0% found this document useful (0 votes)
104 views16 pages

Math Problems for Advanced Students

Ap 2024
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
104 views16 pages

Math Problems for Advanced Students

Ap 2024
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 16

Previous IPE

SOLVED PAPERS

MARCH -2024 (AP)


« MATHS 2B 2
AP-IPE 2024 SOLVED PAPER «

PREVIOUS PAPERS

IPE: MARCH-2024(AP)
Time : 3 Hours MATHS-2B Max.Marks : 75
SECTION-A
I. Answer ALL the following VSAQ: 10 ´ 2 = 20
1. Find the equation of the circle with (4, 2), (1, 5) as ends of a diameter.
2. Find the value of k if the length of the tangent from (2,5) to x2 + y2 − 5x + 4y + k = 0 is
37 .
3. 2 2 2 2
Find k if the pairs of circles x +y +4x +8=0, x +y –16y +k =0 are orthogonal.
4. Find the coordinates of the point on the parabola y2=8x, whose focal distance is 10.

-Q
5. If the angle between the asymptotes is 30º then find its eccentricity.


T
2
6. Evaluate ∫sec2x.csc2xdx 7. Find ∫ elog(1+tan x)dx . 8. Find ∫ cos 7 xsin 2 xdx

E
9. Find the area of the region enclosed by the given curves x = 4 – y2, x = 0.
0

L
6/5
⎛ d 2 y ⎛ dy ⎞3 ⎞
10. Find the order and degree of ⎜ 2 +⎜ ⎟ ⎟ = 6y

L
⎜ ⎝ dx ⎠ ⎠⎟
⎝ dx
SECTION-B
II. Answer any FIVE of the following SAQs:
U 5 ´ 4 = 20
11.
B
Find the length of the chord intercepted by the circle x2+y2–x+3y–22=0 onthe line y = x – 3
12. S.T the circles x2+y2–8x–2y+8 = 0,x2+y2–2x+6y+6 =0 touch each other and find the point of contact.

Y
13. Find the equation of tangent and normal to the ellipse 9x2+16y2=144 at the endof the
latus rectum in the first quadrant.
B
A 2 2
14. If P(x, y) is any point on the ellipse x2 + y2 = 1 with foci S & S' then SP + S'P is a constant.

B
a b
15. Find the centre, eccentricity, foci, length of latus rectum and equations of the directrices of x2 – 4y2 = 4

sinx 2 2
16. Evaluate ∫ sinx + cosx dx 17. Solve dy + 3x y = 1+ x

3 dx 3
1+ x 1+ x
SECTION-C
III. Answer any FIVE of the following LAQs: 5 ´ 7 = 35
18. Find the values of c if the points (2,0), (0,1), (4,5), (0,c) are concyclic.
19. Find the equation to the pair of transverse common tangents to the circles
x2 + y2 - 4x - 10y + 28 = 0 and x2 + y2 + 4x - 6y + 4 = 0
20. Define parabola. Derive its equation in the standard form.
21. Evaluate the reduction formula for In= òsinnxdx and hence find òsin4xdx
x +1
22. Evaluate ∫ 2 dx.
x + 3x + 12
π /4 x
sinx + cosx ⎛ x⎞
∫ 24. Solve ⎛⎜
x⎞ y
23. Evaluate 9 +16sin2x
dx
y⎟
dx + e ⎜1 − y ⎟ dy = 0
0 ⎝1+ e ⎠ ⎝ ⎠
« BABY BULLET-Q 3
AP-IPE 2024 SOLVED PAPER «

IPE AP MARCH-2024
SOLUTIONS
SECTION-A

1. Find the equation of the circle with (4, 2), (1, 5) as ends of a diameter.

Sol: Formula: The equation of the circle with A(x1,y1), B(x2,y2) as ends of a diameter is

(x−x1)(x−x2)+(y−y1)(y−y2)=0

∴ Equation of the required circle is (x−4)(x−1)+(y−2)(y−5)=0

⇒ (x2−x−4x+4)+(y2−5y−2y+10)=0⇒ x2+y2−5x−7y+14=0
-Q
T
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
2.
E
Find the value of k if the length of the tangent from (2,5) to x2+y2-5x+4y+k=0 is 37 .

