yur 0
INTRODUCTION *
Digikel Tage Precesseg ~
the fietd of digital image permceasing orefets to
Paocessing digital images by means of a digital computet
Digikal image + :
An image may be defrred as a two-dimensional
function Fou
where
ty ate Spatial coomdinales
and aropubide of f ak (xy) is cabled inbensily om grey
level Of the image et thak point .
When aq & the intensity values of f ane all finite, then
the image is Said to be disorebe mage :
ME Gavgios of bigitet mage accessing =
® one of the frost application of digital tmages was in
the newspaper industry in 1420
pictures wete sent ftom london to newyork by
Submastine cable. the twme stequtsied to sent pictwis
ig one Weets.
: Boatlane '
To sieduce the. Hime , submeasiinc cable is usect
which toiansmits the picker less than Shows
B the p Specialized painting methods ore used ab seceiven
side to tenpoinve the visual quality and intensity levela
of images
© Tonmel quality & s1esolubion ane impstoved by Using
photog aphy patinting ~method :4) the easily barklane’ systern wore capable of coding
five distinct level of gray i
This capability war imoreased to 'S levels by using
I5-tone equipment
@ The stepswduction patocess Is impaioved by coded pichote
tape Cmodulates film plate via Ught beams)
D the advances in digital image puocessing ane -
ty the invention of boansistor at bell endustates On 194%
W The development of high level programming language
COBOL ( common Business -Ostiented languoge) & FORTRAN ( fortmule
Toromlabos) tn 145s & I9os ,
iy The invention of TC ab texas in 1958.
UW he development of operobing aptern fm (60¢
W) the development of mictopsiocesson by intel in 1910s
Wi) Inbstoductton of pextonal compute fm 19781 by Tem
wt Paog s1essive minimization of components by visi GULST
wii) Space & medica) applications
Ko Asteonomy & aarcheology
&) Development im the aneas of mass Stonage & display
sy oko:
Uses oF dugitol image paocessing :~
\ Garrma s104 imaging «
i) Nuclean medicene
li) in Astowonomical obseavations& X-say tmnaging «
1) fn medical diagnostics
ll) in induskoties
it) in Astronomy
3 - ulbsia - voileE band imaging =
0 Letheg aophg
) Indwstoual imspection
tity Mivascepy
W) basen
V) Aststonomical Observations
4 wistble & Tnfaaned band imaging:
D Light microscopy
ui) Askauoncry
itl) Remote sensing
D) Industouy
V) Law’ enforce ment
5 Mivtowave band tnaging :
*) Radans
Radvo band imaging «
D medicine
w Astonomy
OeFundamental Steps in Digital Smnage Paipcesong =
ole ot these, prowwcng oe Prager
wavelet %
multi xestovaHor
— compusion
, Maypole
4
kb Segmentation
olp of these porous: quay
3
a tation
ar ‘
desu ption g
objec:
fae RIT
recognition, a r
dmage acquisitron
>To acquinte the image in digital form
> To process the image Cecating) by us computer.
