0% found this document useful (0 votes)
83 views44 pages

1st Unit

Dip 1 st unit

Uploaded by

xivoja3870
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
83 views44 pages

1st Unit

Dip 1 st unit

Uploaded by

xivoja3870
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 44
yur 0 INTRODUCTION * Digikel Tage Precesseg ~ the fietd of digital image permceasing orefets to Paocessing digital images by means of a digital computet Digikal image + : An image may be defrred as a two-dimensional function Fou where ty ate Spatial coomdinales and aropubide of f ak (xy) is cabled inbensily om grey level Of the image et thak point . When aq & the intensity values of f ane all finite, then the image is Said to be disorebe mage : ME Gavgios of bigitet mage accessing = ® one of the frost application of digital tmages was in the newspaper industry in 1420 pictures wete sent ftom london to newyork by Submastine cable. the twme stequtsied to sent pictwis ig one Weets. : Boatlane ' To sieduce the. Hime , submeasiinc cable is usect which toiansmits the picker less than Shows B the p Specialized painting methods ore used ab seceiven side to tenpoinve the visual quality and intensity levela of images © Tonmel quality & s1esolubion ane impstoved by Using photog aphy patinting ~method : 4) the easily barklane’ systern wore capable of coding five distinct level of gray i This capability war imoreased to 'S levels by using I5-tone equipment @ The stepswduction patocess Is impaioved by coded pichote tape Cmodulates film plate via Ught beams) D the advances in digital image puocessing ane - ty the invention of boansistor at bell endustates On 194% W The development of high level programming language COBOL ( common Business -Ostiented languoge) & FORTRAN ( fortmule Toromlabos) tn 145s & I9os , iy The invention of TC ab texas in 1958. UW he development of operobing aptern fm (60¢ W) the development of mictopsiocesson by intel in 1910s Wi) Inbstoductton of pextonal compute fm 19781 by Tem wt Paog s1essive minimization of components by visi GULST wii) Space & medica) applications Ko Asteonomy & aarcheology &) Development im the aneas of mass Stonage & display sy oko: Uses oF dugitol image paocessing :~ \ Garrma s104 imaging « i) Nuclean medicene li) in Astowonomical obseavations & X-say tmnaging « 1) fn medical diagnostics ll) in induskoties it) in Astronomy 3 - ulbsia - voileE band imaging = 0 Letheg aophg ) Indwstoual imspection tity Mivascepy W) basen V) Aststonomical Observations 4 wistble & Tnfaaned band imaging: D Light microscopy ui) Askauoncry itl) Remote sensing D) Industouy V) Law’ enforce ment 5 Mivtowave band tnaging : *) Radans Radvo band imaging « D medicine w Astonomy Oe Fundamental Steps in Digital Smnage Paipcesong = ole ot these, prowwcng oe Prager wavelet % multi xestovaHor — compusion , Maypole 4 kb Segmentation olp of these porous: quay 3 a tation ar ‘ desu ption g objec: fae RIT recognition, a r dmage acquisitron >To acquinte the image in digital form > To process the image Cecating) by us computer. Tmage enhancement: ( Subjective) The pocess of manipulating an image so that te oesult is mose suftable than the osuiginal fos Specific applicakion Enhancement techniques ane so varied, and use so many dif Fetenk image parocessing appooaches Frage stestoorahion : > Impmioves the appeaiance of tage 2 Image acitonation is objective : > they axe bore! on mathematical O71 parbabilistic