Sol: Length of the tangent from (2, 5) to


L
S = x2+y2−5x+4y+k = 0 is L
U
S11 = 37 ;

B
On squaring both sides, we get S11 = 37

⇒ (2) 2 + 52 − 5(2) + 4(5) + k = 37 ⇒ 4 + 25 − 10 + 20 + k = 37

⇒ 39 + k = 37 ⇒ k = −2 Y
B
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
3.
A
Find k if the pairs of circles x2+y2+4x+8 = 0, x2+y2–16y+k = 0 are orthogonal.

Sol:
B
From the given circles, we get

g = 2, f = 0, c = 8 and g' = 0, f ' = –8, c' = k

Orthogonal condition: 2gg' + 2ff' = c+c' ⇒ 2(2)(0) + 2(0)(–8) = 8 + k ⇒ k = –8


––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
4. Find the coordinates of the point on parabola y2 = 8x, whose focal distance is 10.

Sol: Given parabola is y2 = 8x ⇒ 4a = 8 ⇒a=2

Given focal distance SP = 10

Formula: Focal distance SP = x1+a ⇒x1 + 2 =10 ⇒ x1= 8.

But, y12 = 8x1 ⇒ y12 = 8(8) ⇒ y1 = ±8

∴ P(x1,y1) = (8, ±8)


« MATHS 2B 4
AP-IPE 2024 SOLVED PAPER «

5. If the angle between the asymptotes is 30º then find its eccentricity.

Sol: The angle between the asymptotes of the hyperbola S = 0 is 2Sec–1e

∴ 2Sec–1e = 30º ⇒ Sec–1e = 15º ⇒ e = sec15º= 6 − 2


––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
6. Evaluate òsec2x.csc2xdx

sin 2 x + cos 2 x ⎛ 1 1 ⎞
Sol: 2 2
∫ sec x.csc xdx = ∫
1
dx = ∫ dx = ∫ ⎜ + ⎟ dx
cos 2 x sin 2 x cos 2 x sin 2 x ⎝ cos x sin 2 x ⎠
2

= ∫ (sec 2 x + csc 2 x)dx

= ∫ sec 2 xdx + ∫ csc 2 xdx

-Q
= tan x − cot x + c
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
2
Find ∫ elog(1+tan x)dx . T
E
7.

L ⎡⎣' ∫ eloge f (x) = f (x) ⎤⎦


2
Sol: I = ∫ elog e (1+ tan x) dx = ∫ (1 + tan 2 x)dx = ∫ sec x dx = tan x + c
2

L
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

U


∫ cos xsin xdx


7 2
8. Find
0
B
Y

cos7 x sin 2 xdx = [
(6)(4)(2) ][(1) ]

16
Sol: =

B
(9)(7)(5)(3) 315
0

A
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

B
9. Find the area of the region enclosed by the given curves x = 4 – y2, x = 0.

Sol : The given curve x = 4 – y2 is a horizontal (left) parabola.


P(0,2)
Put y = 0, then we get A = (4,0).

Put x = 0 then we get P(0, 2) and Q(0, –2). O A


x

From the diagram, Required area = 2 Area of OAP


2 Q(0,-2)
2 2
⎛ y3 ⎞ 16 32
A = 2∫ xdy = 2∫ (4 − y )dy = 2 ⎜ 4y −
2
⎟ = 2. = sq. units
0 0 ⎝ 3 ⎠0 3 3
« BABY BULLET-Q 5
AP-IPE 2024 SOLVED PAPER «

6
⎡ 2 3 ⎤5
10. Find the order and degree of the differential equation ⎢ d y + ⎛⎜ dy ⎞⎟ ⎥ = 6y
⎢⎣ dx2 ⎝ dx ⎠ ⎥⎦
6/5
⎛ d 2 y ⎛ dy ⎞3 ⎞
Sol: Given D.E is ⎜⎜ 2 + ⎜ dx ⎟ ⎟⎟ = 6y
⎝ dx ⎝ ⎠ ⎠

