2017 TSSM
2017 TSSM
MATHEMATICAL METHODS
Written examination 1
8 8 40
Students are permitted to bring into the examination room: pens, pencils, highlighters,
erasers, sharpeners, rulers.
Students are NOT permitted to bring into the examination room: blank sheets of paper
and/or white out liquid/tape, notes of any kind, or a calculator of any kind.
Materials supplied
Question and answer book of 12 pages.
Instructions
Print your name in the space provided on the top of this page.
All written responses must be in English.
Students are NOT permitted to bring mobile phones and/or any other unauthorised
electronic communication devices into the examination room.
Instructions
Answer all questions in the spaces provided.
In all questions where a numerical answer is required, an exact value must be given unless
otherwise specified.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Question 1 (4 marks)
a. Let ( ) .
Find , expressing your answer in factorised form. 2 marks
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
( )
b. Let ( )
i. Find ( ) 1 mark
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
TURN OVER
Question 2 (5 marks)
Let * + ( ) .
( )
a. Sketch the graph of ( ). Label the axis intercepts with their coordinates and label any
equation(s) of asymptotes. 3 marks
b. Find the area enclosed by the graph of ( ), the lines and , and the x-axis.
2 marks
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
Question 3 (4 marks)
Let , - ( ) ( )
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
b. Hence, find the angle θ from the positive direction of the x-axis to the tangent to the graph of
f(x) at , measured in the anticlockwise direction. 1 mark
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
TURN OVER
Question 4 (4 marks)
A class contains 5 boys and 10 girls. The teacher runs a four question quiz at the end of each
lesson and selects a student at random to answer these questions. The teacher can select the same
student to answer any number of questions.
a. What is the probability that the number of boys selected in a given lesson is zero? 1 mark
__________________________________________________________________________
__________________________________________________________________________
b. What is the probability that at least one of the students selected in the lesson is a boy?
1 mark
__________________________________________________________________________
__________________________________________________________________________
c. What is the probability that no boy is selected in exactly three of the five consecutive
lessons? Give your answer in the form , where a, m and n are positive integers and p
and q are rational numbers. 2 marks
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
a. Let ( ) ( )
__________________________________________________________________________
__________________________________________________________________________
Let ( - ( ) ( )
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
b. Let ( ) √ ( ) .
Given that the composite function ( ( )) is defined,
__________________________________________________________________________
__________________________________________________________________________
Question 5 - continued
TURN OVER
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
Question 6 (5 marks)
Let , - ( ) ( )
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
TURN OVER
Question 7 (3 marks)
A company produces batteries for calculators from two different machines A and B. 4% of the
batteries produced by Machine A are faulty and 5% of batteries produced by Machine B are
faulty. At the end of one day, Machine A produces 50 batteries and Machine B produces 80
batteries. The company owner selects one battery at random from all batteries produced in that
day.
a. What is the probability that the battery selected by the manager is faulty? 1 mark
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
Question 8 (5 marks)
( ) {
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
Question 8 – continued
TURN OVER
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
2 marks
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
MATHEMATICAL METHODS
Written Examination 2
Reading Time: 15 minutes
Writing Time: 2 hours
Students are permitted to bring into the examination room: pens, pencils, highlighters,
erasers, sharpeners, rulers, one approved graphics calculator or CAS (memory DOES
NOT have to be cleared) and, if desired, one scientific calculator, one bound reference
(may be annotated). The reference may be typed or handwritten (may be a textbook).
Students are not permitted to bring into the examination room: blank sheets of paper
and/or white out liquid/tape.
Materials Supplied
Question and answer book of 25 pages.
Working space provided throughout the book.
Instructions
Print your name in the space provided at the top of this page.
All written responses must be in English.
Students are NOT permitted to bring mobile phones and/or any other electronic
communication devices into the examination room.
SECTION 1
Question 1
The range of the function ( ) ( ) is
A. * +
B. * +
C. ( )
D. ( )
E. ( )
Question 2
The turning point of the function with the rule is
A. . /
B. . /
√ √
C. . /
D. ( )
E. ( )
Question 3
The number of x-intercepts of the function , - ( ) ( ) is
A.
