Orthogonal Complements in Linear Algebra
Orthogonal Complements in Linear Algebra
,; • • 1
~a) Show that foi any t,vo n x n mat~1ces ft .and B, tr(AB) = tr(.l3:A}~,
C
1
1
'
11
algebra basics ) . Use (a) above to-c show that-if X ai1d Y are .simiiar~ lptat~~~~~, 1
(4)
tson
,I
(5) As a follow-up to question (4), show that Wand have q:nly ,~11ti ·~a~PJ~n
1
W..L
I
vector, 0.
To show that the orthogonal complement
1
W 1_ of a subspace W of an inner
product s:pace V is itself a subspace of V, we need to verify that W 1_ satisfi,es the
conditions required to be a subspace. Specifically, we need to show that:
I I
• I
w- 1
== { V E V I (v, w) == 0 for all w E W}
Proof
1. W 1_ Contains the Zero Vector:
~
I (
v,w )
I I
..
Since u E WJ_ and VE w1-, we have:
Thus:
ltiplication:
3. W J. is ·closed Un de r Scalar Mu
(a v, w) == a( v, w)
Si nc e v E W __1_, we ha ve :
(v, w) == 0
Th us :
(a v, w ) == 0 ;,v , w) == a • 0 == 0
(v, w) == 0
Thus:
Since {av, w) == 0 for all w E Writ folJows that av E W_L. Therefor e, W_L is
closed under scalar multiplic ation.
Conclusion
Since W _L contains the zero vector, is closed under vector addition , and is closed
under scalar multiplic ation, it satisfies all the conditio ns to be a subspace of V.
Therefore, w.1. is indeed a subspace of V.
'- ,, ' ~
(b) Read the definition of shnilar matrices fron1 the Lecture Slides (linear
algebra basics ). Use (a) above to show that if X and Y are shnilar matrices ,
=
then tr(X) tr(Y).
(4) Let V be an inner product space and let W be a subspace of V. Show that
its orthogon al con1plement (defined in lin algebra 2 slides) 1,,V ..L is a subspace of
V.
(5) ~s a follow-up to question (4} 2 show that Wand W...L have only one common
fvector, 0.
(6) As a fu1·ther follov..1 up, show that dim(V) = dim(W) + dim(W_1_ ).
(7) Nov..1 suppose that vV is a subset of the vector space V, but not necessari ly
a subspace. The definition of HI _1_ can still be
To sho w tha t the onl y vec tor in com mo n betw.een a subspace
1
Wa nd 'its
orth ogon~J com ple me nt W J_ is the z.ero ,ve,ctor, we· need to
1
pro ve tha t if V E 1
1
ij I
Pro of· l
I
I I
I, I ,,
1. Defieition Recap
l I
1
: •
·11' '
11 I I
I~ I
I I
I 1 ' 1
•
1
1 1
11 1
•· •
S Ince v E wj_ 1 , w· . , n • rt·Icu 1ar, v Is
pa •
1
111 I I I '
~
1
orth,ogona,I to itself: - 1 -
(v,v) =·O
(v, v) = llvll 2
• Since ( v, v) == 0, it folloyvs that ~
◄
11111
• The inner produ ct (v, v) i~ equal to the square of the norm of v, so:
I
I
11
' 11 l I I
1
1 I
I !111t,111~. I 0
• The norm of a vecto r is zero if ahd' bhly if th~ vect~r itself 'Is the ;zero
vecto r. There fore:
1
11 II
llvll == 0 impli~s v == 0
5. Con cl usio n:
I
• Since v must be the zero vector, the only vecto r that is in both W and
W ..l is the zero vector. Therefore:
W n 1v..1 == {O}
~
llv II~ == U
• The norm, of a vector is zero if and only if the vector itself is the zero
1' I
1 11, 1 •
·,1 II
., vector. Therefore:
1 I•
I'
,.
I'
'I·
I1
II
111
I
I 111
I '
II I·
I
1
''
• I
llvll'·== o' i:mplies v ==' .0
5. Conclusion:
. W n W_1_ == {O}
This completes the proof that the only vector common to both a subspace Wand
its orthogonal complement W 1_ is the zero vector.
V.
(5) As a follo\v-1111 to ql1estio11 (4), sl1ow tl1at l-l·.,. and, lil' ..l l1ave 011ljt o,ir1e con1n1011
,rector, 0.
(6) ~s a further follow ue_, show that dini(V}i : di111(W) + dim[W~J]
(7) No\\r suppose tl1at lll is a sul1set of tl1e vector SJ>ace V, bi1t not 11ecessa.ril}'
a subspace. Tl1e defi11itio11 of l•fl ..l ca11 still be
Proof , .. I " , I
'I I
'1·1 I, · I , ,
I I
• The key prope rty to use is that V can be expressed as a direc t sum of W
and W..L:
V =WE B w1- ~
I,'
• This mean s every vecto r v E V "~ be uniqu ely writte n as 'V == w + 1u1_;
• The key prope rty to ·use is that V can be expressed as a direct sum of W
and WJ_:
V ==WE B WJ_
• Basis for W 1-: Since W and W 1- ~re orthog onal compl ement s, vector s
in W ..L are orthog onal to all ven ....-.1,.., in W. Let { wf, wf, ... , w;J be a
I I
4. Proo f by Basis:
I I I
I
Basis for W J_: Since W and
1 I I
in W J_ are ortho gona l to all vecto rs in ,W. Let { wf, wf, ... , mii1}i', be a 1
. f WJ_
bas1s
• 1 '1, 11 I ,1 ,Iiii' ,, '
or • . ,I' I I
'.I
,i'
I
11'i/i111,li'li
11111 i
IJ I
1,! · 1 ,
I
':! 1\ti ,11 ! ' · II'~ 11 1 1 ,, 1 1 1 1
IIII I
' 'J Ii'
• I 1·1111111 I ·111
• ·, I ' i
I I 11 I' I
• Cons truct Basis for V: Com.bini1~gq1th~se,tw,o ,sets, we form ·ai ~e-ti111'il ~ 1
1
• • • I I
1 • • • 1 1 I I II I I
, •
,I
111 1 I
{w· .1. ·; w 2 , • • • , w·· k ,,w_1_ 2 , • • • , w1-}
- I , ·w_1_ ' -•m ,
,
•
i
1
11 '1 11 1 ' ·
l 1
1
!1 I•
I I I
. •
which spans V and is linea rly indep ende nt (by the properti,es o,f
I
• Dime nsion Calculation: The -num ber of vecto rs in this comb ined basis is:
dim{V) == k +m .
