Exponents y
Exponents y
XPONENTS
to study exponents?
d O youneed
Y arth . 5 976 000 ooo,000,000,000,000,ooo kg.
0 fE is ' , ,
. 000,000,ooo,ooo,ooo,ooo,ooo kg.
ofuranus 15 86' 800'
ch haS a greater mass, Earth or Uranus?
make these large numbers easy to read, understand and compare.
entsare used to
PONENTS
know that 10 + 10 + 10 + 10 + 10 = 50 whereas 10 x 10 x 10 x ~0 x 10 = 100000.
10 + 10 + 10 + 10 can also be written5
as 5 x 10 and r:ad as 5 times 10.
10 >< 10 >< 10 x 10 is written as 10 and read as 10 raised to the power 5.
es,'10' is called the base and '5' the exponent (or index or power).
is called the exponential form or power notation of 100000.
ly, 11 + 11 + 11 = 3 x 11 read as three times 11 and 11 x 11 x 11 = (11)3 = 1331 and is read as 11 raised
power 3. In (11)3, 11 is called the base and 3, the exponent.
al, if xis any integer, then x multiplied by itself repeatedly n times given as x x x x x x x ... n times
Is denoted as r'. Here xis called the base and n, the exponent or the power or the index.
uct of 'n' factors each of which is x.
pie, (7)6 = 7 x 7 x 7 x 7 x 7 x 7 and (2)4 = 2 x 2 x 2 x 2.
exponents are a "short cut" to show that a number is to be multiplied by itself a given number
1he operations x2 (read as x squared) and x3 (read as x cubed) are examples of exponents. The
forms get their special name from the square and cube of Geometry. The area of the square
% x z or iJ.. The volume of the cube with side x is x x x x x or x3 • Thus, we call these 'x square'
~~~ . --
~ 3 ,(i -,( 3 :x :) it \
(5)5 ~ ~ A. ( x( X ~X\ 31".l.)
7
()
:r =,-
(2)2 '2- 2....X.-2-. ~
•• ress the following in the exponential form.
8XP 4 4 x 4 x 4- -9 x -9 x -9 x -9
b c. axaxaxaxa
' )( 4 )(x 3 )(x 2 x 2 x 2 x 2
. . '!II
~e --b x -b x -c x -c x -c f. f X f X f X U X U X V
d, .i >< 3
find the value of 4 e. (-17)2
{3)' 'Aof c. (12)3 d. (-5)
: entity the greater number in each of the following pairs. 3
100 5
~ )5 or (5)2 ~ 3 or (-3)7 ~ )10 or (10)2 ,.d,{100)2 or (2) e. (-10) o~0)
Simplify:
b. 33 x (2)2 C. (5)2 X (4)2 -...,tY.t) X (12)2 X (13)5
L 9 >< 105
Find the results.
L (-6)' b. (-4)2 x (-3)3 _¢)2 x (-8) d. (-10)4 X (-5)2
• Express the following as a product of prime factors.
L 49 b. 625 c. -512 d. -216 sA132 __V-6075
Simplify the following.
1
a. (9-32) ic..(2)3 /(7'2 + 42) X (3)2 C. (32 - 22) + -
25
Bq. . the following in index form.
b. 343 c. 1331 d.243 e.3125
RUW OF EXPONENTS
g Powers v;ith the Same Base
c.kulaka th(• following.
b. (- 5f x (- 5) c. a5 x J➔
~•-• Px3x3x~xpx3x~=3x3x3x3x3x3 x3
· • (3)"
~,-(-5 • -5) • (-5) • -5 • (-5) x (-5)
(-5,S
• M • IIC • JC ti) JIC (• ,c 11 ,c ti ,c ti) • ti ,c ti IC II X a JIii: 8 X a X ti M ti X ti
~ts @
r
Ru le II: D iv id in g Po w
er s w ith th e Sa m e Base
AM rL E 7: So lve the
Ex
following .
(- 4) 6 x4
35
b. (- 4)3 c. x2
a. 32
JXJX3X3X3 b. (- 4) : = (- l)x (- ,( )> <( -
35 (-,4') ...
S o t.UTIO N: a. 32 = ,.3' X t (- 4)
35 (-4)6 = (-4)3
2 =(3)3 (-4)3
3.
x4
4 . 2 = x2
x ;t x; tx xx x y non-zero mteger x
c. 2 = - - - - , for an X
X ,:( X; (
d c of th e above exa:At~e
.
tations ob tai ne d in pa rts a, b an
Now study the power no s on the ~
in de x on the RH S is the difference of indice
You will find that the
ro integer x
In general, for any non-ze Remember
xm +x n =x m- n
e numbers and m > n. If x is any non-
where m an d n are whol
11 =(9)11-7 =(9)4 w ho le nu m be rs,
For example, (9) + (9)7
_ _ _ e S
~ .
