Benson 1980
Benson 1980
10, 1980
Excess vohlmes 0/' binary mixtures c~/" water with methanol, ethanol and
l-propanol were obtained from density measurements at 5 degree intervals from
15 to 35~ over the entire composition range. Excess thermal expansion
cor partial molar excess volumes, and expansJbilities at 25~ were
derived.from the results. The significance Of these values is discussed in relation
to tTypothesized structural changes in the mixtures.
1. I N T R O D U C T I O N
2. EXPERIMENTAL
2.1. Malerials
lDivision of Chemistry, National Research Council of Canada, Ottawa, Ontario, Canada KI A 0R6.
3NRCC Research Associate 1975-79. Present address: Chemicals Inspection and Testing Institute,
Tokyo, Japan.
791
0095-9782/80/ 000-0791503 00/001980 Plenum Publish ng Corporation
792 Benson and Kiyohara
Methanol Seawater a
no 25 1.32645 1.32652
15 0.795803 0.79599 0.79573 0.999103
20 0.791102 0.79131 0.79105 0.998207
-3
p/g-cm 25 0.786350 0.78664 0.78636 0.997048
30 0.781666 0.78196 0.78165 0.995650
35 0.776991 0.77729 0.77692 0.994035
~/kK -1 25 1.201 1.t89 1.196 0.2572
Ethanol
nO 25 1.35925 1.35941
15 0.793495 0.79362 0.79346
20 0.789235 0.78937 0.78921
p/g-cm -3 25 0.784962 0.78509 0.78493
30 0.780667 0.78078 0.78063
35 0.776380 0.77645 0.77629
c~/kK q 25 1.092 1.094 1.093
1-Propanol
no 25 1.38314 1.38370
x V~/cm~mol -: x V~/em3mol
~ -I x V~/em3mol -~ x V~/em3mol -I
xH20 + (I-i)C~H~OH
T/K : 288.15
0.02775 -0.0854 0.39802 -0.6424 0.86151 -0.5658 0.97038 -0.1663
0.03751 -0.1131 0.44268 -0.6690 0.89902 -0.5030 0.97540 -0.1330
0.09709 -0.2586 0.49446 -0.6909 0.94080 -0.3603 0.97994 -0.1039
0.15998 -0.3747 0.5431,2 -0.7040 0.94944 -0.3084 0.98606 -0.0674
0.22780 -0.4789 0.60286 -0.7097 0.95285 -0.2861 0.98778 -0.0579
0.24653 -0.5035 0.66001 -0.7037 0.95287 -0.2861 0.99041 -0.0437
0.24833 -0.5019 0.70038 -0.6920 0.96157 -0.2267 0.99367 -0.0273
0.33842 -0.5977 0.74341 -0.6728 0.96425 -0.2082 0.99490 -0.0214
0.35696 -0.6129 0.80044 -0.6323 0.96614 -0.1953 0.99726 -O.0110
T/K = 293.15
0.04503 -0.1297 0.49538 -0.6650 0.85375 -0.5511 0.96536 -0.2004
0,06717 -0.1823 0.55790 -0.6790 0.89830 -0.4796 0.97275 -0.1518
0,11876 -O.2916 0.60297 -0.6809 0.91994 -0.4289 0.97507 -O.1369
0.14746 -0.3436 0.60740 -0.6840 0.92929 -0.3984 0.97954 -o.1087
0.20921 -O,4362 0.65362 -0.6789 0.94039 -O.3511 0,98508 -0,0756
0.23834 -0.4746 0.70120 -0.6643 0.94338 -0.3358 0.98962 -0.0501
0.28854 -0.5296 0.74400 -0.6462 0.94996 -0,2990 0.99170 -0.0388
0.34152 -0.5791 0.80106 -0.6o51 0.95491 -0.2686 0.99472 T0.0237
0,41005 -0.6258 0,80430 -0.6013 0,96277 -o.2173 0,99782 -0.0092
0.43915 -0.6440
T/K : 298.15
0.07612 -0.1980 0.55390 -0.6631 0.80387 -0.5827 0.94342 -0.3272
0.10469 -0.2577 0.57454 -0.6661 0.82810 -0.5608 0.94563 -0.3157
