0% found this document useful (0 votes)
16 views24 pages

Orthogonal Complements in Linear Algebra

Uploaded by

digamberoraon041
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
16 views24 pages

Orthogonal Complements in Linear Algebra

Uploaded by

digamberoraon041
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 24

• Tow cl.I.tu J 1.t11 cuunnn.

,; • • 1

~a) Show that foi any t,vo n x n mat~1ces ft .and B, tr(AB) = tr(.l3:A}~,
C

1
1
'
11

(b) Read th~ definition of Sill}~!~r matrices from the Lectl~re I


1~1li,9~:~~t:il(1~, ~~;.~
11

algebra basics ) . Use (a) above to-c show that-if X ai1d Y are .simiiar~ lptat~~~~~, 1

then t r ( X ) = tr(Y). - , i' 11


i ii1l,
11. , ,
1 1
'.1i/''1,1 11 1'/' 1·,,ui".:',>::.·, ,,,',
11 ,II , I1 I II 11 Ill I 11 ,1111 / II ii'1 I 111 I
" 1 jl Ill t1 I j ii j
t, I ,I ti!, I

(4)
tson
,I

(5) As a follow-up to question (4), show that Wand have q:nly ,~11ti ·~a~PJ~n
1
W..L
I

vector, 0.
To show that the orthogonal complement
1
W 1_ of a subspace W of an inner
product s:pace V is itself a subspace of V, we need to verify that W 1_ satisfi,es the
conditions required to be a subspace. Specifically, we need to show that:
I I

• I

1. W 1_ is ·non-emp,ty (contains the zero vector),

2. W 1_ is closed u,nder vector addition, and

3. W ...L is closed under scalar multiplication.

Definition of Orthogonal Complemen t


The orthogonal complement W 1- of a subspace W C Vis defined as:

w- 1
== { V E V I (v, w) == 0 for all w E W}

where(·,•) denotes the inner product on V.


~
W J_• == { v E V I (v, w) == 0 for all w

E W}

where (·, ·) denotes the inner product on V.

Proof
1. W 1_ Contains the Zero Vector:

The zero vector O E V is orthogonal to every vector in V, incfuding every vector


in W. Therefore:

(0, w) == 0 for all w EW

Thus, 0 E W J_. This shows that W J_ is non-empty.

2. W J_ is Closed Under Vector Addition:

Let u, VE WJ_. We need to show that u .J_, , E w.1.. For any w E W:


2. wl_ is Closed Under Vect,or Addition: ' 11
II \ 1
, 11 1l
I I I 11, till
1
I ' 11 '
11 l111 ii 1
I 11 I 11 '

Let u, v E W 1-. We need to show thatu '+'tb 1

111E W 1_. For any w E W:


I n 1I ' ''
I
, 1, ,II,
1 1
1

( u+v,w -:- ul,w


)
, I ( ,i1 1li )

~
I (

v,w )

I I

..
Since u E WJ_ and VE w1-, we have:

(u, w) == 0 and (v, w) == Q,

Thus:

(u + v, w) ::::: (u, w) + (v, w) ::::: 0 + 0 ::::: 0

Since (u + v, w) == 0 for all w E W, it follows that u +v E W J_. Therefore,


W .1_ is closed under vector addition.

3. W 1- is Closed Under Scalar Multiplica .J,, :


Since_ (u + v, w ) = 0 fo r all w E W , it fo llo ws th at u +v E w1 ._ Therefore,

W J_ is clo se d un de r ve ct or ad dit ion .

ltiplication:
3. W J. is ·closed Un de r Scalar Mu

ed to show th at av E W 1.. For any


v E W
Le t l. an d le t o be a scalar. We ne
w E W:

(a v, w) == a( v, w)

Si nc e v E W __1_, we ha ve :

(v, w) == 0

Th us :

(a v, w ) == 0 ;,v , w) == a • 0 == 0

..L::rt Th PrP fnr P


~W
lil/" .L ;~
,J,,
~ W" it fnl lnw ~ t_h_rit __,.,_·_. :P:
\ r\'1 1 l=-~
~in cP ( O'? L 1fWPi - 0- fo r ~11 111
-.
¥€ 4..~~
I

(v, w) == 0

Thus:

(av, w) == n(v, w) ==a• Q, == 0


I

Since {av, w) == 0 for all w E Writ folJows that av E W_L. Therefor e, W_L is
closed under scalar multiplic ation.