model of image degsiadabion “ @ clan image Potocessing : > Full colow!. image Potocessing > Pseudo colon image Processing Wavelets & Mutt cebea: siesouittor porocessit > 10 impoove sierolution > To mepoterent imagen m vastious clegnees of s1esolution Compression : —> Fos Sredwcing the stonage ctequised to Save an image, ont the = bandurdth sequtned to taansmit it Moaphological processing : > Fos extnacking tage components that exe useful tn the steprierentation k deouiption of shape Segmentation : posttitions an image imbo its constituent pants ost Objects 8 bypes = 1. autonomous seqmentation % sugged Segmentabm 3 Weak om enratre Segmen Lotion > In general, the mooie accunate the segmentation, the mone ~“ — is to Succeed Recognision 7 ~ The pmocess of assigning a label to an objeck baxd on its desouwpton & cabled mecogackion Kavledge base » : knowleclge about a powblem coma ist ied ies an image pstocessing system im the femim of knowledge data bare The hnantedge bore can ato be complex Compopests Of am Tmoge Ragcessing System :- Specialized ‘mage pmocessin hardwore = Ik consists of digitigen and hardware The handwane is ysed fom the puxpose of noise viedoc tion This type of hardware” ts called 0 fownk-end subsyten Ib moot dis binguishig chanacteristic is speed Computer: ‘the cornputert in an imoge porocessing Spkere is oe genval-punpose computer ant can siange fem a PC to a supercomputer : Arq well equipped Pe - type ‘machine is suitable fa Off-Line image potocessing kashs Trage pacocessing software: Tt consists of speciabizec| “modules that petfom Special tasks sophistiaated softwane Packages autow the integration of these moduler ond genenol purpose sof Doe commands fotorn atleast one computer language Mass sipsage : Digrtal stonage fos fear, ed applications fall into . thaee psunupal Cotegoavies + shook - bewn stonage foi use dusting Facing On-line storage foo srelativety fost secath 3 arichi val eoaae chorac texntigect by infrequent access by frame bop fen! > computer eet pstovidea shosit - texm stonage 5 2 > On-line storage qenurally babes the fosim of ‘magnetic diss on aptical- media storiage > archive) stomage 1 characketirect by massive stoxage srequiciem ents ex Magnetic taper ar opt cal distts image dioplays : The pstocessed image can be Seen by image displays Image displays in ue today ove mainly coloot WW -monitoss Hastdcopy: + devices for s1ecomde imege inctucle larer porn bors y file cameras ; beak-sensitive devices, inkjek de Units and. digital units such as Optical and CD-Rom disks Network ¢ : ‘> Nebwonking 18 a defoule fonchon > Te dedicated netwostks, the bandwidth is oot a patoblem but communi catiom via the imtetnet ate not always ar efficient: > Dpha fret and other bowad band Fechnologies ate Used to overcome this. ° ibol ee fundamentols «- Tmoges Attaibukes | colost Dimensions Dato types |. Rasten —|-Binaxy images |. tao dimensional Leigned integer Bvyecton — 2.G>1ay level a.thaee dimensional aunsigned integer 3 Tue colost 3 Floae te. Peeudo cola 4. lagicol 8 Double Agtoui bubes = Raster vectan I Rasker images axe pixel I: vectoat images axe not dependent pixel dependent a. Fixed oof images ome used: co) Hoey ane stesolution - wy 3D Seaee comma) Gea aaa 1 Basce burleling blocks ase a voxels eq: mer scan ett, > Gena & gray colo images oste mmochsiomahe (oop achotomatre becawse do not howe be differ ~enk coli components >No. of intensity levels for sepoerenting