3
d 2 y ⎛ dy ⎞
⇒ + = (6y)5/6
2 ⎜⎝ dx ⎟⎠
dx

d2y
Here, the highest order derivative is ∴ order = 2
dx 2

d2y
∴ degree = 1 -Q
T
The exponent of 2 is 1
dx

E
L
L
U
B
Y
B
A
B
« MATHS 2B 6
AP-IPE 2024 SOLVED PAPER «

SECTION-B

11. Find the length of the chord intercepted by the circle x2 + y2 – x + 3y – 22 = 0 on the
line y = x – 3.
Sol: Given circle x2 + y2 – x + 3y – 22 = 0
It's Centre, C = (1/2,–3/2)
2
⎛1⎞ ⎛3⎞
2
1 9 1 + 9 + 88 98 49 7
radius, r = ⎜ ⎟ + ⎜ ⎟ + 22 = + + 22 = = = =
⎝2⎠ ⎝2⎠ 4 4 4 4 2 2

Perpendicular distance from the centre(1/2, –3/2) to the line y = x–3 = 0 ⇒ x – y – 3 = 0

1+3−6 −2
| 12 + 23 − 3|

-Q
2 2 1
is p = = = =
12 + 12 2 2 2

⎛ 49 ⎞ 1 48
T
E
∴ Length of the chord = 2 r 2 − p2 = 2 ⎜ ⎟ − = 2 = 2 24
⎝ 2 ⎠ 2 2

––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
L
x2 y2-8x L
– 2y + 8 = 0, x2 + y2 - 2x + 6y + 6 = 0 touch each
U
12. Show that the circles +
other and find the point of contact.

Sol:
B
Given circle is S = x2+y2−8x–2y+8=0, centre C1=(4,1), radius r1 =

Y
16 + 1 − 8 = 9 =3

B
Other circle is S'=x2+y2−2x+6y+6=0, centre C2=(1,–3), radius r2 = 1 + 9 − 6 = 4=2

A
C1 C 2 =
B
(4 − 1) 2 + (1 + 3) 2 = 9 + 16 = 25 = 5

Also, r1 + r2 = 3 + 2 = 5 . Here, C1C 2 = r1 + r2

∴ the two circles touch each other externally.

Also the point of contact I divides C1C 2 in the ratio r1 : r2=3:2 internally.

⎛ 3(1) + 2(4) 3(−3) + 2(1) ⎞ ⎛ 11 −7 ⎞


∴ Point of contact I = ⎜ , ⎟=⎜ 5 , 5 ⎟
⎝ 3+ 2 3+ 2 ⎠ ⎝ ⎠
« BABY BULLET-Q 7
AP-IPE 2024 SOLVED PAPER «

13. Find the equation of tangent and normal to the ellipse 9x2 + 16y2 = 144 at the end
of the latus rectum in the first quadrant.

x 2 y2
Sol: Given Ellipse 9x2 + 16y2 = 144 ⇒ + = 1 ⇒ a 2 = 16, b 2 = 9 ⇒ a = 4, b = 3
16 9

a 2 − b2 16 − 9 7 7
e= = = ⇒e=
2 16 16 4
a

⎛ b2 ⎞ ⎛ 7 9⎞ ⎛ 9⎞

-Q
Positive end of latus rectum L = ⎜ ae, ⎟ = ⎜ 4 . , ⎟⎟ = ⎜ 7, ⎟
⎜ ⎜
a ⎟⎠ ⎝ 4 4⎠ ⎝ 4⎠

Equation of the tangent at L is S1 = 0


T
E
xx1 yy1
⇒ 2 + 2 =1⇒
x 7 y⎛9⎞
+ ⎜ ⎟ = 1 ⇒ 7x + 4y = 16
L
a b 16 9⎝4⎠
L
2 2
U
Equation of the normal at L is a x − b y = a 2 − b 2 ⇒ 16x − 9 y = 16 − 9


16x
x1

− 4y = 7 ⇒ 16x − 4 7y = 7 7
y1
B 7 9
4

7
Y
B
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

14. A x2 y 2

B
If P(x, y) is any point on the ellipse + = 1 with foci S & S' then SP + S'P is a constant.
a2 b2
Proof: Let N be the foot of the perpendicular from P(x, y) on to the x-axis.
from the diagram, PM = NZ = CZ − CN = a − x
e
a P(x , y)
and PM′ = NZ′ = CN + CZ′ = x + M' M
e
SP ⎛a ⎞ Z' S' C S N Z
Now, PM = e ⇒ SP = ePM = e ⎜ e − x ⎟ = a − ex
⎝ ⎠
S′P ⎛ a⎞
and PM′
= e ⇒ S′P = ePM′ = e ⎜ x + ⎟ = ex + a = a + ex
⎝ e⎠