Conclusion
Since W _L contains the zero vector, is closed under vector addition , and is closed
under scalar multiplic ation, it satisfies all the conditio ns to be a subspace of V.
Therefore, w.1. is indeed a subspace of V.
'- ,, ' ~

(b) Read the definition of shnilar matrices fron1 the Lecture Slides (linear
algebra basics ). Use (a) above to show that if X and Y are shnilar matrices ,
=
then tr(X) tr(Y).
(4) Let V be an inner product space and let W be a subspace of V. Show that
its orthogon al con1plement (defined in lin algebra 2 slides) 1,,V ..L is a subspace of
V.
(5) ~s a follow-up to question (4} 2 show that Wand W...L have only one common
fvector, 0.
(6) As a fu1·ther follov..1 up, show that dim(V) = dim(W) + dim(W_1_ ).
(7) Nov..1 suppose that vV is a subset of the vector space V, but not necessari ly
a subspace. The definition of HI _1_ can still be
To sho w tha t the onl y vec tor in com mo n betw.een a subspace
1
Wa nd 'its
orth ogon~J com ple me nt W J_ is the z.ero ,ve,ctor, we· need to
1

pro ve tha t if V E 1
1

w nw fr the n V ·must be the zero vector.·


I; • I

ij I

Pro of· l
I
I I

I, I ,,

1. Defieition Recap
l I
1
: •

• S~bspace W: A sub set of V tha t is dos ed und er addition and


scalar
•multipli1cation and contains the zero vector.

• Orthogo,nal Com ple men t W_1 : Defined as

W _1 == { v E V I (v, w) == 0 for all w E W}


• n W contains only the zero vector.
We wan t to show tha t W _L

2. Let v be an Arbitrary Vector in W n Tit/ _1:


~
2. let v be an Ar1bitrary Vector in W n W J_:
• By definition of intersection, v E Wand v E W J_. Therefo re: 1

( V' w) = 0 f~7 all w E w


. . I ,1 ,!Iii ·11 11

3. Cq~sider th e Vector V in Both Su bspacest I: I


1 1

·11' '
11 I I
I~ I
I I

• S.1nce V E w , V .IS a. vector .1,n t he ISlllur w


pace • .
11 I

I 1 ' 1

1
1 1
11 1

• , v -Is o rth ogona 1, t1m1ev,ery vect or In



1 1 1
1 1 11 1

•· •
S Ince v E wj_ 1 , w· . , n • rt·Icu 1ar, v Is
pa •
1
111 I I I '
~
1
orth,ogona,I to itself: - 1 -

(v,v) =·O

4. Inner Product Properties:

• The inner product ( v, v) is equal to the square of the norm of v, so:

(v, v) = llvll 2
• Since ( v, v) == 0, it folloyvs that ~

11111

4. l_nner Produ ct Properties: 1


1' II
11

• The inner produ ct (v, v) i~ equal to the square of the norm of v, so:
I

(v, Iv) == llvU2


• Since ( v ,, v) = 0, it follow s that~' 1

I
11
' 11 l I I
1
1 I

I !111t,111~. I 0
• The norm of a vecto r is zero if ahd' bhly if th~ vect~r itself 'Is the ;zero
vecto r. There fore:
1
11 II

llvll == 0 impli~s v == 0
5. Con cl usio n:
I
• Since v must be the zero vector, the only vecto r that is in both W and
W ..l is the zero vector. Therefore:

W n 1v..1 == {O}
~
llv II~ == U
• The norm, of a vector is zero if and only if the vector itself is the zero
1' I
1 11, 1 •
·,1 II
., vector. Therefore:
1 I•
I'
,.