~2'.___-:.:!!
11_ _ _ -- =~
E ~
xe ~
ra·s=
Simplify the following.
r a. (2)9 X (2)ll = _
~ ICSE Mathematics 7
5)J _~ X:_ X-;_ -;:; 0 X7 l' 1
1. (- - 7 7 7 )( 2
7- )2 -3 -3 _ -
-3 x -3-;:; - x- - 8
(-3J umber, then
( 3 -;:; _:..--:::- 8 8 hole n
2. s' 8 >< 8
. ers Y:;t O
and ttt is a w
. d y are lllteg
fhUS, 1f X all ( J,n
x)m - x
(~-
(yt y
-
. Exponent tural number, then r"' • t
le VII: Negatrve d ttt is any na -s
Ru . nurnber art
- ero rat1ona1 .
If x is any non z o -m
1 X ::: Xo-111 ::: X
Observe that -; == ?
x . examples:
Consider the following
1 1
I . 2-J = -23 = -8
3-2 42 = !§.
.l ?=J2 9
r. ..
,.,
a.
\\t l'L~
Gf
11: Find the value of
b. (- : r
2
_3 1 1 _f_= 3x3x3 =E
Soll TI0'1: a. ( 3) : (2 )3 = t - z3 2 2 2 8 X X
3 33
5)-2
(-iJ
1 ( 7)2 (-7)2 -7X(-7) - 49
b. - 7 ( = = - 5 = (5)2 = 5 X 5 . - 25
3
)-3
c. ( -11
4
= (- ~J -
1
1
-(- 11] _ (-11)3 _ -11 X (-11) X (-11) _
4 - 43 4x4x4
I Exercise 5.3
l Simplify and write the answer in exponential form.
a. (82)7 = _ b. (33)100 = _
d. (2_.y19 = - e. (-53)90 = _
70 JCSE Mathematics 7
li£y the following and express the answer with a single exponent.
2. Siil'P)5 x ( )5 = _ _ .b. (2)7 x (a)7 = _ _ c. p9 x q9 = _ _
4
a. (3 5- e. (-a)6 + (-b)6 =- - £. 4,r- + 9q2 =
d. 3s-1-S - - --
(-5y)
Siil'Plify:
. (tJ b. (ff c. 7x
3
.. 4-3
1
b • -5-2 . c. (-6t3 d. (ff e. (-7)-2
5unplify: c. (3x2)2(xyt2
b. (-4y)3
a. (-3%)2
(:)' ={
s
b. (: rJr
X (: = (: t (:J +(:J =(:r
{(!r}" =(:f e. (: J= 1 f. (: Jx(ff xff = (:
liI
(ff
(pxs)m
s
qxr
12: Simplify the following and write the answer in the exponential form.
5
b. [(- 3) + (- 3) ] x(-3)
3 7
c.[<9-2r• x(: )}(¾)'
7
28 xa6
4 10 6
e. (7 X 7 ) X (9) £. 43 X a4
Exponents @
~
-
.. c-Sirnplify (25)"1 + (-5t 1
/1,J•
25 4 + (-5t7 = (52)4 + (-5 )-7 = 52><4 --,-. (- 5)-7
LtJTIO,r. ( ) = 58 + (-5t7 = (-5)8 + (-5)-7 (·.- 5 8 = (-5)8, as 8 is an even number)
= (-5)8-(-7) = (-5)8+7 = (-5)15
105
4 6
'"' 16: sunplify 2 x 5
5
10s _ (2 X 5)6 = 2s55 25-4 2
tUTION: i' X s6 - 2
---...,.. 4
X 5 2
X
4
X 5
6 56-5 =s
. d p so that (-5)s x (- 5)7 = (- 5)3P.
LI 17: Ftn
(-5)8+7 = (-5)3P
LUTION: (- 5)8 X (-5)7 = (-5)3P ⇒
(- 5)15 = (-5)3P
(Since the bases are same, powers can be equated.)
15=3p
15 p=S
p=-
3
,u 18: Solve for x if 32x-1 = 92 x 27.
32.x-l = (32)2 X 33 . ⇒ 32x-1 = 34 X 33
-~ .. :
• • ! "' -~
5 "
7. fu c. li ll a -: •~ ' • .. ..
ll • •
-
•l m o n ~ h ln ~
l :'.'11
d li li it o l~ lill\
th r nw nb ff ~ ~
..
4lj'l .- -
ill, ~
a. Tna,r, - 5 .!t ie so nn gb la I
nd :.! on ld t.w vl
-7 7
11
as 0, u -. 'i=:r l t
-.,... .....
~
4' ',1.