Tmage enhancement: ( Subjective)
The pocess of manipulating an image so that te
oesult is mose suftable than the osuiginal fos
Specific applicakion
Enhancement techniques ane so varied, and use so many
dif Fetenk image parocessing appooaches
Frage stestoorahion :
> Impmioves the appeaiance of tage
2 Image acitonation is objective :
> they axe bore! on mathematical O71 parbabilisticmodel of image degsiadabion “ @
clan image Potocessing :
> Full colow!. image Potocessing
> Pseudo colon image Processing
Wavelets & Mutt cebea: siesouittor porocessit
> 10 impoove sierolution
> To mepoterent imagen m vastious clegnees of s1esolution
Compression :
—> Fos Sredwcing the stonage ctequised to Save an image,
ont the = bandurdth sequtned to taansmit it
Moaphological processing :
> Fos extnacking tage components that exe useful
tn the steprierentation k deouiption of shape
Segmentation :
posttitions an image imbo its constituent pants ost
Objects
8 bypes = 1. autonomous seqmentation
% sugged Segmentabm
3 Weak om enratre Segmen Lotion
> In general, the mooie accunate the segmentation, the
mone ~“ — is to Succeed
Recognision 7
~ The pmocess of assigning a label to an objeck baxd
on its desouwpton & cabled mecogackionKavledge base » :
knowleclge about a powblem coma ist ied ies
an image pstocessing system im the femim of knowledge
data bare
The hnantedge bore can ato be complex
Compopests Of am Tmoge Ragcessing System :-
Specialized ‘mage pmocessin
hardwore =
Ik consists of digitigen and hardware
The handwane is ysed fom the puxpose of noise viedoc tion
This type of hardware” ts called 0 fownk-end subsyten
Ib moot dis binguishig chanacteristic is speed
Computer:
‘the cornputert in an imoge porocessing Spkere is oe
genval-punpose computer ant can siange fem a PC
to a supercomputer :
Arq well equipped Pe - type ‘machine is suitable faOff-Line image potocessing kashs
Trage pacocessing software:
Tt consists of speciabizec| “modules that petfom
Special tasks
sophistiaated softwane Packages autow the integration
of these moduler ond genenol purpose sof Doe commands
fotorn atleast one computer language
Mass sipsage :
Digrtal stonage fos fear, ed applications
fall into . thaee psunupal Cotegoavies +
shook - bewn stonage foi use dusting Facing
On-line storage foo srelativety fost secath
3 arichi val eoaae chorac texntigect by infrequent access
by frame bop fen!
> computer eet pstovidea shosit - texm stonage
5
2
> On-line storage qenurally babes the fosim of ‘magnetic
diss on aptical- media storiage
> archive) stomage 1 characketirect by massive stoxage
srequiciem ents
ex Magnetic taper ar opt cal distts
image dioplays :
The pstocessed image can be Seen by image displays
Image displays in ue today ove mainly coloot
WW -monitoss
Hastdcopy: +
devices for s1ecomde imege inctucle larer porn bors y file
cameras ; beak-sensitive devices, inkjek de Units and. digital
units such as Optical and CD-Rom disksNetwork ¢ :
‘> Nebwonking 18 a defoule fonchon
> Te dedicated netwostks, the bandwidth is oot a patoblem
but communi catiom via the imtetnet ate not always ar
efficient:
> Dpha fret and other bowad band Fechnologies ate
Used to overcome this. °
ibol ee fundamentols «-
Tmoges
Attaibukes | colost Dimensions Dato types
|. Rasten —|-Binaxy images |. tao dimensional Leigned integer
Bvyecton — 2.G>1ay level a.thaee dimensional aunsigned integer
3 Tue colost 3 Floae
te. Peeudo cola 4. lagicol
8 Double
Agtoui bubes =
Raster
vectan
I Rasker images axe pixel I: vectoat images axe not
dependent pixel dependent
a. Fixed oof images ome used:
co) Hoey ane stesolution -
wy 3D
Seaee comma) Gea aaa 1 Basce burleling blocks ase
a voxels
eq: mer scan ett,> Gena & gray colo
images oste mmochsiomahe
(oop achotomatre becawse
do not howe be differ
~enk coli components
>No. of intensity levels
for sepoerenting G04
tevet - a*
where
k = BIE depth
Resolution :-
©
> Peeudo YW towe colo ane
MoE achstormbe
J the colosts of steal ofject &
cated tyve cleo
> RGB cola are the
composition of an image &
each clot fo taken at
gre empenen’e
9.28.28 167, 11,216 colo
can be puodiced
3 As we cannot differen bate
grey colors, we add other
colon tik. this is cables!