I'
'I·

I1
II
111
I
I 111
I '
II I·
I
1

''

• I
llvll'·== o' i:mplies v ==' .0

5. Conclusion:

• ~ince v must be the zero vector, the only vector that is in bo th 1


W and
W _1_ is the zero vector. Therefore:

. W n W_1_ == {O}

This completes the proof that the only vector common to both a subspace Wand
its orthogonal complement W 1_ is the zero vector.
V.
(5) As a follo\v-1111 to ql1estio11 (4), sl1ow tl1at l-l·.,. and, lil' ..l l1ave 011ljt o,ir1e con1n1011
,rector, 0.
(6) ~s a further follow ue_, show that dini(V}i : di111(W) + dim[W~J]
(7) No\\r suppose tl1at lll is a sul1set of tl1e vector SJ>ace V, bi1t not 11ecessa.ril}'
a subspace. Tl1e defi11itio11 of l•fl ..l ca11 still be

lll 1- = {v E ll I(-v, u.,) = 0 V ·w E Ht'}


To show that dim (V) = dim (W) + dim( W _1_ ), wher e W is a subsp ace of an
inner pr:c;Muct space V and W 1_ is its ortho gona l comp leme nt, we can use the
I I I
• I
I

fol lowi n1gi11argt,1,r;t·Jient: I '

I ' ' I I I '


I ' '
1' j'1 1,[, I . I I
I I ' I

Proof , .. I " , I
'I I

'1·1 I, · I , ,

I I

1. Dime•n~ion1 of 10,rthogonal Complement:

• By the, defin itjon of ortho gona l comp leme nt,


W _1_ consists of all vecto rs
in V that are ortho gona l to every vecto r in W.

2. Direct Sum of Subspaces:

• The key prope rty to use is that V can be expressed as a direc t sum of W
and W..L:

V =WE B w1- ~
I,'
• This mean s every vecto r v E V "~ be uniqu ely writte n as 'V == w + 1u1_;
• The key prope rty to ·use is that V can be expressed as a direct sum of W
and WJ_:

V ==WE B WJ_

• This means every vector v E V can be uniqu ely writte n as v == w + wj_,

where w E Wan d w1_ E. W1-.

3. Dimensions of Direct Sum:

• For subspaces W and W 1- of V, the dimen sion of their dti'rect stJ1m is


given by:

dim(V) == dim{W) + dim(WJ_)


4. Proof by Basis:

• Basis for W: Let { W1, W2, ... , wk} be a basis for W.

• Basis for W 1-: Since W and W 1- ~re orthog onal compl ement s, vector s
in W ..L are orthog onal to all ven ....-.1,.., in W. Let { wf, wf, ... , w;J be a
I I

4. Proo f by Basis:

• Basis for W: Let { W1, w2, ... , wk} be a basis for W~


I I

I I I
I
Basis for W J_: Since W and
1 I I

• W J_ are ortho gona l comp leme nts, 1~ectors


I
,I 11,11111 i'1l11l11l1

in W J_ are ortho gona l to all vecto rs in ,W. Let { wf, wf, ... , mii1}i', be a 1

. f WJ_
bas1s
• 1 '1, 11 I ,1 ,Iiii' ,, '

or • . ,I' I I

'.I
,i'
I
11'i/i111,li'li
11111 i
IJ I

1,! · 1 ,
I
':! 1\ti ,11 ! ' · II'~ 11 1 1 ,, 1 1 1 1
IIII I
' 'J Ii'
• I 1·1111111 I ·111
• ·, I ' i
I I 11 I' I
• Cons truct Basis for V: Com.bini1~gq1th~se,tw,o ,sets, we form ·ai ~e-ti111'il ~ 1
1

• • • I I
1 • • • 1 1 I I II I I
, •
,I
111 1 I
{w· .1. ·; w 2 , • • • , w·· k ,,w_1_ 2 , • • • , w1-}
- I , ·w_1_ ' -•m ,
,

i
1
11 '1 11 1 ' ·
l 1
1

!1 I•

I I I
. •
which spans V and is linea rly indep ende nt (by the properti,es o,f
I

ortho gona l comp leme nts).

