ROUTE SURVEYING
SIMPLE CURVE                                   COMPOUND CURVE
Radius:                                             R1=radius of first curve PC(E)
      1145.916                                      R1=radius of second curve PT(E)
 𝑅=
         𝐷
                                                    CT=common tangent
Length of Curve:
                                                    I=angle of intersection/central angle of PCE and
    𝜋𝑅𝐼                                             PTE
 𝐿=
    180
                                                     𝐶𝑇 = 𝑇1 + 𝑇2
Tangent distance:
                                                     𝐼 = 𝐼1 + 𝐼2
             𝐼
 𝑇 = 𝑅 tan
             2                                      Length of the chord:
External Distance:
                                                                  I1 /2    C      I2/2
           𝐼
 𝐸 = 𝑅 [sec − 1]                                            C1                           C2
           2
Middle distance:                                            PC             L                  PT
               𝐼                                    Use cosine law to solve L
 𝑀 = 𝑅 [1 − cos ]
               2                                     𝐿2 = 𝐶12 + 𝐶22 − 𝐶1 𝐶2 𝐶𝑜𝑠 (𝐶°)
Chord distance:
             𝐼
 𝐶 = 2𝑅𝑠𝑖𝑛                                          Angle of the first tangent:
             2
                                                       𝐶2     𝐿
Stationing distance:                                       =
                                                     sin 𝜃1 sin 𝐶°
 𝑆 = 𝑅𝜃𝑝𝑜𝑖𝑛𝑡 (length of curve)
                                                    Angle of the second tangent:
 Station of point = 𝑃𝐶 + 𝑆
                                                     𝜃2 = 180° − 𝐶° − 𝜃1
                                                       𝐶1     𝐿
                                                           =
                                                     sin 𝜃2 sin 𝐶°
Offset Distance (y):
                        𝑦             𝑦
          𝑡𝑎𝑛 𝜃 =         𝑜𝑟 tan 𝜃 =
                       𝐵𝑇            𝐹𝑇
                             𝑅−𝑦
                  cos 2𝜃 =
                              𝑅
                                           ROUTE SURVEYING
                   REVERSE CURVE                                       SPIRAL CURVE
Equal Radii:                                         Considering at any point:
                                                                           𝑞𝑢𝑎𝑟𝑡𝑒𝑟𝑠
                                                                      𝐿=            (𝐿𝑐 )
                                                                              4
                                                     Spiral angle:
                                                             𝐿2 180
                                                      𝑠=          [    ]
                                                          2𝑅𝑐 𝐿𝑐 𝜋
                                                     Offset Distance from the tangent at SC:
                                                              𝐿3
                                                      𝑥=
Let y =parallel tangent                                      6𝑅𝑐 𝐿𝑐
C=chord length PC to PT                              Distance along tangent at any point:
Solve I:                                                          𝐿5
                                                      𝑦=𝐿−
                                                               40𝑅𝑐2 𝐿2𝑐
    𝐼 𝑦
 sin =                                               Deflection angle:
    2 𝐶
                                                           𝑠
                                                      𝑖=
Radius of reverse curve:                                   3
 𝐶         𝐼
   = 2𝑅𝑠𝑖𝑛
 2         2
                                                     Considering without any point:
Length of tangent in common direction at
                                                     Spiral angle:
station PC:
                                                             𝐿𝑐 180
           𝐼                                          𝑠𝑐 =      [    ]
 𝑇 = 2𝑅𝑠𝑖𝑛                                                  2𝑅𝑐 𝜋
           2                                                𝐷𝐶 𝐿𝑐
                                                      𝑠𝑐 =
                                                             40
Length of tangent in station PRC:                    Offset Distance from the tangent at SC:
               𝐼
  𝑇 = 𝑅𝑠𝑖𝑛                                                  𝐿2𝑐
               2                                      𝑥𝑐 =
                                                           6𝑅𝑐
                                                     Distance along tangent at any point:
                                                                  𝐿3𝑐
                                                      𝑦𝑐 = 𝐿𝑐 −
                                                                 40𝑅𝑐2
                                                     Deflection angle:
                                                           𝑠𝑐
                                                      𝑖=
                                                           3
                                                     Length of thrown:
                                                             𝑥𝑐
                                                      𝑃=
                                                             4
                                          ROUTE SURVEYING
Tangent distance for spiral:                                 𝐿(𝑔1 )
                                                     𝑆1 =
                                                            𝑔1 − 𝑔2
        𝐿𝑐                𝐼
 𝑇𝑠 =      + [𝑅𝑐 + 𝑃] tan
        2                 2                          𝑦     𝐻
                                                      2 =
External Distance for spiral:                        𝑆1    𝐿 2
                                                          (2)
                  𝐼
 𝐸𝑠 = [𝑅𝑐 + 𝑃] sec − 𝑅𝐶
                  2
Super elevation when K=velocity in kph:                    UNSYMMETRICAL PARABOLIC CURVE
                                                           𝐿2 (𝑔1 − 𝑔2 )
    0.0079(𝐾)2                                      𝐻=
 𝑒=                                                            2(𝐿)
        𝑅𝑐
           𝐾2                                              𝐿21 (𝑔1 )        𝐿1 𝑔1
 𝑅=                                                 𝑆1 =             , 𝑤ℎ𝑒𝑛       <𝐻
        127(𝑒 + 𝑓)                                            2𝐻             2
Length of spiral:                                                 2𝐻𝐿2
                                                    𝐿1 =
                                                           𝐿2 (𝑔1 − 𝑔2 ) − 2𝐻
        0.036𝐾 3
 𝐿𝑐 =                                               𝑦1     𝐻
           𝑅
                                                     2 =
                                                    𝑆1    𝐿 2
Square of the length T.S                                 ( 21 )
  𝑖  𝐿2                                             𝑦1     𝐻
    = 2                                              2 =
 𝑖𝑐 𝐿𝑐                                              𝑆2    𝐿 2
                                                         ( 22 )
  𝐷   𝐿
    =
 𝐷𝑐 𝐿𝑐
                PARABOLIC CURVE
Change of grade:
g1= when negative
g2= when positive
      𝑔2 − 𝑔1
 𝑟=
         𝑛
Length of curve:
 𝐿 = 𝑛(20)
 𝐿 = 𝐾(𝑔2 − 𝑔1 )
K=length of curve per 1 degree
Length of the highest point:
    𝐿
 𝐻 = [𝑔2 − 𝑔1 ]
    8