pseudo colo Cam) fabe
Golan
The ability of an imeging system to poveduce the
Smatlek disceinible cletarl
Thee ane boo types of aterolutibn =
|. Spatrol stesotution
2% Tntemity sirolotion
\ Spotial atesolut'n +
Ik Depends on
Lalo. of pixels tm the tmage Cox
2. Bit depth Ck)Ang ane of the above is made. combank and the other
‘wang & vicev
the effect ane:
pun to foo stequined effect |
1. checken boaxcd effect x) pixetisatton estan
Sthe pixels in the tage one decneared ond
pit depth is wade constank
2 False con town effeck
Bik depth is clecreoned B pixels in the image oe
anode conbeenk
Elements "of visual peiceptian + Henn eftFye is Uhe o sphere will be covering ow! entie eye ®
: Lcovtnea and sclera
2 chosworel
3. Retina
ok Selene 2
commen acts a poiotective layer Ik isa tough baianspee
-nent tissue
Ik pokects lens & pupil
TE coveu the anterior postion of fe
scleia is alo a pootective tager which comer
tmenectiakely after corned
Tk covers the postevast position of exe
a:
TE avoids ex bw lgbt into eye
Ik is heavily Pigmented
TE is stespomible foot the mutoi tion
TE is a netwask of bwed cells
TE contains Touis and celiony bady
Lem:
Tt is made up ef corte tayo of febsous cells
They axe Suspended by aay body: TE adjusts the lens
fost clear wision
The lens consists Of 60-10 of wake and 6% fat
It ts slighty coveted with an yellow pi mentation which
grees with age catied cost caburiacts, can lead to poor
color disctmmnation and ss of —cleast visionRetina : .
Retin :
Ik is the inne amet membsrane of ey€
Retina consists of & types of sieceptosu of backatde fo
affonding potkein vision they ate +
| cones
2. tod
hey one located in the centstal postion of aetina catled
roves :
cones
stods
1. 6-4 -miltions
(15440 millions
2. The cones ate foot bought
Vision and axe colted
@ the. stods ane for dim
Light vision dnd one cotled
oto pr
photopic xotopic
3. Beghly sensible to Colors a. Tkensity levels ose idenbiied
4. One cone fo one neve &. Getoup of edo foot single
nowe
5 peri of cones ia
150,000 elements /mmY
6. wones ate Concentyated
im foves abouk 15x15 mn”
pri
Bund “pot +
i. Absence. of loner di rtode
No.of stoda o71 Cones
Per. mm”
BF 6S 4d AS. OT a0 HO 60-8
peqnew fiom visual a's C
centea fover)Tmage fosimabion in the sy +
Cameno
senogind
pack
oe e
P
ii ea Lain
Nthe focal Length of tent in
Cameie& Cannot be vasiect
9. the distane bho tens &
imaging plane CRU) can be
Vaou'ed
— the focal length
Human
baie 5 retina
Wase>
Lens
tthe focal length can be vastied
@ The distance between lem
and imaging plane caebina)
Cannot be vostied
will be varied ftom Iymm to Hmm.
Tf the distance between object & cu eye Is 73m
the focol aie is l#mm. Otheuuise ium
=> fon fan distance, lens will be
fom less. distance, jens will
Flattened
be thickened
measured by Light surface
2) the angle fotom which the Light is emitted.
> Boughtness is catled paycho visual concept
Tk Is the penception Com) sensation of imput Uigbe
on the botain
the subjective boueghtness isa Segoruthmic fonction of
the Lag inteily encedeol on the eye
Ey
HF wo objects one effected by tre Same intensity of ugh,
ey do nok have some — beuightnea~~ Forom swtopic Cami) to photo pic Clim. . the mange is cated
dynamic intensity siange: C-3ml to -Imv)
When this ange is differentiated on intensity level
basis , ik is catled as BRIGHTNESS DESCRIMINATION
luhen this siange Is obSoabed by oust eye, ik is cabled
BRIGHTNESS ADAPTATION:
“6H elo a 4
— log of émbensity Gnd)
Ba > cunsient Sensitiviby level
tox)?
Boughtness adaptation level
Be> ‘mdistinguishable blacts Chelow Ba)
indistinguishable whites (above Ba)
> Bourg htness doesnot depend on the inkensity
2 So clepend» on the Local back gotond
~ simulkaneous sionge 15 smotien than ‘the total odaptation ange.