∴ SP + S′ P = (a − ex) + (a + ex) = 2a which is a constant


« MATHS 2B 8
AP-IPE 2024 SOLVED PAPER «

15. Find the centre, eccentricity, foci, length of latus rectum and equations of the
directrices of the Hyperbola x2 – 4y2 = 4

x 2 y2
Sol: Given hyperbola is x2–4y2=4 ⇒ − = 1. Here a2=4, b2=1
4 1
(i) Centre C= (0,0)
a2 + b2 4 +1 5 5
(ii) Eccentricity e = 2
= = =
a 4 4 2
⎛ ⎛ 5⎞ ⎞
(iii) Foci = (±ae,0) = ⎜⎜ ±2 ⎜⎝ 2 ⎟⎠ , 0 ⎟⎟ = ± 5, 0 ( )
⎝ ⎠
a ⇒x=± 2 ⇒x=± 4
(iv) Equation of the directrices is x = ± 5 5
e 2

-Q
2b 2 2(1)
(v) Length of latusrectum = = =1

T
a 2
––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

E
L
π /3
sin x
Evaluate ∫ sin x + cos x dx
L
16.
π /6

U
Sol: We know ∫a
b b
f ( x )dx = ∫ f (a + b − x )dx .
a B
Y ⎛π π ⎞

B
sin ⎜ + − x ⎟
π /3
π/3 ⎝ 6 3 ⎠
= ∫ dx

A
sin x
∴I = ∫ dx ........(1) π /6 sin ⎛ π π ⎞ ⎛ π π ⎞
sin x + cos x ⎜ + − x ⎟ + cos ⎜ + − x ⎟

B
π/6 ⎝6 3 ⎠ ⎝6 3 ⎠

⎛π ⎞
π /3 sin ⎜ − x ⎟ π /3
⎝2 ⎠ cos x
= ∫ dx = ∫ cos x + sin x
dx
............(2)
π /6 sin ⎛ π − x ⎞ + cos ⎛ π − x ⎞ π/6
⎜ ⎟ ⎜ ⎟
⎝2 ⎠ ⎝2 ⎠

π /3 π /3
sin x cos x
From (1) and (2), I + I = ∫ sin x + cos x dx + ∫ sin x + cos x dx
π /6 π /6

π /3 π/3
sin x + cos x π /3 π π π π π
⇒ 2I = ∫ sin x + cos x
dx = ∫ 1dx = [x ]π/6 = 3 − 6 = 6 ⇒ 2I = 6 ⇒ I = 12
π/6 π /6
« BABY BULLET-Q 9
AP-IPE 2024 SOLVED PAPER «

dy 3x2 1 + x2
17. Solve + y=
dx 1 + x3 1 + x3

dy ⎛ 3x 2 ⎞ 1 + x 2
Sol: Given D.E is + y⎜ ⎟= 3
. This is a linear D.E in y.
dx ⎝ 1 + x3 ⎠ 1 + x

2
dy
+ yP(x) = Q(x) where P(x) = 3x 1 + x2
It is in the form and Q(x) =
dx 1 + x3 1 + x3

3x 2 3x 2 ⎡ f ′(x) ⎤
Here, P(x) = ⇒ ∫ P(x) dx = ∫ 1 + x3 dx = log(1 + x 3 ) ⎢' ∫ = log f (x) ⎥

-Q
1 + x3 ⎣ f (x) ⎦

T
3
∴I.F = e∫ P(x)dx = elog(1+x ) = 1 + x3

\ The solution is y(I.F) = ∫ (I.F)Q(x)dx


E
L
L
⎛ 1 + x2 ⎞ x3

⇒ y(1 + x 3 ) = (1 + x 3 ) ⎜
⎜ 1 + x3
⎟ dx = ∫ (1 + x 2 )dx = x +

+c

U
⎝ ⎠ 3

3
∴ y(1 + x ) = x +
x3
3
+c B
Y
B
A
B
« MATHS 2B 10
AP-IPE 2024 SOLVED PAPER «

SECTION-C
18. Find the values of c if the points (2, 0), (0, 1), (4, 5), (0, c) are concyclic.

