0% found this document useful (0 votes)
27 views5 pages

OPIC Photocoupler Super High Speed Response: (Unit: MM)

eletronic component

Uploaded by

mrdcarmo1738
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
27 views5 pages

OPIC Photocoupler Super High Speed Response: (Unit: MM)

eletronic component

Uploaded by

mrdcarmo1738
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 5

6N137

Super High Speed Response


6N137 OPIC Photocoupler

■ Features ■ Outline Dimensions ( Unit : mm )


1. Super high speed response Internal connection
( t PHL , t PLH : TYP. 45ns at R L = 350Ω ) 0.85 ± 0.3 1.2 diagram
8 7 6 5 8 7 6 5
2. Isolation voltage between input and output
6N137

6.5 ± 0.5
V iso : 2 500V rms
3. Low input current drive ( IFHL : MAX. 5mA )
4. Instantaneous common mode rejection 1 2 3 4 1 2 3 4
1.2 ± 0.3 0.8 ± 0.2
voltage
CM H : TYP. 500V / µ s Primary side mark ( Sunken place ) 7.62 ± 0.3
9.22 ± 0.5

0.5TYP
5. LSTTL and TTL compatible output

3.7 ± 0.5 3.5 ± 0.5


6. Recognized by UL , file No. E64380

θ θ
■ Applications
0.5 ± 0.1 2.54± 0.25 θ = 0 to 13 ˚
1. High speed interfaces for computer 0.26 ± 0.1
peripherals, microcomputer systems
2. High speed line receivers
3. Noise reduction 1 NC 5 GND
2 Anode 6 VO
4. Interfaces for data transmission equipment 3 Cathode 7 VE
4 NC 8 V CC

* “ OPIC ” ( Optical IC ) is a trademark of the SHARP Corporation.


An OPIC consists of a light-detecting element and signal-
processing circuit integrated onto a single chip.
■ Absolute Maximum Ratings ( Ta = 25˚C )
Parameter Symbol Rating Unit
*1
Forward current IF 20 mA
*2
Input Peak forward current I FM 40 mA
Reverse voltage VR 5 V
Supply voltage V CC 7 V
Enable voltage CE 5.5 V
High level output voltage V OIL 7 V
Output
Low level output current I OL 50 mA
Output collector
PC 85 mW
power dissipation
*5
Isolation voltage V iso 2 500 V rms
Operating temperature T opr 0 to + 70 ˚C
Storage temperature T stg - 55 to + 125 ˚C
*6
Soldering temperature T sol 260 ˚C
*1 Ta = 0 to 70 ˚C *5 AC for 1 minute, 40 to 60% RH
*2 Pulse width <= 1ms Apply the specific voltage between all the input
*3 For 1 minute MAX. electrode pins connected together and all the
*4 Not exceed 500mV or more than output electrode pins connected together.
supply voltage ( VCC ) *6 2mm or more away from the lead base for 10
seconds

“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
6N137

■ Electro-optical Characteristics ( Ta = 0 to + 70˚C unless otherwise specified )


