0% found this document useful (0 votes)
25 views12 pages

Thermodynamics

Uploaded by

eleazarmontes09
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
25 views12 pages

Thermodynamics

Uploaded by

eleazarmontes09
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 12

THERMODYNAMICS 1

TERM PAPER
MONTES, ELEAZAR JUNOR L.
BSIE-3A
THERMODYNAMICS
STUDY OF PHYSICS

Newton’s
Law
𝑁1 = 1𝐹 =1 𝐹 𝐹 = 𝑁𝑒𝑤𝑡𝑜𝑛𝑠 /
=0 𝑘𝑔.𝑚 𝑠
𝑚
2

𝑁2 = 𝐹 =
𝑎
𝑁3 = ∑𝐹𝐹 =
−2𝐹𝐹

1. System of Units
𝐹 = 𝑚𝑎 𝐾 =
𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎 =𝑑⋅1
𝑎 =𝐹
𝑘
𝑡 𝑡
𝑡 = 2𝑠𝑒𝑐 𝑚
𝑚=1
𝑎 = 1 𝑚/𝑠2
4

𝐹 = 𝑚𝑎
1
= 𝑚/𝑠
2
4

𝐹 =4
1 𝑁
𝑘𝑔⋅𝑚
𝑠2

the force is at rest

𝐾 =
𝑚𝑎 /𝑘𝑔⋅𝑚/𝑠2
𝑘 =1
𝐹 𝑁𝐸𝑊𝑇𝑂𝑁

an external force
𝑔 = 9.8 𝑚/𝑠2
˙
𝑘 = 9. 81𝑚/𝑠2
𝑘 = 9.8066 m/𝑠2

proportionality constant
𝐹 = = 1, ≠ 1, ≠ 0
𝑚𝑎
𝑘

UNITY (IDEAL) = 1
NON-UNITY (NON-IDEAL) ≠ 1
𝑔 = 9.8066
𝑚/𝑠2
for accuracy
EXAMPLE 1

UNITY (IDEAL) NON-UNITY (NON-


=1 IDEAL) ≠ 𝟏
𝑔 = 9.8066 𝑚/𝑠2 𝑔 = 9.8066 𝑚/𝑠2
𝑚𝑔
𝐹
𝑚𝑎 𝑘
𝐹
= 𝑚𝑔
𝑘

𝐹 = (1)(9.8066 =

𝐹
𝑚/𝑠2)
𝑭 = 𝟗. 𝟖𝟎𝟔𝟔 𝑵 (𝑘𝑔𝑚)
𝑘
= 𝑠2
9.8066
𝑘𝑔𝑚
𝑚
𝑘 = ⋅
𝑘𝑔𝑓
𝒌𝒈𝒎
𝒎
𝒌 = 𝟗. 𝟖𝟎𝒄𝒎
⋅ 𝟐 𝒌𝒈𝒇
𝒔
Example
Example 𝑀𝑎𝑛 = 85
𝑀𝑎𝑛 = 85 𝑘𝑔
𝑘𝑔 𝑔 = 9.899
𝑔 = 9.899 𝑚/𝑠
𝐹𝑔
2

𝑚/𝑠
𝐹𝑔
2
= 9.899
𝑚 )

=
= (85𝑘𝑔𝑚) 𝑘𝑔𝑚
( 𝑠
� �

= (85𝑘𝑔𝑚)(9.8066 9.8066 ⋅

2
𝑚/𝑠2) 𝑚 𝑘𝑔 𝑠
𝑓
𝑭 = 𝟖𝟑𝟑. 2

𝟓𝟔𝟏𝑵 𝑭𝒈 = 𝟖𝟓. 𝟖𝟎𝟏


𝒌𝒈𝒇
EXAMPLE 2
GIVEN: 𝑔 = 32.688𝑓𝑝𝑠2
𝛥𝑉 = 0.003 𝑓𝑝𝑠2 ℎ = 1000 𝑓𝑡. 𝑎𝑠𝑐𝑒𝑛𝑡

b. weight at 5%
𝑎. 𝑔 𝑎𝑡 30.504
𝑓𝑝𝑠2 𝐹𝑔 = 0.95
ℎ =𝑉𝑆 =−1.584
Δ𝑔
30.504−32.088 𝑎 = 0.95 𝑔
𝑓𝑡/𝑠2
𝑎 = 0.95 (32.088
𝑓𝑡/𝑠2)
−1.584
= 𝑓𝑡/𝑠2
− 0.00
3
𝑓
𝑡