Sol: Let A = (2, 0), B = (0, 1), C = (4, 5), D = (0, c)

We take S(x1, y1) as the centre of the circle ⇒ SA = SB = SC

Now, SA = SB ⇒ SA 2 = SB2 ⇒ (x1 − 2)2 + (y1 − 0)2 = (x1 − 0)2 + (y1 − 1)2

⇒ ( x12 − 4x1 + 4) + ( y12 ) = ( x12 ) + ( y12 − 2y1 + 1)

⇒ 4x1 − 2y1 +1− 4 = 0 ⇒ 4x1 − 2y1 − 3 = 0.........(1)


Also, SB = SC ⇒ SB2 = SC2 ⇒ (x1 − 0) 2 + (y1 − 1)2 = (x1 − 4) 2 + (y1 − 5) 2

⇒ ( x12 ) + ( y12 − 2y1 + 1) = ( x12 − 8x1 + 16) + ( y12 − 10y1 + 25)


-Q
T
⇒ 8x1 − 2y1 + 10y1 + 1 − 16 − 25 = 0 ⇒ 8x1 + 8y1 − 40 = 0 ⇒ 8(x1 + y1 − 5) = 0 ⇒ x1 + y1 − 5 = 0......(2)

E
L
Solving (1) & (2) we get the centre S(x1,y1)

2 × (2) ⇒2x1+2y1–10=0...........(3)
L
U
B
(1) + (3) ⇒6x1–13=0.⇒6x1=13⇒x1=13/6

13 30 − 13 17 17
(2) ⇒ y1 = 5 − x1 = 5 − = = ⇒ y1 =
6 6
Y 6 6

B ⎛ 13 17 ⎞
∴ Centre of the circle is S(x1 , y1 ) = ⎜ , ⎟

A
⎝6 6⎠

B
Also, we have A = (2,0) Hence, radius r = SA ⇒ r 2 = SA 2
2 2 2 2
⎛ 13 ⎞ ⎛ 17 ⎞ ⎛ 12 − 13 ⎞ ⎛ 17 ⎞ ⎛ 1 ⎞ ⎛ 289 ⎞ 290
∴ r 2 = SA 2 = ⎜ 2 − ⎟ + ⎜ 0 − ⎟ = ⎜ ⎟ +⎜ ⎟ =⎜ ⎟+⎜ ⎟=
⎝ 6⎠ ⎝ 6 ⎠ ⎝ 6 ⎠ ⎝ 6 ⎠ ⎝ 36 ⎠ ⎝ 36 ⎠ 36
2 2
⎛ 13 17 ⎞ 2 290 ⎛ 13 ⎞ ⎛ 17 ⎞ 290
∴ Circle with Centre, ⎜ , ⎟ and r = is ⎜ x − ⎟ + ⎜ y − ⎟ =
⎝6 6⎠ 36 ⎝ 6⎠ ⎝ 6⎠ 36

2 2
⎛ 13 ⎞ ⎛ 17 ⎞ 290 ⎛ 17 ⎞2 290 169 121
Put D(0, c) in the above equation ⇒ ⎜ 0 − ⎟ + ⎜c − ⎟ = ⇒ ⎜c − ⎟ = − =
⎝ 6⎠ ⎝ 6⎠ 36 ⎝ 6⎠ 36 36 36

2
⎛ 6c − 17 ⎞ 121 (6c − 17)2 112
⇒⎜ ⎟ = ⇒ = ⇒ 6c − 17 = ±11
⎝ 6 ⎠ 36 36 36
28 14
⇒ 6c = ±11 + 17 ⇒ 6c = 28 ⇒ c = = (or) 6 c = 6 ⇒ c = 1
6 3
∴ c= 14/3 (or) 1
« BABY BULLET-Q 11
AP-IPE 2024 SOLVED PAPER «