• Dime nsion Calculation: The -num ber of vecto rs in this comb ined basis is:

dim{V) == k +m .
• ~
wher e k == dim (W) anci m == L..~il l(W _1_ ).
orthogonal complements) .

• Dimension Calculation: The number of vectors in this combined basis is:

dim(V) ~ k + rn
W'here k == dim(W) and_m == dim(W ..L ).

5. Conclusion:

• Therefore:
dim(V) == dim(W) + dim(W_i_)
This completes the proof that the dimension of V is equal to the sum of the
dimensions ot·W and W J_.
-=
""" .--:- •
• . -- " - -
.
- · c:-- -
• ".
- _
-_ ~-
_-
•• ,
-· " T F.

,,
,I•- t,• :1 I'r I -1· p " 11 I' I
- - - , I ·I .
J
'
l
' ,I I
(5) As a. follow-up to' question (4), ;how that lV a11d W 1 ,']1ave orily 011~ ~on1m~n/
- .o.
vect or, i , ,J, i , , , ,I ,
, .! , . i I ,/ I ' ,! "
1:
,!' I 'I
1
, :· ,,
I' '
',1 1,1
I
1· 111 1
1 1
0 - "
I I 11

(6) As a further follow up, show tl1at dim(V) ~ dim(W) + dim(}ll J_) ., 1 ' '
· · !· ' __ , ·1·
'II
II "
1 1
11
11

(7) Now suppose that W is a subset of the vector space V~ but not necessarUYi •
~ subs~ace~ The definition of WI can still b~ .•
11

, , II' '
1
1 1
1
I 1' i 1

,w.:t: = {v E Vl{v,w) = 0 V w E W,}


lket span(WJ refer to the set of all linear combinations of a finite nun1ber 0~
~ectors take~from W. Show that WI= span_(W) 1 , '

(8) Suppose u, v E V, \\rhere 11 is a vector space, such that 11-nH = 3, 11-u.+vll = -1,
and 11 u - v 11 = 6. \J\That n11mber n1ust 11 v 11 equal?
To show that if W is a subset of the ve<;:~q~ space 1
V,. but not necessarily a
, ii , ' I II
' I':
W J_ == span(W) _1_, follo~, these steps:
I' 11
subspace, then
I' II I : I

1•,
1,:111 '
I l11111
I
Defin'itions ll''il I
1, 11
'
I

'I jlll 1'11 I I

1. Orthogonal Complement W _L.:

W_1_ = {v EV I (v,~) = Oforallw E W} [.


' '

This is the set of all vectors in V that are orthogonal to e•very vector in W.
2. Span of W (denoted as span(W)):

span(W) == {linear combination s of vectors in W}

This is the subspace of V generated by W, which includes aJI possible linear


combinations of vectors from W.

.....--....--
3. Orthoqonal Complement of span(h ~ (denoted as span(W)_1): - - -
; ; , ift iYCMtitfflftrr:'. if p t
• I ! ~11
I
I I I ~
I I I I I

C0,mbi.natio ns
1
1

of vectorrs frorl111w.ii
II I1
1 i
I'
1
.
' II I I I I

I 111 I 111111 Ill I

3. Orthogonal Complement ~.~i· ~~~b' W) (denoted as span(W)-1): 1

1
1 1
• • ' ',I ,l11111!Jli',1111llj1\!ll1 ' I •

• span(W)-1 = { v ,E l~.U ·;(;U, u) = 0 for all u E span(W)}


1

I ,I
. I I I .
. • ,1,: 1·r1 , , 'ii i ·I I • 1
II 1 1· , . 1 I II 1
I
I ' :, f! IH I'
I. ' ' • I I