B.
C.
D.
E.
SECTION 1 – continued
TURN OVER
Question 4
The period and range of the function ( ) . / are respectively
A. , -
B. , -
C.
D. , -
E. , -
Question 5
The average rate of change of the function f with rule ( ) √ , between x = 0 and
x = 5, is
A.
B.
C.
D.
E.
Question 6
Which one of the following is the inverse function of g ( - ( ) ?
A. , ) ( ) √
B. , ) ( ) √
C. ( ) √
D. ( - ( ) √
E. , ) ( ) √
SECTION 1 – continued
Question 7
The number of cars, X, owned by each employee in a particular department of a company is a
random variable with the following discrete probability distribution
x 0 1 2 3
Pr(X = x) 0.2 0.25 0.45 0.1
If two employees are selected at random, the probability that they do not own the same number
of cars is
A.
B.
C.
D.
E.
Question 8
A. . /
B. . /
C. . /
D. . /
E. . /
SECTION 1 – continued
TURN OVER
Question 9
Given that ( ( )) ( ( )) then ∫ ( ) is equal to
A. ( )
B. ( ) ∫
C. ( ) ∫
D. ∫ ( ) ∫
E. ∫ . ( ) /
Question 10
The tangent to the curve at passes through the point (-4, -1).
The value of c is equal to
A.
B.
C.
D.
√
E.
Question 11
A. ( )
B. ( )
C. ( )
D. ( )
E. ( )
SECTION 1 – continued
Question 12
Consider the graphs of the functions f and g shown below.
A. ∫ ( ( ))
B. ∫ ( )
C. ∫ ( ( ) )
D. ∫ ( )
E. ∫ ( )
Question 13
Let ( ) ( ) . / ( )
Which of the following is true for the graph of ?
A. ( )
B. ( ) ( ) ( )
C. ( )
D. ( ) ( )
E. ( ) ( )
SECTION 1 – continued
TURN OVER
Question 14
The random variable, X, has a normal distribution with mean 24 and standard deviation 0.35
If the random variable, Z, has the standard normal distribution, then the probability that X is
greater than 23.3 is equal to
A. ( )
B. ( )
C. ( )
D. ( )
E. ( )
Question 15
( ) { √ ( )
√
The value of for which ( ) is
A.
B.
C.
D.
E.
SECTION 1 – continued
Question 16
Consider the transformation T, defined as
.0 1/ 0 10 1 0 1
The transformation T maps the graph of y = f (x) onto the graph of y = g (x).
If ( ) ( ), then the rule for g is
A. ( ) ( )
B. ( ) ( )
C. ( ) ( )
D. ( ) . /
E. ( ) ( )
Question 17
A machine produces 10 000 coloured counters in one day. It is known that 20% of the counters
are white. A sample of 32 counters is taken from these 10 000 counters. For samples of 32
counters, is the random variable of the distribution of sample proportions of white counters.
(Do not use a normal approximation).
.̂ / is closest to
A.
B.
C.
D.
E.
SECTION 1 – continued
TURN OVER
Question 18
Consider the discrete probability distribution with random variable X shown in the table below.
x 1 2 3 4 5
Pr(X = x) 0.1 0.15 a b 0.2
A.
B.
C.
D.
E.
Question 19
The graph of intersects the graph of ( )( ) at two distinct points for
A.
B.
C.
D.
E.
SECTION 1 – continued
Question 20
The graph of is shown below.
A.
B.
√
C.
√
D.
E. √
END OF SECTION 1
TURN OVER
SECTION 2
Instructions for Section 2
Answer all questions in the spaces provided.
In all questions where a numerical answer is required, an exact value must be given unless
otherwise specified.
In questions where more than one mark is available, appropriate working must be shown.
Unless otherwise indicated, the diagrams in this book are not drawn to scale.
Let , - ( ) . /.
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
e. The rule of f can be obtained from the rule of under a transformation T, such that
.0 1/ 0 10 1 0 1
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
A tangent is drawn to the graph of at . This tangent cuts the y-axis at the point
C as shown below.
__________________________________________________________________________
__________________________________________________________________________
d. Find the angle, that the tangent line at makes with the positive direction of the
. Write your answer to the nearest degree.
2 marks
__________________________________________________________________________
__________________________________________________________________________
e. Find the area of the shaded region in the diagram above. 2 marks
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
SECTION 2 – continued
TURN OVER
Let * + ( ) .
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
e. Write down an integral that will calculate the area of the shaded region. 2 marks
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
ii. Find the stationary point(s) of , leaving the coordinates in exact form. 2 marks
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
iii. Find the coordinates of the point on , with coordinates correct to two decimal places,
which is at a minimum distance from the origin. Find this minimum distance correct to
two decimal places. 3 marks
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
SECTION 2 – continued
TURN OVER
A school has a policy of each student placing their chair on the table at the end of the day. Every
classroom in the school has 24 chairs in the room. On a particular day 24 students are present in
a class and each student is expected to place their chair on the table. The probability that a
student does not put their chair on the table at the end of the day is 10%. The expectation from
one student of placing the chair on the table at the end of the day, is completely independent
from another student.
a. Determine the probability that at least one of the chairs is not placed on the table at the end
of the lesson. Give your answer correct to four decimal places. 2 marks
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
b. A teacher observes that at least one of the chairs is not placed on the table at the end of the
lesson.
Given this, find the probability that fewer than three chairs are not placed on the table. Give
your answer correct to four decimal places. 2 marks
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
The time it takes for students to place the chairs on the tables is approximately normally
distributed with a mean of one minute and standard deviation of 12 seconds.
c. Find the probability that a particular student takes at most 40 seconds to place the chair on
the table. Give your answer correct to four decimal places. 2 marks
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
d. The probability that a particular student takes at least m seconds to place the chair on the
table is 0.4062.
Find the value of m, correct to the nearest second. 2 marks
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
In another class of 24 students of the same school, the time it takes for students to place the
chairs on the tables is approximately normally distributed with a mean of one minute and
standard deviation of c seconds. In this class, the probability that a student takes fewer than 46
seconds is 28%.
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
f. Find the probability that exactly three students of this class take fewer than 46 seconds to
place the chairs on tables. Give your answer correct to four decimal places. 1 mark
__________________________________________________________________________
__________________________________________________________________________
The principal of the school decides to take a sample of 50 students from a number of different
classes. For samples of size 50 from the population of students with a mean time of placing
chairs on tables of 1 minute and standard deviation of 12 seconds, is the random variable of the
distribution of sample proportions of students with a mean time of less than 40 seconds.
g. Find the probability that Pr( ≥ 0.06 | ≥ 0.04). Give your answer correct to three decimal
places. Do not use a normal approximation. 3 marks
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
The principal finds that, in a particular sample of 50 students, five of them take less than 40
seconds to place chairs on tables.
h. Determine the 95% confidence interval for the principal’s estimate of the proportion of
interest. Give values correct to two decimal places. 2 marks
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
( )
( ) {
__________________________________________________________________________
__________________________________________________________________________
__________________________________________________________________________
ii. Find the median time for lateness to class, correct to two decimal places. 1 mark
__________________________________________________________________________
__________________________________________________________________________
SOLUTIONS
Question 1
a. ( ) ( ) 1 mark
( )
b.
( )
i. ( ) 1 mark
( ( ))
1 mark
( )
ii. ( )
1 mark
Question 2
a.
1 mark for equations of asymptotes, 1 mark for y-intercept, 1 mark for shape
b. ∫ ( ( ) ) 1 mark
* + ( ) ( )
1 mark
Question 3
a. ( ) 1 mark
√
( ) ( )
√
( ( )) 1 mark
b.
1 mark
c. 1 mark
Question 4
a. ( )
1 mark
b. ( ) ( )
1 mark
c. ( ) ( ) ( ) 1 mark
( ) ( )
1 mark
Question 5
a.
i.