~~ Webst oabb: aT.
it
whore
OTe = Mutementecd intensity
The quantity O1¢ where Ate ts Imorement of the
zt®
iumination discuminable 507. of the ‘me with bactgatound
fkominditon I, is ealted the ebea satin
the weber natio t's fos Low tevels of ttemination
3 Two phenomenons thak demontsate that pencerved
Boughtness is Mok a simple function of intensity Theg axe:
1. Mach band»
& Simultaneous conatsank
Ligot & Electnomagnebic Spectom
ca lgbl e
5 We can perceive object
Di
= a Sowice +
Le Pourmaay Zowice + emits lege
eq: Som, Lamp alc
a Sevondasy] Source + a.bsostbs [reflects the Laghe
eq: moon
> Light does not need any medion
“a light is having duol natwie. It can either be tveated
oy wave a mass less panticles
v
Sinusoidd — photons
~ wavelength ~A ~ depending upon the energy of photons
ANTE Ceehy)
but E=ho
2 bata
> Ube Is a pork of EM speckswm
> pared upon enengi¢n & fareqpencir Y wavelengths, 6M
spectwm is divided into different bands> Newton, a suentist absosibed that when light is passed
0p psism on one side , the other side ef the, pauism
sieflechs VIB GYOR
> Lgbe:
& Monechstomabic (a) Achstomatic — Centensity)
~ Monochoianatic Ught ange is from black to
white carted yey scale and monochs@matic images
ane sieferied to as frog: sole images
W chromatic
— EM een Spectstun fstom % 0.43 to 0.14 Lum.
3 quatitres:
bs stadiance :
— total amount of energy that “Flows fotom the
baght source
—Meouned in Watts CW)
& luminance t
~ the meanuste of the ammount of energy an
Observer — periceives from oO laght source
—Meoswied in Lumens (im)
3 Barghtness «
— the Subjective desoviptom of lgbe peiception
rat ls paiactically emposeible to measure
* The uoaveleng th Of EM wove oteqyutsied to See an object
must be of the Same s13@ 0% 021 Smaller than the object
¥ Sound osteftected foto the objects can be used to
form — utkotaronic eenagesTroage Sensing and acguszition --.
Image sensing :
Continous signal to electsucal signal which is
then given as imput to
Digt tiger
Acartring 0 theme seal tiene object onto a imoge
plane is done by Sensostt
3 types of Senos:
t Single SEMAO7 1 move the Senso to
2 Line sensom seme in 20 image
3 Asia seman mo Petd to move the
Single senvox: an
The in-line aariangement of sengle Semoss ‘is Known a
Semon stsup Cupto Yoo)
The stop potovides fnoging elements in one distection.and
Motion
perpendiastar to the stop — poovider imaging oo
other distection-
4 flat bed scanners, ais bosine fnaging
the imaging styip give, one Une of an tmoge ak a time,
and the motion of the statip completes the othet dimenion of
& ap image: ;
ec
Lemes (a) olbel focussing schemes ane used to pxoj
the aren to be scanned onto tre Senor
Aye
wes!
Semon:
Predominant corrangerntoe pf Sensors (4000% Yodo») moxie)
fox camenoy
CoD anita UsedNoise neduction can be achieved ~ because Sensor axt>10¢4
t6 aD, the complete image cam be obtained by te foassing
the energy pattern on tp te annoy suaface
The servos asi2ay whieh is jwinudentod with the
focal plane, produces outputs potoposibional to the integual of
the Ugh steceived at each senso
-
TEES SAM PG nd quantigokin:-
Image Sampling «
To convent an anolog image +0 digital foam,
we have to sample the function in both
ampli tude
coordinates and in
Digibsing the spatial coondinates: és called SAMPLING
Image quantigati «
Dige tsing the anplitude Valuer is “called QUANTIZATION:
TF we seduce the qtantigabin level, fae contoning
effect ocuus
¥ Sampling is oreveuable petocess
TH we seduce the sampling orate , checker boand effeck occas.
Tntemiby Resolution :
The Smallest drecennible change in the intensity
level is cabled as Entensity oietolubon
Cox)
the n0-0f bibs used tO qvankize intensity ar
bens i
m ce 8/16/32 / to ore > exceptional
v
commen. 210Ne £02.Some Basic Relationships between Pixels + -
the study of the ‘ gelationship beboeen the
pixels is cabled Tmage topology
Neigh bouxhoot :
Repaierent sets with. capital letter & elemenb of
sets with small letter:
Let us comider o pixel’? with cwordinakes Ou4)
Types of Mesghbouhood :
tae Neighboust hood CNucP))
2. Diagonal oe eae (Nol P))
3.8 - Nerghbousthood (ner)
ue Nesghboust hood +
oq)
any) oq) (tt14)
Gog ny
Diagonal Mer gh bowst hao’ hood =
tng) Out qd
(x4)
1g ed OL gtd&- Necghtoousthood * .
tai qe? cag) Cong)
try) coy (athg)
Gays) Guy) Coty)
Next to the sieforence pixel.