This t~ the set of all vectors iri:11V that ~re •orthogonal to every vectqr in
~p.an(W).
I·•

Proof I •

1. Show' W C span(W):

By definiti·on, every vector in W is a vector in the span of W because W


itself is a set of vectors whose span is span(W). Therefore:

WC span(W)
2. Show span(W) C W 1..:
WC span(W)
2. Show span(W) C W1..:

Consider any vecfor v E span(W)<lfihis means v c.an be w11itten as:


II
I •. I
' ' ' I '

I ·1


I I I
In.
1 I
- I
'_: i V ' ~
-, ~ '. -fi, J i. 1

11
0.f1_J1 I 1111
17'1r1· :1 - ,1 I,
. 1 , ii l11
i= 11 I
11

I
I
I II

w,here w·i E Wand ni ar~ scalars. ' I

For any vector u E W l.., we have:

n n
(u,v) (u, L o:iwi) = L o:i(u, wi)
'i=l 'i=l

Since u E W..L, (u, wi) = 0 for all wi E W. Thus:


~
c-
I ' I
I'

Since u E w1-, (u, Wt) d10 fbr ,au Wi E w. Thus: 1

I
I '
: ,1

I I ,, I I ,I t'11 '
n
'J,I, 1"':, ,' 1',~---, (t,; •
.'!~1~lt1f~l:},I; .:,i{~ ~
I I II ,ll'j'
"
I II
0 -o
j I1 !. 1..l11 ill'~,

\Ii 1111·11::·1!:_U(1! ·111'.,I,,:


i=l

!,I:'
1l,1,1,. •I .

.. , i• l I' I i'I 11 : I
I I, j!F'
' I
'
l_
!
• I I ,- ' 11 I '

He1nce, v E. W
1:_! '

I •I '
1

II
. Thus:. _,
11
.I • '' ,l,t
I. ,
,I I' Jl
. I
I I
I
' !l;! I
, ' l r• • ,

·Sp1 an
1, '('w',
l
.
.,,.
I ,
I I
I

,·r,:1•·
I I
''
I

11
I I
I )'llc::I.
, ,11,
1w
I',I
1

,
I
I ,,

1
I II I
\I
-11-1111111
I1: I I 1111 I I 11'I '
I I I ,I I I 'I I ~
I I ' I I I II 11 I I' I 'I

3. Sh,ow W J_ C span (W)~ : 1


1
I !1
I I I
1

I I

Let ·u E W J_. By defini tion:

(u, w) 0 for all w· E W

To be in span( W)J_ , u must satisfy:

(u,v) 0 for - 11 v E span (W)


~
.
, u, w) =: U tor a11
1
w E w

To be in span(W)J_, u ~ust satisfy:


'

(u, v)'· = 0 for all v E span(W)


I

Sine€: any vector v E span(i,v} ,can 1be written as a linear oombilnati'on of


1

vectors in W, we have:

n. [

V - ~ OiWi
i=l

for Wi E W and Oi are scalars. Therefore:

n n n

i=l i=l i=l

Thus:
n n n

(u, v) = (u, L niwi) = L ni(u, wi) =Lai· 0 = 0


i=l i=l
i=l

Thus:

(u, v) - 0 for all v E spa n(W )

H,ence, u E spa n(W )1_ . Thus: •

W 1_ C span(.W)1_

Conclusion
Since we hav e ·sho wn bot h incl usio ns:

W C spa n(W ) and spa n(W ) C W_1_ and W_1_ C span(W)_1_

It follo ws that :
H,ence, u E span (W) 1-. Thus:
w1- C spa n(W )1-

Conclusion
Since we have show n both inclu sion s:
[

W C spa n(W ) and span (W- ) C WJ_ and w1- C spa n(vV )1-

It follo ws that:

W1_ ::=: span(W)_1_

You might also like