0% found this document useful (0 votes)
28 views8 pages

Mec 003

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
28 views8 pages

Mec 003

Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

No.

of Printed Pages : 8 MEC-003


M. A. (ECONOMICS)
(MEC)
Term-End Examination
June, 2020
MEC-003 : QUANTITATIVE TECHNIQUES

Time : 3 Hours Maximum Marks : 100


Note : Answer the questions from each Section as
directed.

Section—A
Note : Answer any two questions from this Section.

2 x 20 = 40 .

1. A monopolist produces two commodities A and


B. His demand function is Qi = 40 + P2 – 2Pi
and Q2 = 15 – P2 + Pi . Pi and P2 are prices and
Qi and Q2 are quantities of A and B. Let the
cost function of the monopolist be
C = Q + Q 1 4Q2 + Ql . Find his profit
maximising output and prices. Also, find the
Hessian matrix.

P. T. 0.
[2] MEC-003

2. The input coefficient matrix of an economy is


given by

0.0 0.3 0.3


A = 0.3 0.1 0.1
0.2 0.4 0.0

and the final demand matrix

180
D = 20
90

Find the level of output.

3. (a) Consider the aggregate production function

Q= Ka. , where Q, K and L are all

functions of time. Depict and solve for the


time path of capital output ratio.

(b) Solve :

(t + 2y) dy + (y + dt2 ) dt = 0

4. (a) State and explain Bayes' theorem.

(b) Calculate P(B/A) if P(A/B) = 1/4, P (A) = 2/5

1/2 using Bayes' theorem.


31 MEC-003

Section—B
Note : Answer any five questions from this
Section. 5 x 12 = 60

5. Show that in a Poisson distribution, the mean


and variance are equal.
6. Suppose we roll a die and are told that the
number is odd. What is the probability that it
was 5?
4 1 —1
7. Find the inverse of 0 3 2
3 0 7

8. Estimatr se regression equation of x on y from


the data given below :
x y
5 8
8 6
3 11
10 8
5 9

9. (a) Find dy I dx when :

y = log (ex + 3)

1
=
IX2 a2

P. T. 0.
[ 41 MEC-003

(b) Find the total differential given :


xl
y=
x1 + x2

10. Solve the following linear programming


problem using the simplex method :

Max. :
Z = 55x2 + 45x1

Subject to :
6x1 + 4x2 5 120

3x1 + 10x2 S 180

?. 0, x2 0.

11. For 150 beams of a particular type, the mean


and standard deviation were found to be
8.5 mm and 0.5 mm respectively. Test if the
observed mean differs significantly from 8 mm.

12. Write short notes on the following :

(i) Kuhn-Tucker condition


(ii) Taylor's expansion
5 MEC-003

MEC-003
( altiVirfg )

(1t. t Tit )
thin RTr
19', 2020
RO.*.-003 : 'Kw* 31rafti V►
7:142T : 3 Erre 3irt1Th74 : 100

air : SAch TIM 4 7igirf-4-4r 3rn

WPT—W

wiz : wr 1-*---4Y 4} VrA71


2 x 20 = 40
1. 1 Writ/W(1' AV A '211 B ac Inca cmcri
tl dkicti 1717 41(14 swikf: Q 1 = 40 + P2 — 2P1

utrrQ2 = 15 P2 ± P1 ti fie? P2 7(.1


A afR B t 4;144 -ffeir Q1 ati Q2 ART st+of:
.sick 411,111t W4ifTft 1T *1 Wir
rerWRI a5T mid
410-1 C = Q2 + Q1 c12 +Q? *1 stmt; alftWdli
WIT drits•t 494 alTWFM f i*ffizM
loco AT airireff 4' at

P. T. O.
[6] MEC-003

2. R-W alter IT iii alKIff 1j111TW a-170:0-


0.0 0.3 0.3
A = 0.3 0.1 0.1
0.2 0.4 0.0

3117 alfatr Trig *item :


180
D= 20
90

dicbr ac41q f Tiff airWi-Mff a-AT

3. () *iabei Loorf Q = L1-a Ka 'R Th-9T-t

WT— Q, K ati-t L 1:11# chid

Loci-1 do us 39cfrul -wr <bid 72./


311Weffa 1;ci W-ARI

(u) f :

(t + 2y) cly + (y + dt2 )dt = 0

4. (Ti) " -1 5TT si 4 g cic1I U 3-fri -314-4


Wirq71

P (B/A) Thl-N7 7:fR

P (A/B) = 1 / 4, P (A) = 2 / 5 IT

P (B) = 1 / 2 cl ,st 31* 3trzlITT Th11771


7 MEC 003
-

• ITTIT-75
: Tcr iwt irt-a srn
5 x 12 = 60
5. T41f-Rfq Ti WERT( dimert * atk
fcritur -*RR lac ti
6. 4iiia f'W RW Rim Qm4 -ER fatm itgrr ti
*Err kiNiogir t N haft '5' t ?
7. $T alTalg air*fau .4) ,414 :
4 1 -1 -
0 3 2
30 7

8. ftiMk1rivd 3 * x TR
sin 4414-1-1 ahvi auchri-f '4NIZ :
x y
5 8
8 6
3 11
10 8
5 9
9. (V) lict Wff
dx
(i) y = log(ex +3)

1
(u) )1- 4x2 a2

P. 7 O.
[8 MEC-003

t-lchrf ara-0. ;11c1 -1f1-


47 :
()
xl
Y=
x1 + x2
qq trATI:n.
10. rti4c a+r rgrtT T mil4r
wrem Tru W-mg :
aftwaR :
Z = 55x 2 + 45;

srfreArd :
6; + 4x2 < 120
3; + 10x2 S 180
xi a 0, x2 a 0

11. "RW mcbit 150 Mit Aliff ITN 3117

1 -11111 rcirld4 sto-tql: 8.5 fit 4kt ail't 0.5


1-1dk trrg TR ti trftwi -4-F-A7 fqc 9zrr arcau
*Efff 8 4-1et 1:11-0 W-1 t fiT9

12. r1 4 -irrirtld c TITkit71 e.t+iruiqi fafiuR :


(i)
(ii) acct fd-RIR

540
MEC-003

You might also like