0.15366 -0.3420 0.57875 -0.6643 0.83388 -0.5549 0.94968 -0.2950
0.20093 -0.4140 0.60047 -0.6673 0.84477 -0.5425 0.95018 -0.2922
0.20684 -0.4222 0.64707 -0.6611 0.85447 -0.5307 0.95030 -0.2909
0.24297 -0.4672 0.65375 -0.6614 0.87007 -0.5085 0~95433 -0.2679
0.24549 -0.4697 0.67131 -0.6551 0.88871 -0.4792 0.95964 -0.2370
0.29901 -0.5251 0.67757 -0.6546 0.90101 -0.4568 0.96318 -0.2138
0.34487 -0.5666 0.70032 -0.6481 0.90141 -0.4550 0.96657 -0.1926
0.35012 -0.5703 0,70238 -0.6462 0.90248 -0.4538 0.97040 -0.1677
0.40489 -0.6069 0-75079 -0.6228 0.91770 -o.4186 0.97407 -0.1446
0.44432 -0,6293 0.75232 -0.6204 0.92889 -0.3851 0.97578 -0,1345
0.45926 -0.6342 0.77749 -0.6046 0.93378 -0.3682 0.97947 -o.1107
0.47436 -0.6410 0.78270 -0.6017 0.93707 -0.3551 0.98492 -0.O781
0.48008 -0.6431 0.79649 -0.5905 O.94100 -0.3382 0.99013 -0.0486
0.50985 -0.6552
T/K = 303.15
0.02769 -0.0722 0.44372 -0.6003 0.87479 -0.h813 ,0.95499 -0.2591
0.07326 -0.1784 0.49170 -016196 0187654 -0.4821 0.96031 -0.2272
0.11934 -0.2665 0-55155 -0.6365 0.89653 -0.4474 0.96445 -0.2039
0.14862 -0.3150 0,60536 -0.6401 0.91956 -0.3989 0.96980 -0.1708
0.19381 -0.3788 0.64793 -0.6366 0.93068 -0.3652 0.97445 -0.1423
0.20876 -0.4010 0,69604 -0.6247 0.93414 -0.3532 0.97982 -0.1098
0.24096 -0,4392 0.74930 -0.6003 0.94077 -0.3278 0.98558 -0.0756
0.29853 -0.4982 0.80037 -0.5653 0.94533 -0.3078 0.99244 -0.0373
0.34041 -0.5347 0.84964 -0.5156 0.94948 -0.2881 0.99882 -0.0055
0.41249 -0.5842
T/K = 308.15
O,O3574 -0.0883 0.43886 -0.5756 0.89910 -0,4268 0.97061 -O.1662
0.12079 -0.2552 0.49487 -0,6006 0.91643 -0.3914 0.97493 -0.i~04
0.14556 -0.2948 0.55321 -0.6144 0.92638 -0.3665 0.97896 -0.1160
0.20987 -0.3826 0.60390 -0.6195 0.92977 -0.3566 0,98637 -0.0724
0.23587 -0.4133 0.65317 -0.6148 0.93904 -0.3258 0,98933 -0.0553
0.28563 -0.4660 0.69845 -0.6038 0.95C70 -0.2764 0.99200 -0.0408
0.34181 -0,5130 0.75117 -0.5792 O.95584 -0.2507 0.99502 -0.0247
0,34281 -O.5137 0.80426 -0.5428 0.96019 -O.2271 0.99730 -0.0131
0.40365 --0.5568 0.84982 -0.4970 0,98567 -0.1956
796 Benson and Kiyohara
3. RESULTS A N D DISCUSSION
z~
0.008 0,004
x • xv
•
• 7 13
0.OO4 x
2n a o 0,002
T
"6 v 0 0 ~ x
E x
E o ~ v
9
.-'~ .......
o _ ~ o_. o
~ - -o - o--oo "~'-D.g <>_o 0
o x x
0 0 .... [3
-0.004 -0.002
-0.008 ~. ]-0.004
' 0.2' ' 014 ' 016 018 0.9 1.0
Fig. 1. Deviations, A Vm~ = VrnE(obs) - Vm~[Eq. (1)], for aqueous methanol mixtures
at 25oC, Poims:O, our results;f-I , Grolier et af.,t8> 4 points off scale:V, McGlashan
and WilliamsomI9) A , Mikhail and Kimel,(10)2 points off scale; O , Clifford and
Campbell, IlJ) 2 points off scale; X,'Gibson.(n) Curves: .... , +0.2% deviation. Note
that different uniform scales are used for both the abscissae and ordinales of points with x
values below and above 0.9.