,~
E. ur cis e 5.1
~-
.
u ... .!.. I
··~
L up rm ti al 6l ~ "~w .. .<' l
...
a.
(m a
(4)3 4
¼ ' mt
3
E; Va lai l u. ... =-u ~~
., ;I
..
r.:
b. • · -4 • 4 61 \-4. ~ - 9 . ,: .. ,. ~ - C
(3)4 3 4 ,,' 1 'l "
3• 3• 3 •3 11
C. (5)5 5 5 llc ,"li..
5• 5• 5• 5 • 5 3U 5
cl. 7 7 1 7 \. a.. l, 5
(2)2 2 7
2
2. a. 46 b. (-9)4 C. ,,,
2• 2
• 2. a. S
• -:_,i, C \,! '
d.J lx' .24 e. (-b )2 x (-c )3 f. tlulo
l. L S\
.. ~ ' ~
3. a. 72 9
4. a. 2s
b.1 00 00 00 0
b. (-7)3
c.1728
C. 210
d. QS t.2 89
4. l! \
.- l ~
6.& . 9
cl. ~
) " UH
~- :..,
8. a.1 28
9. a. 2 5
b. 58 5 c.1 25
d. 48
b. I
c. mI cl. ~
7. iL l"8
Exerc ise 5.2
b. 73 C. U l
d. 35 e. ss
b. 719 c. J? d. lo ~ -....
~
t
a. 2 20 b. (-3 )7 d. 'S C, ~
f. (-7 )6
C.(15)9 d. (-7 )16 i '~
g. 51s e. 107
h. (-3)17 i. z10 10 . iL 16 b. )
Ex erc ise 5.3 j. (-p )25 (. 5
Ob 1e ch ~ c fy rc Q
1. a. g2 x 7 = gl4 ue ,u
b. 33x 100 = 3n A. 1. iL (-4 )u b .
d. 2-4 •-1 9 = 16 C. S25 . 7 - (-6 f c. (-2 )\~
.'
2 e. (-1)9() (5)3•9Cl ~ 5175 d. ~
s270 'l. 0
2. a. (3 x 4)5 = 125
b. (2 x a)7 -(2 a)7
f. (-11)4 •25 • (-11)1
00
4. 2 s. 5 111 6. l
).
(. (p X q)9 • (pq)9 10. ..!._
7. - 64 s. ..!... :
~ ~"
d. (¾J f. (2p )2 =(2p) B. 1. Fa lse
64
11 .
s 12 . l
(3q)2 2. Fa lse
3. a . ~ ~3 q 5. Fa lse 3. Tr ur
b. 25 6. Tr ue
256 -1 25 y 3 Exerc ise 6.1 7. Tr ue
4 C . - --
1 1 343x3
4. a. 43 = 64 1. a. No
e. _l _= ..! ._ 5. a. 9x2
c. (~ )3 = ;116 d. (½ = :7
2
J 2. a. Tr ue
3. a. e
b. Yes
b. Fo lse c. Tr
b. II!
c. No
c. i!
ue
d. No
d . False
b. -6 4y 3 d . i!
(-7 )2 49 c9x
.- f. e g. e h. II!
e. •
y2 4. a. Ro ste r fo rm
Exerc ise 5.4 : (19, 21, 23, 25, 27,
Se t Bu ild er fo rm : (x 29 1
: x • 211 -1 , 10 S ti
1. a. 714 b. 83 b. (e, x, p, r, s} S I Sl
c. 1120 d. 56 c. (x : x = is ev en
e. (pqr)4
6, 9, 12}
k. 3 l.0 Se t bu ild er for m: (x
2. No , J,ince 23 x 32 : x = 3n , 1 s n s 4, 11
= 72 an d 65 = 7776 £. (5, 7, 11 , 13 , 17} e NI
3. a. 12 b. 4 g. (x : x = 2n or Sn
c. 9 d. 1 5x4 ; x < 20; x, n e N}
e. -
8 h . Ro ste r M eth od
4. a. x= 5 b. x= 5 c. x= 3 : (0, 1, 2, 3, 4, 5, 6\
d. x = l e. x= 4 De sc rip tio n M eth od
f.x = 1 g. x= 3 h. x= 38 i.x =- 4 : (all wh ole nu mbers
i. Ro ste r M eth od u p to 61
5. a. 26 X 35 b. 29 X 32 C. 22 X 54 : (1, 2, 3, 4\
De sc rip tio n M eth od
25 : {all na tur al nu mb
b. 1 c. -4 j. Ro ste r M eth od ers less than 51
6. a. 36 : {- 3, - 2, -1 , 0, 1,
De sc rip tio n M eth od 2, 3\
: (all int eg ers be tw
een - 4 and 4\
ICSE Mathematics 7