Parameter Symbol Conditions MIN. TYP. MAX. Unit
Logic ( 1 ) output current I OH V CC = 5.5V, V O = 5.5V, I F = 250 µA, V E = 2.0V - 2 250 µA
Logic ( 0 ) output voltage V OL V CC = 5.5V, I F = 5mA, V EH = 2.0V, I OL ( Sinking ) = 13mA - 0.4 0.6 V
Logic ( 1 ) enable current I EH V CC = 5.5V, V E = 2.0V - - 0.8 - mA
Logic ( 0 ) enable current I EL V CC = 5.5V, V E = 0.5V - - 1.2 - 2.0 mA
Logic ( 1 ) supply current I CCH V CC = 5.5V, I F = 0mA, V E = 0.5V - 7 15 mA
Logic ( 0 ) supply current I CCL V CC = 5.5V, I F = 10mA, V E = 0.5V - 13 18 mA
*1
Leak current I I-O 45% RH, Ta = 25˚C, t = 5s, V I-O = 3 000V dc - - 1.0 mA
*1
Isolation resistance ( input-output ) R I-O V I-O = 500V, Ta = 25˚C - 1012 - Ω
*1
Capacitance ( input-output ) CI-O f = 1MHz, Ta = 25˚C - 0.6 - pF
*2
Input forward voltage VF I F = 10mA, Ta = 25˚C - 1.6 1.75 V
Input reverse voltage BV R I R = 10 m A, Ta = 25˚C 5 - - V
Input capacitance C IN V F = 0, f = 1MHz - 60 - pF
*3
Current transfer ratio CTR I F = 5.0mA, R L = 100Ω - 700 - %
*4
Propagation delay time
t PLH Ta = 25˚C, V CC = 5V, R L = 350Ω , C L = 15pF, I F = 7.5mA - 45 75 ns
Output ( 0 ) → (1)
*5
Propagation delay time
t PHL Ta = 25˚C, V CC = 5V, R L = 350Ω , C L = 15pF, I F = 7.5mA - 45 75 ns
Output (1) → ( 0 )
Output rise-fall time ( 10 to 90% ) tr , t f R L = 350Ω , C L = 15pF, I F = 7.5mA - 20, 30 - ns
*6
Enable propagation
t ELH R L = 350Ω , C L = 15pF, I F = 7.5mA, V = 3.0V, V = 0.5V - 40 - ns
delay time (1) → ( 0 )
EH EL

*7
Enable propagation
t EHL R L = 350Ω , C L = 15pF, I F = 7.5mA, V = 3.0V, V = 0.5V - 15 - ns
delay time ( 0 ) → (1)
EH EL

*8
Instantaneous common mode
CM H V CM = 10V, R L = 350Ω , V O ( min. ) = 2V, I F = 0mA - 500 - V/ µ s
rejection voltage “ Output ( 0 ) ”
*8
Instantaneous common mode
CM L V CM = 10V, R L = 350Ω , V O ( max. ) = 0.8V, I F = 5mA - - 500 - V/ µ s
rejection voltage “ Output (1) ”
Note ) Typical values are all at V CC = 5V, Ta = 25˚C
*1 Measured as 2-pin element. Connect pins 2 and 3, connect pins 5, 6, 7 and 8.
*2 At I in = 10 mA, VF decreases at the rate of 1.6mV/˚C if the temperature goes up.
*3 DC current transfer ratio is defined as the ratio of output collector current to forward bias input current.
*4, *5 Refer to the Fig. 1.
*6, *7 Refer to the Fig. 2.
*8 CM H represents a common mode voltage ignorable rise time ratio that can hold logic ( 1 ) state in output.
CM L represents a common mode voltage ignorable fall time ratio that can hold logic( 0 ) state in output.
■ Recommmended Operating Conditions
Parameter Symbol MIN. MAX. Unit
Low level input current I FL 0 250 µA
High level input current I FH 7.0 15 mA
High level enable voltage V EH 2.0 V CC V
Low level enable voltage V EL 0 0.8 V
Supply voltage V CC 4.5 5.5 V
Fanout ( TTL load ) N - 8 -
Operating temperature T opr 0 70 ˚C
1. No necessary external pull-up resistor to hold enable input at high level
2. Connect a ceramic by-pass capacitor ( 0.01 to 0.1 µ F ) between VCC and GND at the position within 1cm from pin.

Truth Table
Circuit Block Diagram
Input Enable Output
V CC H H L
Anode VE L H H
(Enable)
VO H L H
Cathode
L L H
GND L:Logic ( 0 ) H:Logic ( 1 )
6N137

Fig.1 Test Circuit for Propagation Delay time

+ 5V
350mV ( IF = 7.5mA)
Pulse Input
oscillator 1 VCC 8 175mV (IF = 3.75mA)
ZO = 50 Ω

0.1µ F
Iin

Bypass
t R = 5ns IF
2 7 RL
t PHL t PLH
IF 3 6 V OUT
Input CL Output V OH
47Ω
detection 4 GND 5 detection Output
Vout 1.5V
V OL