G04 tevet - a* where k = BIE depth Resolution :- © > Peeudo YW towe colo ane MoE achstormbe J the colosts of steal ofject & cated tyve cleo > RGB cola are the composition of an image & each clot fo taken at gre empenen’e 9.28.28 167, 11,216 colo can be puodiced 3 As we cannot differen bate grey colors, we add other colon tik. this is cables! pseudo colo Cam) fabe Golan The ability of an imeging system to poveduce the Smatlek disceinible cletarl Thee ane boo types of aterolutibn = |. Spatrol stesotution 2% Tntemity sirolotion \ Spotial atesolut'n + Ik Depends on Lalo. of pixels tm the tmage Cox 2. Bit depth Ck) Ang ane of the above is made. combank and the other ‘wang & vicev the effect ane: pun to foo stequined effect | 1. checken boaxcd effect x) pixetisatton estan Sthe pixels in the tage one decneared ond pit depth is wade constank 2 False con town effeck Bik depth is clecreoned B pixels in the image oe anode conbeenk Elements "of visual peiceptian + Henn eft Fye is Uhe o sphere will be covering ow! entie eye ® : Lcovtnea and sclera 2 chosworel 3. Retina ok Selene 2 commen acts a poiotective layer Ik isa tough baianspee -nent tissue Ik pokects lens & pupil TE coveu the anterior postion of fe scleia is alo a pootective tager which comer tmenectiakely after corned Tk covers the postevast position of exe a: TE avoids ex bw lgbt into eye Ik is heavily Pigmented TE is stespomible foot the mutoi tion TE is a netwask of bwed cells TE contains Touis and celiony bady Lem: Tt is made up ef corte tayo of febsous cells They axe Suspended by aay body: TE adjusts the lens fost clear wision The lens consists Of 60-10 of wake and 6% fat It ts slighty coveted with an yellow pi mentation which grees with age catied cost caburiacts, can lead to poor color disctmmnation and ss of —cleast vision Retina : . Retin : Ik is the inne amet membsrane of ey€ Retina consists of & types of sieceptosu of backatde fo affonding potkein vision they ate + | cones 2. tod hey one located in the centstal postion of aetina catled roves : cones stods 1. 6-4 -miltions (15440 millions 2. The cones ate foot bought Vision and axe colted @ the. stods ane for dim Light vision dnd one cotled oto pr photopic xotopic 3. Beghly sensible to Colors a. Tkensity levels ose idenbiied 4. One cone fo one neve &. Getoup of edo foot single nowe 5 peri of cones ia 150,000 elements /mmY 6. wones ate Concentyated im foves abouk 15x15 mn” pri Bund “pot + i. Absence. of loner di rtode No.of stoda o71 Cones Per. mm” BF 6S 4d AS. OT a0 HO 60-8 peqnew fiom visual a's C centea fover) Tmage fosimabion in the sy + Cameno senogind pack oe e P ii ea Lain Nthe focal Length of tent in Cameie& Cannot be vasiect 9. the distane bho tens & imaging plane CRU) can be Vaou'ed — the focal length Human baie 5 retina Wase> Lens tthe focal length can be vastied @ The distance between lem and imaging plane caebina) Cannot be vostied will be varied ftom Iymm to Hmm. Tf the distance between object & cu eye Is 73m the focol aie is l#mm. Otheuuise ium => fon fan distance, lens will be fom less. distance, jens will Flattened be thickened measured by Light surface 2) the angle fotom which the Light is emitted. > Boughtness is catled paycho visual concept Tk Is the penception Com) sensation of imput Uigbe on the botain the subjective boueghtness isa Segoruthmic fonction of the Lag inteily encedeol on the eye Ey HF wo objects one effected by tre Same intensity of