• ~
wher e k == dim (W) anci m == L..~il l(W _1_ ).
orthogonal complements) .
dim(V) ~ k + rn
W'here k == dim(W) and_m == dim(W ..L ).
5. Conclusion:
• Therefore:
dim(V) == dim(W) + dim(W_i_)
This completes the proof that the dimension of V is equal to the sum of the
dimensions ot·W and W J_.
-=
""" .--:- •
• . -- " - -
.
- · c:-- -
• ".
- _
-_ ~-
_-
•• ,
-· " T F.
•
,,
,I•- t,• :1 I'r I -1· p " 11 I' I
- - - , I ·I .
J
'
l
' ,I I
(5) As a. follow-up to' question (4), ;how that lV a11d W 1 ,']1ave orily 011~ ~on1m~n/
- .o.
vect or, i , ,J, i , , , ,I ,
, .! , . i I ,/ I ' ,! "
1:
,!' I 'I
1
, :· ,,
I' '
',1 1,1
I
1· 111 1
1 1
0 - "
I I 11
(6) As a further follow up, show tl1at dim(V) ~ dim(W) + dim(}ll J_) ., 1 ' '
· · !· ' __ , ·1·
'II
II "
1 1
11
11
(7) Now suppose that W is a subset of the vector space V~ but not necessarUYi •
~ subs~ace~ The definition of WI can still b~ .•
11
, , II' '
1
1 1
1
I 1' i 1
(8) Suppose u, v E V, \\rhere 11 is a vector space, such that 11-nH = 3, 11-u.+vll = -1,
and 11 u - v 11 = 6. \J\That n11mber n1ust 11 v 11 equal?
To show that if W is a subset of the ve<;:~q~ space 1
V,. but not necessarily a
, ii , ' I II
' I':
W J_ == span(W) _1_, follo~, these steps:
I' 11
subspace, then
I' II I : I
1•,
1,:111 '
I l11111
I
Defin'itions ll''il I
1, 11
'
I
This is the set of all vectors in V that are orthogonal to e•very vector in W.
2. Span of W (denoted as span(W)):
.....--....--
3. Orthoqonal Complement of span(h ~ (denoted as span(W)_1): - - -
; ; , ift iYCMtitfflftrr:'. if p t
• I ! ~11
I
I I I ~
I I I I I
C0,mbi.natio ns
1
1
of vectorrs frorl111w.ii
II I1
1 i
I'
1
.
' II I I I I
1
1 1
• • ' ',I ,l11111!Jli',1111llj1\!ll1 ' I •
I ,I
. I I I .
. • ,1,: 1·r1 , , 'ii i ·I I • 1
II 1 1· , . 1 I II 1
I
I ' :, f! IH I'
I. ' ' • I I
This t~ the set of all vectors iri:11V that ~re •orthogonal to every vectqr in
~p.an(W).
I·•
Proof I •
1. Show' W C span(W):
WC span(W)
2. Show span(W) C W 1..:
WC span(W)
2. Show span(W) C W1..:
I ·1
•
I I I
In.
1 I
- I
'_: i V ' ~
-, ~ '. -fi, J i. 1
11
0.f1_J1 I 1111
17'1r1· :1 - ,1 I,
. 1 , ii l11
i= 11 I
11
I
I
I II
n n
(u,v) (u, L o:iwi) = L o:i(u, wi)
'i=l 'i=l
I
I '
: ,1
I I ,, I I ,I t'11 '
n
'J,I, 1"':, ,' 1',~---, (t,; •
.'!~1~lt1f~l:},I; .:,i{~ ~
I I II ,ll'j'
"
I II
0 -o
j I1 !. 1..l11 ill'~,
!,I:'
1l,1,1,. •I .
.. , i• l I' I i'I 11 : I
I I, j!F'
' I
'
l_
!
• I I ,- ' 11 I '
He1nce, v E. W
1:_! '
I •I '
1
II
. Thus:. _,
11
.I • '' ,l,t
I. ,
,I I' Jl
. I
I I
I
' !l;! I
, ' l r• • ,
·Sp1 an
1, '('w',
l
.
.,,.
I ,
I I
I
,·r,:1•·
I I
''
I
11
I I
I )'llc::I.
, ,11,
1w
I',I
1
,
I
I ,,
1
I II I
\I
-11-1111111
I1: I I 1111 I I 11'I '
I I I ,I I I 'I I ~
I I ' I I I II 11 I I' I 'I
I I
vectors in W, we have:
n. [
V - ~ OiWi
i=l
n n n
Thus:
n n n
Thus:
W 1_ C span(.W)1_
Conclusion
Since we hav e ·sho wn bot h incl usio ns:
It follo ws that :
H,ence, u E span (W) 1-. Thus:
w1- C spa n(W )1-
Conclusion
Since we have show n both inclu sion s:
[
W C spa n(W ) and span (W- ) C WJ_ and w1- C spa n(vV )1-
It follo ws that: