OPIC Photocoupler Super High Speed Response: (Unit: MM)
OPIC Photocoupler Super High Speed Response: (Unit: MM)
6.5 ± 0.5
V iso : 2 500V rms
3. Low input current drive ( IFHL : MAX. 5mA )
4. Instantaneous common mode rejection 1 2 3 4 1 2 3 4
1.2 ± 0.3 0.8 ± 0.2
voltage
CM H : TYP. 500V / µ s Primary side mark ( Sunken place ) 7.62 ± 0.3
9.22 ± 0.5
0.5TYP
5. LSTTL and TTL compatible output
θ θ
■ Applications
0.5 ± 0.1 2.54± 0.25 θ = 0 to 13 ˚
1. High speed interfaces for computer 0.26 ± 0.1
peripherals, microcomputer systems
2. High speed line receivers
3. Noise reduction 1 NC 5 GND
2 Anode 6 VO
4. Interfaces for data transmission equipment 3 Cathode 7 VE
4 NC 8 V CC
“ In the absence of confirmation by device specification sheets, SHARP takes no responsibility for any defects that occur in equipment using any of SHARP's devices, shown in catalogs,
data books, etc. Contact SHARP in order to obtain the latest version of the device specification sheets before using any SHARP's device.”
6N137
*7
Enable propagation
t EHL R L = 350Ω , C L = 15pF, I F = 7.5mA, V = 3.0V, V = 0.5V - 15 - ns
delay time ( 0 ) → (1)
EH EL
*8
Instantaneous common mode
CM H V CM = 10V, R L = 350Ω , V O ( min. ) = 2V, I F = 0mA - 500 - V/ µ s
rejection voltage “ Output ( 0 ) ”
*8
Instantaneous common mode
CM L V CM = 10V, R L = 350Ω , V O ( max. ) = 0.8V, I F = 5mA - - 500 - V/ µ s
rejection voltage “ Output (1) ”
Note ) Typical values are all at V CC = 5V, Ta = 25˚C
*1 Measured as 2-pin element. Connect pins 2 and 3, connect pins 5, 6, 7 and 8.
*2 At I in = 10 mA, VF decreases at the rate of 1.6mV/˚C if the temperature goes up.
*3 DC current transfer ratio is defined as the ratio of output collector current to forward bias input current.
*4, *5 Refer to the Fig. 1.
*6, *7 Refer to the Fig. 2.
*8 CM H represents a common mode voltage ignorable rise time ratio that can hold logic ( 1 ) state in output.
CM L represents a common mode voltage ignorable fall time ratio that can hold logic( 0 ) state in output.
■ Recommmended Operating Conditions
Parameter Symbol MIN. MAX. Unit
Low level input current I FL 0 250 µA
High level input current I FH 7.0 15 mA
High level enable voltage V EH 2.0 V CC V
Low level enable voltage V EL 0 0.8 V
Supply voltage V CC 4.5 5.5 V
Fanout ( TTL load ) N - 8 -
Operating temperature T opr 0 70 ˚C
1. No necessary external pull-up resistor to hold enable input at high level
2. Connect a ceramic by-pass capacitor ( 0.01 to 0.1 µ F ) between VCC and GND at the position within 1cm from pin.
Truth Table
Circuit Block Diagram
Input Enable Output
V CC H H L
Anode VE L H H
(Enable)
VO H L H
Cathode
L L H
GND L:Logic ( 0 ) H:Logic ( 1 )
6N137
+ 5V
350mV ( IF = 7.5mA)
Pulse Input
oscillator 1 VCC 8 175mV (IF = 3.75mA)
ZO = 50 Ω
0.1µ F
Iin
Bypass
t R = 5ns IF
2 7 RL
t PHL t PLH
IF 3 6 V OUT
Input CL Output V OH
47Ω
detection 4 GND 5 detection Output
Vout 1.5V
V OL
Pulse 3V
oscillator + 5V
Input
ZO = 50 Ω 1.5V
Input 1 VCC 8 VE
t R = 5ns
0.1µ F
detection
Bypass
VE 2 7 RL
t EHL t ELH
IF = 7.5mA
3 6 VO V OH
CL Output
4 GND 5
Vout 1.5V
V OL
VCC 8 + 5V V CM
IF 1
10% 90%
0.1µ F
0V
Bypass
2 7 RL tr tf
B A 3 6 V O
at SW = A
VO 5V
4 GND 5 (IF = 0mA)
Pulse oscillator
ZO = 50 Ω at SW = B
VO V OL
+ - (IF = 5mA)
VCM
Fig. 4 Output Collector Power Dissipation vs. Fig. 5 Forward Current vs. Forward Voltage
Ambient Temperature
100 100
90
( mW )
85
80
( mA )
10
C
70
Collector power dissipation P
F
Forward current I
60
T a = 0˚C
50 1
25˚C
40
50˚C
30 70˚C
0.1
20
10
0 0.01
0 25 70 75 100 1.0 1.2 1.4 1.6 1.8 2.0 2.2
Ambient temperature T a ( ˚C ) Forward voltage V F ( V )
6N137
Fig. 6 High Level Output Current vs. Fig. 7 Low Level Output Voltage vs.
Ambient Temperature Ambient Temperature
4 0.5
I F = 250 µ A I F = 5mA
High level output current I OH ( µ A )
V CC = 5.5V V CC = 5.5V
I O = 16mA
12.8mA
2 0.3 9.6mA
6.4mA
1 0.2
0 0.1
0 25 50 75 100 0 25 50 75 100
Ambient temperature T a ( ˚C ) Ambient temperature T a ( ˚C )
Fig. 8-a Output Voltage vs. Forward Current Fig. 8-b Output Voltage vs. Forward Current
( Ambient Temp. Characteristics )
6 6
V CC = 5V
V CC = 5V
T a = 25˚C
5 5
Output Voltage VO ( V )
Output Voltage V O ( V )
4 4
RL = 350Ω
RL = 350Ω
3 1kΩ 3 T a = 0 to 70˚C
4kΩ
RL = 1kΩ
2 2 T a = 0 to 70˚C
1 1
0 0
0 1 2 3 4 5 6 0 1 2 3 4 5 6
Forward current I F ( mA ) Forward current I F ( mA )
Fig. 9 Propagation Delay Time vs. Fig.10 Propagation Delay Time vs.
Forward Current Ambient Temperature
120 120
V CC = 5V I F = 7.5mA
kΩ
( ns )
( ns )
T a = 25˚C RL = 4 V CC = 5V
100 t PLH
PLH
PLH
100
4kΩ
1kΩ RL =
Propagation delay time t PHL , t
t PLH
80 t PLH
350Ω 80 1kΩ
t PLH
60
350Ω
t PHL 60
40 t PHL
RL = 350Ω RL = 350Ω
40
20 1kΩ 1kΩ
4kΩ 4kΩ
0 20
5 10 15 20 0 25 50 75 100
Forward current I F ( mA ) Ambient temperature T a ( ˚C )
6N137
Fig.11 Rise Time, Fall Time vs. Fig.12 Enable Propagation Time vs.
Ambient Temperature Ambient Temperature
320 120
I F = 7.5mA
t ELH
240 tr kΩ
=4
RL
80
200
Ω
1k
0Ω
160 35
60
120
40
80 1k Ω
tr RL = 350Ω
40 350 Ω
tf
} RL = 350 Ω
1k Ω
20 t EHL
4kΩ
1kΩ
4k Ω 0
0 25 50 75 100 0 25 50 75 100
Ambient temperature T a ( ˚C ) Ambient temperature T a ( ˚C )