Adjaceney
% adyacenty
2.8 adjacency
3. mixed adjacency cas) M 0dj eng]
4 adjacency «
Two pixels
when both have the
ond if q is satd to be
Pwq aie said to be four adjacent
same Value an Specified by the set v
in the Sek NylP)
tomider vehil
I
«
a
e
1
2 O60
20 0
X ge-
°
v
8 adjacency : :
Two pixels P&Y ante sard to be exght adyacent
when both have the Same value as specified by the sek V
and ¢f 4% is said to be in the Sek NelP)
for ve
ave hth o1
ot
°
aMixed dg acency (m- adjacency) ‘ 9
: To overcome the” potoblem of aimbiqau by in:
B-adjacenty we go for M-adjacency
Two pixels Pky with values fo1om v one
mixed adjacent if
D gy is im NyCP)
ii) q io 1 NpCP) and Set NylP) ANYLAD has DO pixels
whose values ane ftom Vv’
Depending on adjacency there ane 3 paths :
1. 8 path
2. 4 path
3. ™ path
For Gig) 1 Aid), Ca 42) -(S,t) & pixel
let Pelup & y= C5 bt)
if PeY 2B Carf)= Cs/t) then ik tS called CLOSED PATH.
Connecti by =
The path har to conneck att the components ot atl the
stemaining pixels with each other fowm ploy:
connected components of 5S
A pixel which is connected with all the componenls
ts connected Comnponent> of S-Only one connected Component means Connected Sek
Region =
Tf Ris a connected Set , then Ris called the stegion of
‘the image:
Refi}
Disjoint Regions
Tf ang stegion does not follow ony adjacency, then ik (5
tated Drajoint Regions
Tf Ry RyRy, Re ane Disjoint Regions
Ru = RURURZU....RK © foote ground of the image
RS = Bu RUAgU-----Re)* = backgstound of the image
Distance MEDAUMEA +-
the distance function can be -catled metsic if the
following properties axe Satisfied
1. DEP,y) i6 welldefined & finite ¥ Phy
& berg) 20 iF Psy pep) z0
3 DcPA)= dC4,P)
4. DPA) & DURA) + DC4,2)
Fon pixel Py)? with eooridi maker Cxy, (SE) PLUND,
© tS a distance function os1 metric.Let P,P R, have, values’ ti and “Pil P3 have the
Value ether o onl. Consider vi hth
Care-ay:
Py, Py = 0,0
ou
017
i7
Length of the shoatesk M path beboeen P and PU is 2
cP e2 > PY)
coe ~ (ily:
Pi,Py <0,
int
*
o1
17
Length of the Shositesk ™ path between Pand Puis 3
CP P23 P3> PY).
care diy:
Py, Py = 1.0
on
11
*
1
Leng th of the shosttuk path bebwoeco Pond Py fs 3
Cesp1> P22 Ps)
cone -tiv)-
PLP = tt
>)
»
a
-
1
Vength ef the shortut ™ path bebwren Pond Pu is 4
Cp>Pi>P2 3P3 2h)theie ate A astferent | distance meanustes
| Euclidean -distance
2 Dy distance
3-Ds distance
4. Dm distance
Euclidean distance:
DelPM= YY Cx-s)¥4lq-t”
Du distance (ost) city block distance +
DylPad= tx-sb+ [y-el
For Dulha) <2 +
2
yer
e
2
'
2
e-o-r
pixels with DMP=! ts 4-neighbouw of P-
Dg distance Cox) chess board distance -
paca = max (est, ly)
pizeb with — dg(P)={ ts @- nuighkouns of PB
Dig distawe?