ugh, ey do nok have some — beuightnea ~~ Forom swtopic Cami) to photo pic Clim. . the mange is cated dynamic intensity siange: C-3ml to -Imv) When this ange is differentiated on intensity level basis , ik is catled as BRIGHTNESS DESCRIMINATION luhen this siange Is obSoabed by oust eye, ik is cabled BRIGHTNESS ADAPTATION: “6H elo a 4 — log of émbensity Gnd) Ba > cunsient Sensitiviby level tox)? Boughtness adaptation level Be> ‘mdistinguishable blacts Chelow Ba) indistinguishable whites (above Ba) > Bourg htness doesnot depend on the inkensity 2 So clepend» on the Local back gotond ~ simulkaneous sionge 15 smotien than ‘the total odaptation ange. ~~ Webst oabb: aT. it whore OTe = Mutementecd intensity The quantity O1¢ where Ate ts Imorement of the zt ® iumination discuminable 507. of the ‘me with bactgatound fkominditon I, is ealted the ebea satin the weber natio t's fos Low tevels of ttemination 3 Two phenomenons thak demontsate that pencerved Boughtness is Mok a simple function of intensity Theg axe: 1. Mach band» & Simultaneous conatsank Ligot & Electnomagnebic Spectom ca lgbl e 5 We can perceive object Di = a Sowice + Le Pourmaay Zowice + emits lege eq: Som, Lamp alc a Sevondasy] Source + a.bsostbs [reflects the Laghe eq: moon > Light does not need any medion “a light is having duol natwie. It can either be tveated oy wave a mass less panticles v Sinusoidd — photons ~ wavelength ~A ~ depending upon the energy of photons ANTE Ceehy) but E=ho 2 bata > Ube Is a pork of EM speckswm > pared upon enengi¢n & fareqpencir Y wavelengths, 6M spectwm is divided into different bands > Newton, a suentist absosibed that when light is passed 0p psism on one side , the other side ef the, pauism sieflechs VIB GYOR > Lgbe: & Monechstomabic (a) Achstomatic — Centensity) ~ Monochoianatic Ught ange is from black to white carted yey scale and monochs@matic images ane sieferied to as frog: sole images W chromatic — EM een Spectstun fstom % 0.43 to 0.14 Lum. 3 quatitres: bs stadiance : — total amount of energy that “Flows fotom the baght source —Meouned in Watts CW) & luminance t ~ the meanuste of the ammount of energy an Observer — periceives from oO laght source —Meoswied in Lumens (im) 3 Barghtness « — the Subjective desoviptom of lgbe peiception rat ls paiactically emposeible to measure * The uoaveleng th Of EM wove oteqyutsied to See an object must be of the Same s13@ 0% 021 Smaller than the object ¥ Sound osteftected foto the objects can be used to form — utkotaronic eenages Troage Sensing and acguszition --. Image sensing : Continous signal to electsucal signal which is then given as imput to Digt tiger Acartring 0 theme seal tiene object onto a imoge plane is done by Sensostt 3 types of Senos: t Single SEMAO7 1 move the Senso to 2 Line sensom seme in 20 image 3 Asia seman mo Petd to move the Single senvox: an The in-line aariangement of sengle Semoss ‘is Known a Semon stsup Cupto Yoo) The stop potovides fnoging elements in one distection.and Motion perpendiastar to the stop — poovider imaging oo other distection- 4 flat bed scanners, ais bosine fnaging the imaging styip give, one Une of an tmoge ak a time, and the motion of the statip completes the othet dimenion of & ap image: ; ec Lemes (a) olbel focussing schemes ane used to pxoj the aren to be scanned onto tre Senor Aye wes! Semon: Predominant corrangerntoe pf Sensors (4000% Yodo») moxie) fox camenoy CoD anita Used Noise neduction can be