Fig.2 Test Circuit for Enable Propagation Delay Time

Pulse 3V
oscillator + 5V
Input
ZO = 50 Ω 1.5V
Input 1 VCC 8 VE
t R = 5ns
0.1µ F

detection
Bypass

VE 2 7 RL
t EHL t ELH
IF = 7.5mA
3 6 VO V OH
CL Output
4 GND 5
Vout 1.5V
V OL

Fig.3 Test Circuit for Instantaneous Common Mode


Rejection Voltage 10V
90% 10%

VCC 8 + 5V V CM
IF 1
10% 90%
0.1µ F

0V
Bypass

2 7 RL tr tf

B A 3 6 V O
at SW = A
VO 5V
4 GND 5 (IF = 0mA)
Pulse oscillator
ZO = 50 Ω at SW = B
VO V OL
+ - (IF = 5mA)
VCM

Fig. 4 Output Collector Power Dissipation vs. Fig. 5 Forward Current vs. Forward Voltage
Ambient Temperature
100 100

90
( mW )

85
80
( mA )

10
C

70
Collector power dissipation P

F
Forward current I

60
T a = 0˚C
50 1
25˚C
40
50˚C
30 70˚C
0.1
20

10
0 0.01
0 25 70 75 100 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Ambient temperature T a ( ˚C ) Forward voltage V F ( V )
6N137

Fig. 6 High Level Output Current vs. Fig. 7 Low Level Output Voltage vs.
Ambient Temperature Ambient Temperature
4 0.5
I F = 250 µ A I F = 5mA
High level output current I OH ( µ A )

V CC = 5.5V V CC = 5.5V

Low level output voltage VOL ( V )


VO = 5.5VC
V E = 2V V E = 2V
3 0.4

I O = 16mA
12.8mA
2 0.3 9.6mA
6.4mA

1 0.2

0 0.1
0 25 50 75 100 0 25 50 75 100
Ambient temperature T a ( ˚C ) Ambient temperature T a ( ˚C )

Fig. 8-a Output Voltage vs. Forward Current Fig. 8-b Output Voltage vs. Forward Current
( Ambient Temp. Characteristics )
6 6
V CC = 5V
V CC = 5V
T a = 25˚C
5 5
Output Voltage VO ( V )

Output Voltage V O ( V )

4 4
RL = 350Ω
RL = 350Ω
3 1kΩ 3 T a = 0 to 70˚C
4kΩ
RL = 1kΩ
2 2 T a = 0 to 70˚C

1 1

0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Forward current I F ( mA ) Forward current I F ( mA )

Fig. 9 Propagation Delay Time vs. Fig.10 Propagation Delay Time vs.
Forward Current Ambient Temperature
120 120
V CC = 5V I F = 7.5mA
kΩ
( ns )

( ns )

T a = 25˚C RL = 4 V CC = 5V
100 t PLH
PLH

PLH

100
4kΩ
1kΩ RL =
Propagation delay time t PHL , t

Propagation delay time t PHL , t

t PLH
80 t PLH
350Ω 80 1kΩ
t PLH
60
350Ω
t PHL 60
40 t PHL

RL = 350Ω RL = 350Ω
40
20 1kΩ 1kΩ
4kΩ 4kΩ
0 20
5 10 15 20 0 25 50 75 100
Forward current I F ( mA ) Ambient temperature T a ( ˚C )
6N137

Fig.11 Rise Time, Fall Time vs. Fig.12 Enable Propagation Time vs.
Ambient Temperature Ambient Temperature
320 120
I F = 7.5mA

Enable propagation time t EHL , t ELH ( ns )


I F = 7.5mA
V CC = 5V V CC = 5V
280
100
RL = 4k Ω
Rise time, fall time t r , t f ( n s )

t ELH
240 tr kΩ
=4
RL
80
200

1k
0Ω
160 35
60

120
40
80 1k Ω
tr RL = 350Ω

40 350 Ω
tf
} RL = 350 Ω
1k Ω
20 t EHL

4kΩ
1kΩ

4k Ω 0
0 25 50 75 100 0 25 50 75 100
Ambient temperature T a ( ˚C ) Ambient temperature T a ( ˚C )

■ Precautions for Use


● Handle this product the same as with other integrated circuits against static electricity.
● Please refer to the chapter “ Precautions for Use ” .

You might also like