798 Benson and Kiyohara
0.004 , , , , , , , ~ , 0.002
oq,
0.002 ............ ~176 o ~, 40.00l
. o Oo ~, ~O/oo-, [
E ." ~ o o ~.[x:) o ,, /
OC4.-~(~ 0v 0 V IV V 10 O0 ]
0.015 / , , , l , I E I ]
/
O.OLO /~ o _ _ ............ _ _
0 . 0 0 5 /F . - " " - n .
T o
o ~ A [] O~oo c) o ~
E
% 0 (% .
o ~ 0%0
o_(r) o
~ 0 80 oo
o
<3 o o zx -~
- 0.005 oo %'8 . o
-0.010
-0"0150
I I.
02
I I
0.4
I
~c
i
06
I
08
I. 0.9 1.0
Curves for the partial molar excess volume I/1E of water in the
three alcohols, and for the partial molar excess volume V2E of each
alcohol in water were calculated from the smoothing functions at 25~
Volumes of Water-Alcohol Mixtures 799
and are shown in Fig. 4. T h e curves for V~E are similar for the three
alcohols, with V~E negative except for mixtures dilute in alcohol. V2E is
negative throughout the composition range and the curves show a
characteristic m i n i m u m which, with increasing size of the alcohol
molecule, becomes deeper and shifts to higher alcohol dilutions. The
occurrence of such a m i n i m u m has been attributed to a balance
between the effects of interstitial solution of alcohol molecules with
accompanying e n h a n c e m e n t of an ice-like structure in the water, and a
breaking of this structure with increasing concentration of the
alcohol. (2,~9t
I I I I I I I I I
T
-8
I
- 2
-3
.t
""'"'"
...... Y ~'
\
'"
E
E
r
-4
-5
-61-
I I I I ~ I i
0 0.2 0.4 0.6 0.8 I.O
Fig. 4. Partial molar excess volumes o'f water Vie and of alcohol V2E at 25oC in aqueous
mixtures of methanol .... , e t h a n o l ~ and 1-propanol .....
T h e t e m p e r a t u r e variation of the excess v o l u m e s of aqueous
methanol mixtures is very different f r o m that of aqueous ethanol and
800 Benson and Kiyohara
0.2 , , t I I ~ 1 t I
o,,....''~ i
(3/ .." \
,,D....
a.o..., oc~
.o/. l
O.W ,"00
. .'"
..'~D i
.
o
T 9"" o / ~ I
." B" i
9"" k
X'
-O.I I i t I I I I N f
0 0.2 0.4 0.6 0.8 I.O
3C
Fig. 5. Excess thermal expansion coefficients a E [hq. (4)] at 2 5 ~ for aqueous mixtures
of methanol .... , e t h a n o l - - , and l-propanol ..... Points for ethanol: O , Minowa et aL;
(13) [ ] , Osborne et ak (141
8O I I I I I I I I I
"7
40
f
E
T Ee Ee
Y
20 ~
E
0
bJ.-
bA
0
J ~t
d
-20
-40
I, I I I I i I I I I I
0 0.2 0.4 0.6 0.8 1.0
Fig. 6. Partial molar excess thermal expansibilities of water E1E and of alcohol
E2 E al 25oC for aqueous mixtures of methanol .... , e t h a n o l - - , and 1-propanol .....
Near the middle of the composition range, the values of E~E and
E~E are nearly constant. This is reminiscent of the partial molar excess
enthalpy curves reported for aqueous ethanol mixtures. (23) It has been
suggested that this behavior results from an equilibrium between
microphases consisting of structured water clusters and a random
mixture of water and alcohol molecules. (23) However, it appears that
this argument cannot be used to rationalize the volume behavior of
aqueous n-alcohol mixtures since, apart from the constancy of the
values of E~E, there is no evidence of an approximately linear variation
of V~E with x and the values of I/1 z and V2E are not constant over the
corresponding range of compositions.
ACKNOWLEDGMENTS
The authors are indebted to Mr. A.S. Secco for some of the
density measurements, to Dr. J.-L. Fortier (University of Sherbrooke)
for the Karl Fischer analyses, and to Mr. P. J. D'Arcy and Mr. C. J.
Halpin for other technical assistance. We also thank Dr. Y. P. Handa
for helpful discussions of the work. This paper is issued as NRCC No.
18868.
REFERENCES
21. T. Nakajima, T. Komatsu and T. Nakagawa, Bull. Chem. Soc. (Japan) 48, 783 (1975).
22. M. E. Friedman and H. A. Scheraga, J. Phys. Chem. 69, 3795 (1965).
23. J. A. Larkin, J. Chem. Thermodyn. 7, 137 (1975)