achieved ~ because Sensor axt>10¢4 t6 aD, the complete image cam be obtained by te foassing the energy pattern on tp te annoy suaface The servos asi2ay whieh is jwinudentod with the focal plane, produces outputs potoposibional to the integual of the Ugh steceived at each senso - TEES SAM PG nd quantigokin:- Image Sampling « To convent an anolog image +0 digital foam, we have to sample the function in both ampli tude coordinates and in Digibsing the spatial coondinates: és called SAMPLING Image quantigati « Dige tsing the anplitude Valuer is “called QUANTIZATION: TF we seduce the qtantigabin level, fae contoning effect ocuus ¥ Sampling is oreveuable petocess TH we seduce the sampling orate , checker boand effeck occas. Tntemiby Resolution : The Smallest drecennible change in the intensity level is cabled as Entensity oietolubon Cox) the n0-0f bibs used tO qvankize intensity ar bens i m ce 8/16/32 / to ore > exceptional v commen. 210Ne £02. Some Basic Relationships between Pixels + - the study of the ‘ gelationship beboeen the pixels is cabled Tmage topology Neigh bouxhoot : Repaierent sets with. capital letter & elemenb of sets with small letter: Let us comider o pixel’? with cwordinakes Ou4) Types of Mesghbouhood : tae Neighboust hood CNucP)) 2. Diagonal oe eae (Nol P)) 3.8 - Nerghbousthood (ner) ue Nesghboust hood + oq) any) oq) (tt14) Gog ny Diagonal Mer gh bowst hao’ hood = tng) Out qd (x4) 1g ed OL gtd &- Necghtoousthood * . tai qe? cag) Cong) try) coy (athg) Gays) Guy) Coty) Next to the sieforence pixel. Adjaceney % adyacenty 2.8 adjacency 3. mixed adjacency cas) M 0dj eng] 4 adjacency « Two pixels when both have the ond if q is satd to be Pwq aie said to be four adjacent same Value an Specified by the set v in the Sek NylP) tomider vehil I « a e 1 2 O60 20 0 X ge- ° v 8 adjacency : : Two pixels P&Y ante sard to be exght adyacent when both have the Same value as specified by the sek V and ¢f 4% is said to be in the Sek NelP) for ve ave hth o1 ot ° a Mixed dg acency (m- adjacency) ‘ 9 : To overcome the” potoblem of aimbiqau by in: B-adjacenty we go for M-adjacency Two pixels Pky with values fo1om v one mixed adjacent if D gy is im NyCP) ii) q io 1 NpCP) and Set NylP) ANYLAD has DO pixels whose values ane ftom Vv’ Depending on adjacency there ane 3 paths : 1. 8 path 2. 4 path 3. ™ path For Gig) 1 Aid), Ca 42) -(S,t) & pixel let Pelup & y= C5 bt) if PeY 2B Carf)= Cs/t) then ik tS called CLOSED PATH. Connecti by = The path har to conneck att the components ot atl the stemaining pixels with each other fowm ploy: connected components of 5S A pixel which is connected with all the componenls ts connected Comnponent> of S- Only one connected Component means Connected Sek Region = Tf Ris a connected Set , then Ris called the stegion of ‘the image: Refi} Disjoint Regions Tf ang stegion does not follow ony adjacency, then ik (5 tated Drajoint Regions Tf Ry RyRy, Re ane Disjoint Regions Ru = RURURZU....RK © foote ground of the image RS = Bu RUAgU-----Re)* = backgstound of the image Distance MEDAUMEA +- the distance function can be -catled metsic if the following properties axe Satisfied 1. DEP,y) i6 welldefined & finite ¥ Phy & berg) 20 iF Psy pep) z0 3 DcPA)= dC4,P) 4. DPA) & DURA) + DC4,2) Fon pixel Py)? with eooridi maker Cxy, (SE) PLUND, © tS a distance function os1 metric. Let P,P R, have, values’ ti and “Pil P3 have the Value ether o onl. Consider vi hth Care-ay: Py, Py = 0,0 ou 