1000 ℎ = 𝑣𝑠2−32.088
30.484−Δ𝑎
= −1000
0.003
𝑎 𝑓𝑡

ℎ = 528,000
ft ℎ = 534666.667
1𝑚𝑖𝑙
528000 𝑓𝑡 = 𝟏𝟎𝟎 𝑓𝑡
× 5.280 𝐦𝐢𝐥𝐞𝐬 1
𝑚𝑖𝑙𝑒
Convert in 534666.667 𝑓𝑡 𝑥
kilometers 5,280
𝑓𝑡
100 𝑚𝑖𝑙𝑒𝑠 1.609𝑘 = 𝟏𝟔𝟎. 𝟗 𝒌𝒎
× 1
𝑚𝑖𝑙𝑒

c. Force @ 180 lbm, height of


29,131 ft
𝐹 𝑚𝑔
= �

(180 𝑙𝑏𝑚)( 30.088
= 𝑓𝑡/𝑠2)
32.174
𝑓𝑡 ⋅ 𝑙𝑏𝑚
𝑠
𝑭 = 𝟏𝟕𝟗. 𝟓𝟏𝟗
2

𝒍𝒃𝒇
SPECIFIC VOLUME
𝜌= ,𝛾 =
𝑚 𝐹𝑔 DENSITY
𝑚
𝜌
𝑉 𝑉

= �

𝜌=𝛾
𝑘

or 𝛾
𝑃𝑔
𝑔
=
𝑘

𝑉 = 𝑉𝑜𝑙𝑢𝑚𝑒
m = mass
𝜌 = 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐 𝐷𝑒𝑛𝑠𝑖𝑡𝑦
SPEDIFIC VOLUME
� 1
𝛾 = �=
𝑚
Problem 1
g= 9.8066 𝑚/𝑠2
𝑘𝑔𝑚
𝜌 = 1000 SPECIFIC WEIGHT
𝑚3
� 𝐹
𝜌 𝛾 −� = 𝛾 =
𝛾 =𝑔 𝜌𝑔 𝑉
( 𝑘
𝑚
)( 3)
=
1000𝑘𝑔𝑚 𝑚
9.8066 2)
𝑘𝑔𝑚 𝑚 𝑠
9.8066 ⋅
𝑘𝑔𝑓 𝑠
2

𝛾= 𝐷𝑒𝑛𝑠𝑖𝑡𝑦
𝟏𝟎𝟎𝟎𝒌𝒈𝒇/𝒎𝟑 𝑆𝑔 =
𝐷𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓
𝑊𝑎𝑡𝑒𝑟
SOLUTION
𝑃𝑥
1. Given: 𝑃𝑞𝑖𝑟 = =
𝑃𝐻2
1.3𝑘𝑔/𝑚3
𝑂
V= 10𝑚 × 10 ×
3
Formula: 𝜌𝑎𝑖𝑟
=

𝑉
2. Given: 𝑉 = 2𝐿
𝜌=
800𝑘𝑔/𝑚3

= 2𝐿 ×1000
3

=2×
10−3𝑚3
800𝑘
𝑚 = (2 × 𝑔 )
𝑚
m = 1.60 3

kgm

3. 𝐺𝑖𝑣𝑒𝑛: 𝑃𝐵𝑙𝑜𝑜𝐷 =
1060
𝑔 =𝑃1𝐻2
𝑃𝑥

𝑃𝐻 =
1000𝑘𝑔/𝑚3
2
𝑂

𝑆𝑔 =(1000𝑘𝑔/
(1000𝑘𝑔/𝑚 )
𝑚3)

Problem 2
Given:
𝜌1 = 1500𝑘 𝑔/𝑚3
𝜌2 = 500𝑘 𝑔/𝑚3
𝜌𝑇 = 800𝑘 𝑔/𝑚3
𝑉𝑇 = 100 L

𝑔 = 9.675𝑚/𝑠2
𝑀𝑇 =?
SOLUTION: 𝑉1 + 𝑉2 = 𝑉1
𝜌=
𝑚

𝑀𝑇 = 𝜌 + (𝑉)

𝑀𝑇 = 𝑀1 + 𝑀2

( 0 )
= (800
10
)1000
= 80𝑘𝑔𝑚

𝐹 =
(80)(9.675)
(9.8066)
= 78.926 𝑘𝑔𝑓

𝑚𝑇 = 80𝑘𝑔 = 𝑉1𝑃1 + 𝑉2𝑃2 eq.1


100𝐿 = 𝑈1 + 𝑉2

100𝐿 = 𝑉1 + 𝑉2
0.1𝑚3 = 𝑉1 + 𝑉2 eq. 2
0.1𝑚3 − 𝑉1 = 𝑉2

80 = (𝑉1)(1500) + (0.1𝑚3 − 𝑉1)(500)


80 = 1500𝑉1 + 50 − 500𝑉2
80 = 1000 𝑉1 + 50
𝑉1
= 1000
80−50

𝑉 = 0.03𝑚3
𝑚 = (0.03𝑚3)(1500𝑘𝑔/𝑚3)

𝒎=
𝟒𝟓𝒌𝒈𝒎
𝐹𝑚
=
(45 𝑘𝑔)(9.675)
9.8066

𝑭 = 𝟒𝟒. 𝟑𝟗𝟔
𝒌𝒈𝒇
PRESSURE
Force
/F
Area
P=
A

EXAMPLE
m=50 kg
2
a=4.25 m
P=?
F=mg
m
F=50 kg (9.8061 2
)
s
F=490.33 N
F
P=
A
490.33 N
P= 2
4.25 m