The Di Atstance
sroatvt ™M path between
Ph Ry
A :
Pp
blo two potnbs. is dekined a1 the
the potohsAo Introduction to ,the Mathematical Tools vu:
Digital Smage Pageessing =
\. Operations bared on “neigh bownooa
2 Asie verrus mabslx Operations
3. Linear ves Non lineout Operations
Ue Asuthmelic Operations . ‘
5- Set and Logical Opexation»
G Tnterpolatin openctions
+ vectos vemos Madis opetabion
3 Tenage toians foo
4. Pxobabilistee methado
lo. spatial operations
Operations bored on Neighbourhood :
tL. Point Openatioms — One pixel
2 Local Operations + Ny,N¢
3: Global Operations — Image
Armsioy vere Matsui operations +
An acide operation involves one oo Mose imager
out on oa pixel- by- pixel basis
Fos example, consider the fol.
aing axa -mabicts
a ar by bi
ond
an an) [br
Asian potoduc
is costotied
Matrix potoduct
xb ra . au bur@nbe — Ay bi +Anbe,
Oar Orb. 441 bu 40u1b04 mined |x
3 Linean Versus Nor Linear Openations:
consider a qenenal opexaton H, that pacduces an’
Output image qe for a given inpok image Fug) * :
leony] = qoup
Uissacd to be linear operator only when it satisfies
1) Homog eniby
ii) Addstivity
Homoqentty
Nfovicap+ ajtiap]s af 4 [feng] + ag 4 Gay]
+ 4g; Cry) + Ojaicry)
Aadctivity +
Z [aiticory) + offiogl] - Zaiticnyy + Sag Fry)
= i Zecry) + Oy ZAFCOY)
z 24 GOLA) + ajgjlary)
Max. Opetation : -
£4: Find the maximum vatue of the pixel
a
ofbe cyt le)
=
RWS?
or Tes
w owes} [? aI} + come J SeayHe LES & RAS
the max openttor 's mos Lines!
h. Asvithmetic Operations:
The asuithmetic operation ace cavistiied out bekween
cosmesponding pixel Paros
& aouthmetic operation ~
' SOX q)= FOC gr + goug
a doxigy= FOLq) -qauyp
3. PCa) = PCxrg) x Gay)
4 Voug) = FOOD) gap
by default all the openabons ante clone by
Army Operations
o Image addition:
8214) fon) +h
if kyo, image clarity t's
ay
\ qourp = FOU) + NO)
FOUg)= impok moise
Yan = noisy image
Goug= oisy impok Image
To meduce the noisy content, avenging ts used.
Gaws= — 2. aicap :
wobené : .
GCA) = GiCiyir ners TeCXy) = MeIse imageGor) = averoging stesute imoge
= ebgapy = foup ‘
ELAcapy = Oauiginal Image
EL ACY #8 feos AO avewge :
= this is used mainly in aattonomy.
WH Aoege Subtoiaction
>A frequent application of image Subtsaction is
tm the enhancement of differenced bekween image
> used in medical imaging calied «Mark mocle
sradiog raphy
qeew= FONQ)- Hay
if the difference is 0 (Black) , ther’ the difference
troage tnarcate — Location whote thote is 10 aiffenene
between — the imag’
wf the aiffenence is VCuohite), there (s image difference
CO te \mpositant application of im ee
qe muLtiptication Cand
division) is shading stosnec tion
FOUW) = Flay) bong)
qmegd= Output. image
Fry), Perfect image Jimpot image
btaiq) < shading fonction :.
@
Another common use bf image route plication is In man king,
abso coed stegion Of interest CROs) ,
Shape of ROT can be artbit sary tor stectang ole
ts 3 mook image
Spatial Operation :
The spatial operations ase disiectly applied on the pixels
of the image
3 bypes:
t Single pixel Openation
a Neighboushood Opertation
3. Geometric Spatial Operation.
t Single pixel Operation +
$=T(2)
$= intensity of the input image
T= intensity of the output image
The change mode im input image pixel will appeast of
the same pixel im outpit image.