017 i7 Length of the shoatesk M path beboeen P and PU is 2 cP e2 > PY) coe ~ (ily: Pi,Py <0, int * o1 17 Length of the Shositesk ™ path between Pand Puis 3 CP P23 P3> PY). care diy: Py, Py = 1.0 on 11 * 1 Leng th of the shosttuk path bebwoeco Pond Py fs 3 Cesp1> P22 Ps) cone -tiv)- PLP = tt >) » a - 1 Vength ef the shortut ™ path bebwren Pond Pu is 4 Cp>Pi>P2 3P3 2h) theie ate A astferent | distance meanustes | Euclidean -distance 2 Dy distance 3-Ds distance 4. Dm distance Euclidean distance: DelPM= YY Cx-s)¥4lq-t” Du distance (ost) city block distance + DylPad= tx-sb+ [y-el For Dulha) <2 + 2 yer e 2 ' 2 e-o-r pixels with DMP=! ts 4-neighbouw of P- Dg distance Cox) chess board distance - paca = max (est, ly) pizeb with — dg(P)={ ts @- nuighkouns of PB Dig distawe? The Di Atstance sroatvt ™M path between Ph Ry A : Pp blo two potnbs. is dekined a1 the the potohs Ao Introduction to ,the Mathematical Tools vu: Digital Smage Pageessing = \. Operations bared on “neigh bownooa 2 Asie verrus mabslx Operations 3. Linear ves Non lineout Operations Ue Asuthmelic Operations . ‘ 5- Set and Logical Opexation» G Tnterpolatin openctions + vectos vemos Madis opetabion 3 Tenage toians foo 4. Pxobabilistee methado lo. spatial operations Operations bored on Neighbourhood : tL. Point Openatioms — One pixel 2 Local Operations + Ny,N¢ 3: Global Operations — Image Armsioy vere Matsui operations + An acide operation involves one oo Mose imager out on oa pixel- by- pixel basis Fos example, consider the fol. aing axa -mabicts a ar by bi ond an an) [br Asian potoduc is costotied Matrix potoduct xb ra . au bur@nbe — Ay bi +Anbe, Oar Orb. 441 bu 40u1b04 mined | x 3 Linean Versus Nor Linear Openations: consider a qenenal opexaton H, that pacduces an’ Output image qe for a given inpok image Fug) * : leony] = qoup Uissacd to be linear operator only when it satisfies 1) Homog eniby ii) Addstivity Homoqentty Nfovicap+ ajtiap]s af 4 [feng] + ag 4 Gay] + 4g; Cry) + Ojaicry) Aadctivity + Z [aiticory) + offiogl] - Zaiticnyy + Sag Fry) = i Zecry) + Oy ZAFCOY) z 24 GOLA) + ajgjlary) Max. Opetation : - £4: Find the maximum vatue of the pixel a ofbe cyt le) = RWS? or Tes w owes} [? aI} + come J Seay He LES & RAS the max openttor 's mos Lines! h. Asvithmetic Operations: The asuithmetic operation ace cavistiied out bekween cosmesponding pixel Paros & aouthmetic operation ~ ' SOX q)= FOC gr + goug a doxigy= FOLq) -qauyp 3. PCa) = PCxrg) x Gay) 4 Voug) = FOOD) gap by default all the openabons ante clone by Army Operations o Image addition: 8214) fon) +h if kyo, image clarity t's ay \ qourp = FOU) + NO) FOUg)= impok moise Yan = noisy image Goug= oisy impok Image To meduce the noisy content, avenging ts used. Gaws= — 2. aicap : wobené : . GCA) = GiCiyir ners TeCXy) = MeIse image Gor) = averoging stesute imoge = ebgapy = foup ‘ ELAcapy = Oauiginal Image EL ACY #8 feos AO avewge : = this is used mainly in aattonomy. WH Aoege Subtoiaction >A frequent application of image Subtsaction is tm the enhancement of differenced bekween image > used in medical imaging calied «Mark mocle sradiog raphy qeew= FONQ)- Hay if the difference is 0 (Black) , ther’ the difference troage tnarcate — Location whote thote is 10 aiffenene between — the imag’ wf the aiffenence is VCuohite), there (s image difference CO te \mpositant application of im ee qe muLtiptication Cand division) is shading stosnec tion FOUW) = Flay) bong) qmegd= Output. image