N
P=115.372 2
m

P FLUID=Pg h
Pex = ATM
P=P ex + P FLUID

EXAMPLE
h=20 m
P=?
kg
ρ=1030 3
m
kg m
P FLUID=(1030 3 )(9.8066 2 )(20M)
m s

N
P FLUID=202,015.96 2
m

N
Pex =101,325 2
m
PT =Pex + PFLUID
N N
PT =101,325 2 + 202,015.96 2
m m

N
PT =303,340.96 2
m

P gage=P|¿|− P ¿
ATM

PVAC =P ATM −P|¿|¿


PTABS =Pvac + P atm - Close System
PTABS =P ATS + Pg - Open System

PROBLEM
Convert 100 PSIgauge to PSIABS
1 atm = 101.325 Kpa
=14.7 psi
= 760 mmHg
= 760 torr
= 29.9 inHg
= 1.013 bar
= 2,116.2 psf
PT =P ATM + P g
PT =14.7 psi+100 psi

PT =114.7 psi

TEMPERATURE
9
℉= ℃+3 0
5
5
℃= [T (℉ )−32]
9
K=T ( ℃ ) +273.1 5
R=T ( ℉ ) +459.6 7
CONVERT
540 ℉ ¿℃
5
℃= (540 ℉ −32)
9
℃=282.222

120 ° R ¿ K
120 ° R=T ( ℉ ) + 459.6 7
℉=−339.67
5
℃= (−339.67 ℉−32)
9
℃=−206.48 3
K=−206.483+273.1 5
K=66.66 7

−69 ℃ ¿ ℉
9
℉= (−69 ℃)+3 0
5
℉=−92.2

1025 K ¿℉
1025 K=T ( ℃ ) +273.1 5
℃=1025−273.1 5
℃=751.8 5
9
℉= ( 751.85 ) +3 0
5
℉=1385.3 3

−256 ℉ ¿ K
9
−256 ℉= ℃+3 0
5
9
−256 ℉−30= ℃
5
(−256−30)(5)
=℃
9
℃=−16 0
K=−160℃ +273.15
K=113.15

THERMAL EXPANSION
∆ L=∝ L0 (T 1−T 0)

Example
L=3 mL
T 0=20 ℃ ; T 1=100 ℃
∆ L=(∝)(L)(∆ T )
−5
2.4 ×10
∆ L=( )(3 m)(100℃−20 ℃)

−3
∆ L=5.76 ×10 m
∆ V =β V 0 (T F−T 0 )

EXAMPLE
−5
18 ×10
Hg=

V =50 mL
T i=25 ℃ ; T f =100 ℃

( )
−5
18 ×10
∆V = (50 mL)(100 ℃−25 ℃)

∆ V =0.675 m
HEAT =Q=mC ∆ T
WORK =W =F H × D
EXAMPLE 1
F=20 N ; D=5 m
W =(20 N )(5 m)
W =100 joules

EXAMPLE 2
500 N
F A=
tan30 °
F A=866.025 N - Horizontal Force
W =F H × D
W =( 866.025 N ) (10 m )
W =8660.25 joules
POWER
W
P=
t

EXAMPLE 1
m=500 Kg
d=1km
t=15 min
P=?
Find Power in Watts and Horsepower
F=mg
m
F=(500 Kg)(9.8066 2
)
s
F=4903.3 N
W =Fcosθd
W =( 4903.3 )( 1 ) ( 1000 )
W =4,903,300 Nm
W
P=
t
4,903,300
P=
( 15 )( 60 )
P=5448.111 W ≈ 5.45 KW
1 HP
¿ 5448.111W ×
746 W
¿ 7.303 HP

EXAMPLE 2
P=25 KW
m=1500 Kg
h=30 m
t=?
m
P=(1500 Kg)(9.8066 2
)
s
F=14,709.9 N
W =F × D
W =( 14,709.9 N )( 30 m )
W =441,297 J
W
P=
t
441,297 J
25,000 W =
t
441,297 J
t=
25,000 W
t=17.652 s
IDEAL GAS LAW
P1V 1 P2V 2
= =mRT
T1 T2

3
V 1=0.6 m ; V 2=?
P1=760 mmHg ; P2=720 mmHg
T 1=25 ℃ ; T 2=20℃
(760 mmHg)(0.6 m ) (720 mmHg)(V 2 )
2
=
25 ℃ 20 ℃
2
(760 mmHg)(0.6 m )(20 ℃)
V 2=
(25 ℃)(720 mmHg)
3
V 2=0.507 m

CHARLES LAW
V1 V2
=
T 1 T2

Find V 2
V 1=2000 mL
T 1=32℃ ; T 2=20 ℃
2000 mL V2
=
32℃ 20 ℃
V 2=1250 mL

BOYLES LAW
P1 V 1=P2 V 2

P1=2 atm ; P2=?


V 1=100 L ; V 2=50 L
( 2 atm ) ( 100 L )=( P2 ) ( 50 L )
( 2 atm ) ( 100 L )
P 2=
50 L

P2=4 atm

You might also like