TRIGONOMETRY
CLASS: X : MATHEMATICS
1.    Simplify: cos4 A – sin4A
2.    If ∆ABC is right angled at C, then find the value of cos(A + B).
3.    If sin A+ cosA = √2 cosA, then find the value of tan A.
                                             5sin   3cos 
4.    If 5 tan θ = 4, then find the value of
                                             5sin   2 cos 
                                             4sin   cos 
5.    If 4 tan θ = 3, then find the value of
                                             4sin   cos 
                                                   2 sin A  3cos A
6.    If cosec A = 13/12, then find the value of
                                                   4sin A  9 cos A
7.    In ΔABC, right angled at B, AB = 5 cm and sin C = 1/2. Determine the length of
      side AC.
8.    In ∆ABC, right-angled at C, if tan A=1, then find the value of 2sin A cos A.
                                      1
9.    If for some angle θ, cot 2θ =      , then find the value of sin3θ, where 3θ ≤ 90⁰.
                                       3
10. If tan θ = 1, then find the value of sec θ + cosec θ.
11. If is an acute angle and tan + cot = 2, then find the value of sin3 + cos3 .
                                           7
12. In ABC right angled at B, sin A =         , then find the value of cos C.
                                           25
13. Find the value of (sin 45° + cos 45°).
                          m
14. Given that sin θ =      then find cos θ.
                          n
                  4
15. If cos A =      , then find the value of tan A.
                  5
16.   In ΔABC right angled at B, if tanA = √3, then find the value of
      cosA cosC – sinAsinC.
17.   If 2sin2 β – cos2 β = 2, then find β.
18.   If √3 tan θ = 1, then find the value of sin2 θ – cos2 θ.
19.   In a right triangle ABC, right-angled at B, if tan A = 1, verify that 2 sin A cos A = 1.
                   1
20.   If sin 2A = tan² 45° where A is an acute angle, then find the value of A.
                   2
21.   If sec A = 15/7 and A + B = 90°, find the value of cosec B.
22.   Find A and B, if sin (A + 2B) = √3/2 and cos (A + B) = 1/2.
23.   If (1 + cos A) (1 – cos A) = 3/4 , find the value of tan A.
24.   Evaluate: 3 cos2 60° sec2 30° – 2 sin2 30° tan2 60°.
KRISHNA'S INSTITUTE : 2nd Floor, Jaipuria Plaza, Sec - 26, Noida (U.P)       Page - 1-
                                    cos   sin  1  3
25. Find an acute angle θ when                      
                                    cos   sin  1  3
                             (1  sin  )(1  sin  )
26. If tan θ =3/4, evaluate
                            (1  cos  )(1  cos  )
                     1               1
27. If sin(A – B)=     , cos(A + B) = , 00< A + B ≤900 , A > B. Find A and B.
                     2               2
28. If sin(A + B) = 1 and cos(A – B) = √3/2, 0°< A + B ≤ 90° and A > B, then find the
    measures of angles A and B.
                                                  1
29. If tan (A + B) = 3 and tan (A – B) =             ; 0° < A+B ≤ 90°; A > B, find A and B.
                                                   3
                                            1
30. If sin (A + B) = 1 and sin (A – B) =      , 0 ≤ A + B ≤ 90° & A > B, then find A and B.
                                            2
31. Simplify:
32. If θ = 45°, then what is the value of 2 sec2θ + 3 cosec2θ ?
                      1         1
33. Prove that                        2sec2 A
                  1  sin A 1  sin A
34. Prove the trigonometric identities: (1 + tan² θ) (1 + sinθ) (1 – sinθ) = 1
                                                  sin
35. Prove the trigonometric identities:                   cos ec  c ot 
                                                1  cos
36. Prove that (sinA + cosecA)2 + (cosA + secA)2 = 7 + tan2A + cot2A
                  cos A 1  sin A
37. Prove that                        2sec A
                1  sin A     cos A
                 sin   cos   1
38. Prove that:                     sec  tan 
                 sin   cos   1
39. Prove that (1 + cot θ – cosec θ) (1 + tan θ + sec θ) = 2
                cot A  cos A cos ecA  1
40. Prove that                 
                cot A  cos A cos ecA  1
                 cos 2      sin 2 
41. Prove that:                      1  sin  cos 
                1  tan  1  cot 
42. If cos θ + sin θ = √2 cos θ, show that cos θ – sin θ = √2 sin θ.
                 tan        cot 
43. Prove that                       1  sec  cos ec
               1  cot  1  tan 
               cos   sin   1
44. Prove that                    cos ec  cot 
               cos   sin   1
                                            2
                1  tan 2 A   1  tan A       2
45. Prove that          2                tan A
                1  cot A   1  cot A 
KRISHNA'S INSTITUTE : 2nd Floor, Jaipuria Plaza, Sec - 26, Noida (U.P)         Page - 2-