugs,
"lt wo open wask , , UNfusol lense
SE DB Uniounsal cycaph
shettin
A Given Gmnected graph Sy: is on eal graph ca
yy all votes oe G axe Bf even
3 ees Q 4% an exile graph
Cendains eather Une.
In 8 Oe a
“1 w through too new e
using one edge with we ( entgned another eye
wilt, owes Reus leave. From iy vudexr We +
CL ond (ye Cam enrer rte, that bourse Sr
Yoxt. ,
_ voter an oth a ae a as etn dag
a
Vo 1)
Ny 2-1 ted el
Ks LoaNsaes Me ye,
Ponsa suppose, a Ei enn “eh. eo use dear
a,
a
mas a BUvery/ & o unt Lae Stank AMO ventory, ’
Sirce auiny veder wo of even degete WUUT enitey .
into WU Vinfet 4 Uh prom Rams venkey, j
Mrautng tenths unde wiearhing voter v.
= & Contarns eit graph
Theovem ‘
{ In a Connuted guaph » with exatHy ak od
Douto thou etd K edge-aisjotnt subgraphs él
Thad they doquthvn Contain Olt edges 6} Gy and hg
Sach st a uniweisal gpaph ae a
re det wy denote the Ak odd’ wurdiers 163 6 by
Ui Mo its Ue And Vv) Ve. 7 ae
Conarden she edges “ee €ty,V,), eas (YoyVa) ef
.OP8 Construct the Graph G' obtained HY Oding
Freee eCdgu to Gi then’ exes VOL Of Gly of a
© Wy Aeqre and ts thyuferts nn Cul ine and
ALO Exile graph -. —
Mek g Yo denoted os El ne fn. GF w eremep
Sas = ek deus aiizhen™ul be 8 pitt trip
X-oPen walks eaih ©) wohich ik @ Untdolnsal Une.
These k-wobs are edge dis oint subg eiaph & aG
Gnd thy togsthan tenatina ‘all oe i
Anbitiantly THostobls 9Xobb rrnayensable) if
| In Eulut’ graph’, avveiter V have a porobersty ui
(AN ely line's alibdip ' ebtal madiushin, ons pele
any walk vurter V Suh a qvoph i call
“Astbrbrarutly: ‘ausasal AO KE sete N
4 eae é b, die is vik a GHbItavy
Sse abide is
VOU ah bl x
Cdecobe C - £ ee
chacdee) Hen Pha Arbitently boy
abledec
iS
¥w (f) as avthidanily Houable gap)
Dy a, _ tt mot owotanily phoctabls
KS quaiph
Dfgnaph (Dineckeat groph]
A Diseecked graph (or) Daqroph G tomas of as
oh vertces Ve WiV2icdim and) edges = &@2.----
Huu as dination rom pass ef, sustices (vinv5)
a i .
In a digraph, vedtcer ae sepsusented by poirds é
edqu by Une Seqrnurt bho WGN With’ an /asuieuy
dinetted hom vi and Vy y ps
Thou wu atyps of cen z
xInde x OUEdignes,
\. Dutdegtue’” the Numbess ef edges Pictduind ‘oud of
a verter Vy Js cabled outdledeise tt ig denoted
by do? (vi). 9%
2 Indegua's The numbex 4 tnetdsnt Pro a
Veiey vy Js called Indegsee Bh wi att bs
i
4
> iM) =1 Ouidegrer dtluiy= 3
avs) .a eats) = |
ade HAV 2 ee) oa,
= q i eee. By i] gt (vy)= 1 .
corp AW) 23 owbios t ; arts): is
s “qvs).0Note © In nany digraph Gy shy dum @] au radeon
Fs equal to dum 6] di out
arly - Ed (vi) ;
ISolated Bouter! TE is a Veter Pr which ray
and Oudegrot MU eQUdl do ZUL0.
Rindund putter © ea potter Of, dears Value a(t,
| [ndegues Ov Oukdegres) athuuuise
FasaUt Sgn IF kwvo echaes ave mabppeol ento San,
eat als of vot
CL In aboue graph, Cs 05 (600 pomaite edgu
Typeral dtgnaph Surtgone mol yonalisl ‘edgy
‘Simple dequoph A digraph Hot has nb bell, loobe.
Poxaity Seal eh *s cabled Simple dtguabh
a
diqr aKe2
a. Agaeranstfie. an which "awn edqus
Qo) tho ds ae 10)
et
& 3
3. Axuuramuth'c di © A digsaph thos hos adm!
baie bch o pow eh BOLLS, hus ae
atkowed +o have ell, Loch are volledt
dtgrsabh.
both
eegnetass nite Clemente sone sree
esieitie Sate Syst | Aloe liad Ble syrmenshteasek! te e
a (@
5. Stmple Arsumdtic dfgraph LA di h dhat is bot
Stmphe 4 Amsumatrtc Ds Lotled &P @§ Auymtfe
a: ae ey
a c