a. Nexghbourthcod opeaahion ©
iTp image lp image
1. consider any piel in the impot image (5)
2 of tak pixel= Ot |
9. coleutake averag ql a
4. the stenntank average wilt be the pixel in the oulpt
imoge:3. Geometric Spatial apenation <
» 212)
a5 the dashed Liner show the
Exansfosmation of artbiksonay
o inkemity vatue 2 imbo coomenponding
output So. ‘
o RH
Geometrical tstansformation modify the spatial
wrelationships between pixel ( an image
A change im one pixel in inp image woill changes
the total outpit. tmage "
We need to perform 2 bavic operations =
I spatial tsiam fastmation of coomdinates
2 Intemity intupotation bechniques
1. spatial taans formation of coosidinates:
Spatial tsicun»fosimation is done by Affine banfoam
= Genenal fostmuls far affine bsransform +
(x qd = (vu jr= fv wi “ a 7
: a
br 0
ts te il Le
The linea equabtons ase
HE AN+ CWO
Y= bov+ bWtbr1) Fon identiby, ;
, Bo= biz! b aya, =bo sbi 20
D> x=V
yew
») Fox scaling ;
Bo =0x, by =Cy /
the image ann OD
D> X=GVv Image opp
Yayo oom an shoink
3) FoA Rotation ,
Qo = 0058 , a4 = -5inb
the image swtatn» with
bo = dos®) by = sine
“Somme angle
> X= wsev~- sinew
Y =(50V+4 sindw
4) Fon Trcnstation,
Qo=', O=
ca the image shape will
by -
rhe meky sremain same , but
es ee eoosdinates shit
Yew+ty
5) Fon shean (vertical),
Qo <1, Q,:Sw,b, =I the ime e shape
will be distosited
a X= V+syw
Yew
6) Fos shean (Hostigantal) ,
Qo =), bo =Shs bid the image shape wit
=) tev be dixtonled
9 Spvew& Inkemity Iwterpolabion + techniqves
Assigning intensity values to the Spatially tyanrforned
pixels using intensity interpolation Eechniqués
(ays Ties
pixel toostdinak in output image
Gp:
Cup) pixel cooaidinake 6 ‘impo image
Resampling methods arte followed after
geometrical totanifoamation of wordinates so that the
qwodity Of the — oukpuk fs maintained.
Q bechniqu&s*
).Upsample Cfo ip yolp)
2) down sample Cfoo tp
ore comidured
SF oder intertpdation
Conridened
t
a2 fo
verge 2 bij xy!
feo ito
> Bilinew! and Biubic interpolation aste “Computotionally
and steullnnt (s mone qualitalive
ha» good quality
complex
~> Bieubic — intotpolatiunTWansformation Affine —- Coordinate
Nome Makrix, T Equabion
dently f : ; a "Be
Oo 1
: GQ oo X=Qv
Scating 0G 0 meats :
oo}
COSO Sine | 2 = ViC080 rg sing 7
\
Example
Retabion |sine case o Y= Verse sing
° °
: oOo w= Vth —
“Translation of Jaws CCTMAGE TRANSFORMS &
Walbh bsiansfooun = * 5
Walth ksiansfesim im an osithogenal tnansfosim uhich*
used in spectra methods foo: different applications
is often
m mage |
Let Us comider oa function #0) [x= 0,6.N-]
N=Q
Then the 1D- Habsbh _ bnansfooim is qn by,
No nt
wows 2 FOO] TT c-1PiO? boi eo
420 ico
cos)
a = biGO boii
fen ¢-1 °°
=O
- Halse transform is
fo 5 eS [i cn bremtnnse
re iso
The 8B - Halsh boiansfostm +
Tf forny) is a ad fonction and %=4=0,b ,N-
Nz,
WT ¢-)
wa NGI net Gj O0 by 4 (WO +bityybn .iY))|
top|
X=0 Yoo
rower F Cbicoby ile + bilpbn 300)
= 2, Foy) C nv
N =
eo Yee
The inverse
a D4 (bien) by i(Webily) by -f¥)
SF new | 7 bi ) bp i ( 1)
izo
fecay>] 2 vThe expression The >bi ca) bo - itu)
re . is Kernel of ID- Habs
and the value of it is eitner tos! based”
ai tw
tran foam
on the vatues “of biOO and bh
kounet +
° ie thak contains —astthogonal stows
Symmetric matsur
and = columns:
Puopeitzes of Waleh Faant fom =
lL Walsh k-nansfomm is a Sexier expansion of basis functions
whose values asie only -| a1! and forrn syometeical
Square wave
2 these tnansfomms axe implemente mone efficiently in
digrtal systems
3. Excep—E a comtant ™muttiplicahion factoor of “ Yw". the
forward and mveite wewbbipbicetion wabh teiansfoom
Kernels of 1D- signals ane 4ame
h Te supposits the paoperty of energy compaction
& Gn case of ap signals. the foawand and imverie jWabb
transfoam Keinels ome Same fon oll Cases. This is due
+0 the onthogoral aos beolumnr of Symmebic
Keanel mertttxHacloumozd = tnasnsform = +
Hadarnasd
emaksire
the -mabsixy, which consists of Square onIa4
and minus ones mMOWS
mod ix.