Domain: ( )
1 mark
ii. ( )
√ 1 mark
( ) √ 1 mark
iii. (
(
1 mark each
b.
i. ( ( )) √
1 mark
ii. ( )
1 mark
( ( ( ))
iii. ( ) 1 mark
√
Question 6
a. ( ) 1 mark
( ) ( ) 1 mark
( ) ( )
b. 1 mark
c. ∫ ( ( ) ) 1 mark
( )
( ) 1 mark
( ) 1 mark
Question 7
a. ( )
1 mark
( )
b. ( | ) 1 mark
( )
1 mark
Question 8
a. ( ( )) ( ) ( )
1 mark
b. ( ) ∫
Use
( ) ( ( )) ∫
( ) ( ( )) ( ) 1 mark
( ) ( )
1 mark
c. ( )
∫
( ( )) ( )
( ) ( ) 1 mark
1 mark
SECTION 1
Question 1
Answer: C
Explanation:
Question 2
Answer: B
Explanation:
. /
Question 3
Answer: E
Explanation:
Question 4
Answer: A
Explanation:
, -
Question 5
Answer: C
Explanation:
( ) ( )
Question 6
Answer: B
Explanation:
Question 7
Answer: E
Explanation:
( ) ( )
Question 8
Answer: D
Explanation:
Question 9
Answer: B
Explanation:
. ( )/ ( )
( ) ∫ ∫ ( )
Question 10
Answer: A
Explanation:
( ) ( )
Question 11
Answer: B
Explanation:
. /
Question 12
Answer: A
Explanation:
∫ ( )
∫ ( ( ))
Question 13
Answer: B
Explanation:
Sketch on CAS
Note that option A is incorrect because is outside the domain of the function.
Question 14
Answer: D
Explanation:
( ) ( ) ( )
Question 15
Answer: E
Explanation:
√
∫ ( ) ∫ ( )
Question 16
Answer: C
Explanation:
and
and
( ) ( )
Question 17
Answer: D
Explanation:
.̂ / ( ) ( )
Question 18
Answer: A
Explanation:
Question 19
Answer: B
Explanation:
( )( )
Question 20
Answer: D
Explanation:
.√ ( ) / √
√
When u = 0 the distance is 1, when u = 0.5√ the distance is that is <1.
√
Minimal distance occurs when √ , distance =
SECTION 2
Question 1
a. 1 mark
, -
1 mark
b. ( ) . /
1 mark
c. ( ) (on CAS)
1 mark
d. . / 1 mark
( ( ) )
( ( ) )
1 mark
e. 1 mark
. ( )/ 1 mark
. /
1 mark
f.
2 marks
Question 2
a. ( ) ( )
2 marks
b. ∫ ( ) 1 mark
. / 1 mark
c. 1 mark
( )
1 mark
d. ( )
2 marks
e. ∫ (( ) ( )) 1 mark
1 mark
f. 1 mark
1 mark
1 mark
g. Length = √ ( )
=√
1 mark
Question 3
c. 1 mark
( )
1 mark
d. √
( √ √ ) ( √ √ )
2 marks
√
e. ∫ √
. /
1 mark for correct integral and 1 mark for correct terminal values
f.
i. , ) ( )
1 mark
ii. ( ( )) √ 1 mark
( √ √ ) ( √ √ )
1 mark
iii. √ . / 1 mark
( )
( ) 1 mark
Minimum distance = 0.22
1 mark
Question 4
a. ( )
2 marks
( )
b. ( ) 1 mark
( )
1 mark
c. ( )
2 marks
d. ( )
1 mark
1 mark
e. ( ) 1 mark
1 mark
1 mark
f. ( )
1 mark
g. (̂ ̂ ) 1 mark
( )
( ) ( )
2 marks
. / . /
h. ( √ √ ) ( )
2 marks
i.
i. ∫ ( ) 1 mark
∫ ( )
1 mark
ii. ∫ ( )
1 mark