Fry), Perfect image Jimpot image btaiq) < shading fonction : . @ Another common use bf image route plication is In man king, abso coed stegion Of interest CROs) , Shape of ROT can be artbit sary tor stectang ole ts 3 mook image Spatial Operation : The spatial operations ase disiectly applied on the pixels of the image 3 bypes: t Single pixel Openation a Neighboushood Opertation 3. Geometric Spatial Operation. t Single pixel Operation + $=T(2) $= intensity of the input image T= intensity of the output image The change mode im input image pixel will appeast of the same pixel im outpit image. a. Nexghbourthcod opeaahion © iTp image lp image 1. consider any piel in the impot image (5) 2 of tak pixel= Ot | 9. coleutake averag ql a 4. the stenntank average wilt be the pixel in the oulpt imoge: 3. Geometric Spatial apenation < » 212) a5 the dashed Liner show the Exansfosmation of artbiksonay o inkemity vatue 2 imbo coomenponding output So. ‘ o RH Geometrical tstansformation modify the spatial wrelationships between pixel ( an image A change im one pixel in inp image woill changes the total outpit. tmage " We need to perform 2 bavic operations = I spatial tsiam fastmation of coomdinates 2 Intemity intupotation bechniques 1. spatial taans formation of coosidinates: Spatial tsicun»fosimation is done by Affine banfoam = Genenal fostmuls far affine bsransform + (x qd = (vu jr= fv wi “ a 7 : a br 0 ts te il Le The linea equabtons ase HE AN+ CWO Y= bov+ bWtbr 1) Fon identiby, ; , Bo= biz! b aya, =bo sbi 20 D> x=V yew ») Fox scaling ; Bo =0x, by =Cy / the image ann OD D> X=GVv Image opp Yayo oom an shoink 3) FoA Rotation , Qo = 0058 , a4 = -5inb the image swtatn» with bo = dos®) by = sine “Somme angle > X= wsev~- sinew Y =(50V+4 sindw 4) Fon Trcnstation, Qo=', O= ca the image shape will by - rhe meky sremain same , but es ee eoosdinates shit Yew+ty 5) Fon shean (vertical), Qo <1, Q,:Sw,b, =I the ime e shape will be distosited a X= V+syw Yew 6) Fos shean (Hostigantal) , Qo =), bo =Shs bid the image shape wit =) tev be dixtonled 9 Spvew & Inkemity Iwterpolabion + techniqves Assigning intensity values to the Spatially tyanrforned pixels using intensity interpolation Eechniqués (ays Ties pixel toostdinak in output image Gp: Cup) pixel cooaidinake 6 ‘impo image Resampling methods arte followed after geometrical totanifoamation of wordinates so that the qwodity Of the — oukpuk fs maintained. Q bechniqu&s* ).Upsample Cfo ip yolp) 2) down sample Cfoo tp ore comidured SF oder intertpdation Conridened t a2 fo verge 2 bij xy! feo ito > Bilinew! and Biubic interpolation aste “Computotionally and steullnnt (s mone qualitalive ha» good quality complex ~> Bieubic — intotpolatiun TWansformation Affine —- Coordinate Nome Makrix, T Equabion dently f : ; a "Be Oo 1 : GQ oo X=Qv Scating 0G 0 meats : oo} COSO Sine | 2 = ViC080 rg sing 7 \ Example Retabion |sine case o Y= Verse sing ° ° : oOo w= Vth — “Translation of Jaws CC TMAGE TRANSFORMS & Walbh bsiansfooun = * 5 Walth ksiansfesim im an osithogenal tnansfosim uhich* used in spectra methods foo: different applications is often m mage | Let Us comider oa function #0) [x= 0,6.N-] N=Q Then the 1D- Habsbh _ bnansfooim is qn by, No nt wows 2 FOO] TT c-1PiO? boi eo 420 ico cos) a = biGO boii fen ¢-1 °° =O - Halse transform is fo 5 eS [i cn bremtnnse re iso The 8B - Halsh boiansfostm + Tf forny) is a ad fonction and %=4=0,b ,N- Nz, WT ¢-) wa NGI net Gj O0 by 4 (WO +bityybn .iY))| top| X=0 Yoo rower F Cbicoby ile + bilpbn 300) = 2, Foy) C nv N = eo Yee The inverse a D4 (bien) by i(Webily) by -f¥) SF new | 7 bi ) bp i ( 1) izo fecay>] 2 v The expression The >bi ca) bo - itu) re . is Kernel of ID- Habs and the value of it is eitner tos! based” ai tw tran foam on the vatues “of biOO and bh kounet + ° ie thak contains —astthogonal stows Symmetric matsur and = columns: Puopeitzes of Waleh Faant fom = lL Walsh k-nansfomm is a Sexier expansion of basis functions whose values asie only -| a1! and forrn syometeical Square wave 2 these tnansfomms axe implemente mone efficiently in digrtal systems 3. Excep—E a comtant ™muttiplicahion factoor of “ Yw". the forward and mveite wewbbipbicetion wabh teiansfoom Kernels of 1D- signals ane 4ame h Te supposits the paoperty of energy compaction & Gn case of ap signals. the foawand and imverie jWabb transfoam Keinels ome Same fon oll Cases. This is due +0 the onthogoral aos beolumnr of Symmebic Keanel mertttx Hacloumozd = tnasnsform = + Hadarnasd emaksire the -mabsixy, which consists of Square onIa4 and minus ones mMOWS mod ix. The columns oxthegonal Han For ntea, Hara = a Hy qhe kennel of the eer qe Fo QD i Hlaw= i : ® tmansfern depends on the -hadamozd of plus ond = columns gard to be hacamese and s10ws in hadamard matyix on& which Satisty hadamasid matvix of Sige N 6 Lf in Hw “an ar [ae oa a Nua = 202 tft Ma NO[Y, -a eee Glia ya (D badamand transform is 9-1 S bids bitud e +t ole de ov Zz Clbicar bicuy + biGy) bICw? fog) CO : es 120 Sto wa The inven hadamand tmansfoom is. given by . utes Baer say = ae wean cfbierBiees + bie bv) ime v=o Propestins \ Ik is oathogonal & Symmetyvic , steal tsiansfooi Us! cus = He oH tt has geod to eo geod enengy compaction fer night b ° coatztelated 3 Ketnels ante identical, images 4. utbra fast angosritins ane available for tt computational og" subtractions ¥ additions ate required 6. TE & ubtsa fort btansform than Amusoidal E¥ans ford beowre TO smuttiplicativn ds requaved 4. Tk is useful foor digital hevidwaxe implementation of temoge processing algosuithens © Hoan totansfoo.m :~ the Haat bstansfesten has elements thot oxe 1,1 (2) © amuttiptied by the power of fe Step-t B Find the osder of N foo the Haan basis step -a* Find n (m= bog) - Step-3> Detoimine PRY W O¢pso-t @ TE pro then Y=0 ON Y=I ® If pto them Isy 2? skep-4: betetmine K ke aPeay-t skep-5+ Determine 2 | ~ : No N Step -6: ’ 1 : sho@s = 2€Co.!) 2f¢ Kio then hel2) = ho iw fo ewe ah i¢ Vt cac 4 he (2) = hpgl2) = on Ea 2P a Pe nds . a a ES 2 < *ht a o otheunise 2 € CO!) Poopenties of Haan tytn fo2 lL. the Haan iy = AF Hy = Hy a. the Hoar operations on an Nxi vector. 3. the mean vectosw of osdoted 4 Tk has poor enengy deal for images Zlant taavio2m.:~ —— mare = fend Mos Neh skep-a: |e SG fF J Skep-3: Genviad Eaamformabien — fostmute+ 10 io Sn = ~~ oe totansforim =i seal and oathogonal tetauns fooim » vey fost. It cam implement O(N) Haas mabyix ote sequentially ‘ ptopuities of dank brensfosin 1 TE (5 steal and atenogonot bE stamsfore s AAT es Squaste makix > If the given ematsix 16 square matrix Enen A= vpv" whete Uzmxm ostthogonal “makstx and its stows fooum Os1Enogonal set Ve nxn oathogonol. wmakyix ancl IK, clumn foam o oathegonal sek Dz diagonal -maksix compoused of Singutar valuen oF A whose dimensions axe nxn Be “5 Oo © ...-- ° 0000--°°°% ~ Az vov"' is not possible, Since images Con srosely be modelted

You might also like