The columns
oxthegonal
Han
For ntea,
Hara =
a Hy
qhe kennel of the
eer
qe
Fo QD
i
Hlaw= i
: ®
tmansfern depends on the -hadamozd
of plus
ond = columns gard to be hacamese
and s10ws in hadamard matyix on&
which Satisty
hadamasid matvix of Sige N 6
Lf in Hw “an
ar [ae oa a
Nua = 202
tft Ma
NO[Y, -a
eee
Glia ya
(D badamand transform is
9-1
S bids bitud
e +t ole
de ov
Zz Clbicar bicuy + biGy) bICw?
fog) CO :
es
120 Sto
waThe inven hadamand tmansfoom is. given by
. utes Baer
say = ae wean cfbierBiees + bie bv)
ime v=o
Propestins
\
Ik is oathogonal & Symmetyvic , steal tsiansfooi
Us! cus = He oH
tt has geod to eo geod enengy compaction fer night
b ° coatztelated
3 Ketnels ante identical,
images
4. utbra fast angosritins ane available for tt computational
og" subtractions ¥ additions ate required
6. TE & ubtsa fort btansform than Amusoidal E¥ans ford
beowre TO smuttiplicativn ds requaved
4. Tk is useful foor digital hevidwaxe implementation of
temoge processing algosuithens©
Hoan totansfoo.m :~
the Haat bstansfesten has elements thot oxe 1,1 (2)
© amuttiptied by the power of fe
Step-t B
Find the osder of N foo the Haan basis
step -a*
Find n (m= bog)
- Step-3>
Detoimine PRY
W O¢pso-t
@ TE pro then Y=0 ON Y=I
® If pto them Isy 2?
skep-4:
betetmine K
ke aPeay-t
skep-5+
Determine 2
| ~ : No
N
Step -6: ’
1
: sho@s = 2€Co.!)
2f¢ Kio then hel2) = ho iw fo
ewe ah i¢ Vt cac 4
he (2) = hpgl2) = on Ea 2P
a Pe nds
. a a ES 2 < *ht
a
o otheunise 2 € CO!)Poopenties of Haan tytn fo2
lL. the Haan
iy = AF
Hy = Hy
a. the Hoar
operations on an Nxi vector.
3. the mean vectosw of
osdoted
4 Tk has poor enengy deal for images
Zlant taavio2m.:~
—— mare
=
fend Mos Neh
skep-a:
|e
SG fF J
Skep-3:
Genviad Eaamformabien — fostmute+
10 io
Sn = ~~ oe
totansforim =i seal and oathogonal
tetauns fooim » vey fost. It cam implement O(N)
Haas mabyix ote sequentially
‘ptopuities of dank brensfosin
1 TE (5 steal and atenogonot bE stamsfore
s AAT es Squaste makix
> If the given ematsix 16 square matrix Enen
A= vpv"
whete
Uzmxm ostthogonal “makstx and its stows fooum
Os1Enogonal setVe nxn oathogonol. wmakyix ancl IK, clumn foam o
oathegonal sek
Dz diagonal -maksix compoused of Singutar valuen oF A
whose dimensions axe nxn
Be “5 Oo © ...-- °
0000--°°°%
~ Az vov"' is not possible, Since images
Con srosely be modelted