19. Find the equation to the pair of transverse common tangents to the circles
x2+y2-4x-10y+28=0 and x2+y2+4x-6y+4=0

Sol: For the circle x2 + y2 − 4x − 10y + 28 = 0, centre C1 = (2, 5),

radius r1 = (−2)2 + (−5)2 − 28 = 1 = 1

For the circle x2 + y2 + 4x − 6y + 4 = 0, centre C2 = (−2, 3),

radius r2 = 2 2 + ( −3) 2 − 4 = 9 = 3

-Q
The internal centre of similitude, I divides C1C2 internally in the ratio r1 : r2 = 1:3

T
⎛ 1( −2) + 3(2) 1(3) + 3(5) ⎞ ⎛ 4 18 ⎞ ⎛ 9 ⎞
E
L
∴I = ⎜ , ⎟ = ⎜ , ⎟ = ⎜ 1, ⎟
⎝ 1+ 3 1+ 3 ⎠ ⎝ 4 4 ⎠ ⎝ 2 ⎠

L
U
The equation to the pair of transverse common tangents is S12 = S11 (S)

⎡ 9 ⎛ 9⎞ ⎤
2
B
⎛ 81 ⎞ 2 2
⇒ ⎢ x + y − 2(x + 1) − 5 ⎜ y + ⎟ + 28⎥ = ⎜1 + − 4 − 45 + 28 ⎟ (x + y − 4x − 10y + 28)

Y
⎣ 2 ⎝ 2 ⎠ ⎦ ⎝ 4 ⎠

⎛ y 7⎞ 1
2
B (2x − y + 7)2 1 2 2

A
⇒ ⎜ −x − + ⎟ = (x2 + y2 − 4x − 10y + 28) ⇒ = (x + y − 4x − 10y + 28)
⎝ 2 2⎠ 4 4 4
2
B
⇒ (2x + y − 7) = x + y 2 − 4x − 10y + 28
2

⇒ 4x 2 + y2 + 49 + 4xy − 28x − 14y = x 2 + y2 − 4x − 10y + 28 ⇒ 3x 2 + 4xy − 24x − 4y + 21 = 0


« MATHS 2B 12
AP-IPE 2024 SOLVED PAPER «

20. Derive the standard form of the parabola.

Sol: Let S be the focus and L=0 be the directrix of the parabola.
Y-axis

>
Let Z be the projection of S on to the directrix P
M N
.
Let A be the mid point of SZ
SA
>
A(0,0)
.S(a,0) >
⇒ SA = AZ ⇒ =1 Z X-axis
AZ L=0
⇒ A is a point on the parabola.

>
Take AS, the principle axis of the parabola as X-axis and

-Q
the line perpendicular to AS through A as the Y-axis ⇒ A=(0,0)

Let AS = a ⇒ S = (a,0), Z = (−a,0)


T
⇒ the equation of the directrix is x = −a ⇒ x + a = 0
E
L
L
Let P(x1, y1) be any point on the parabola.

U
N be the projection of P on to the Y-axis.

Here PM=PN+NM = x1+a


B
M be the projection of P on to the directrix.

('PN = x − coordinate of P and NM = AZ = AS = a)

Y
Now, by the focus directrix property of the parabola,

B
A
SP
we have = 1 ⇒ SP = PM ⇒ SP2 = PM2
PM

B
⇒ (x1 − a) 2 + (y1 − 0) 2 = (x1 + a) 2

⇒ y12 = (x1 + a) 2 − (x1 − a) 2

⇒ y12 = 4ax1 [' (a + b)2 − (a − b)2 = 4ab]

∴ The equation of locus of P(x1, y1) is y2 = 4ax


« BABY BULLET-Q 13
AP-IPE 2024 SOLVED PAPER «

21. Evaluate the reduction formula for In= òsinnxdx and hence find òsin4xdx

Sol: Given, In = ∫sinnxdx=∫sinn−1x(sinx)dx.


We take First function u = sinn−1x and Second function v = sinx ⇒ ∫ v = –cosx

From By parts rule, we have

In = sinn−1x (−cosx) −∫(n−1)sinn−2x cosx (−cosx)dx

= −sinn−1xcosx+(n−1)∫sinn−2xcos2xdx

= −sinn−1xcosx+(n-1)∫sinn−2x(1−sin2x)dx

-Q
T
n −2
= − sin n −1 x cos x + (n − 1)[ ∫ sin xdx − ∫ sin n xdx]

= − sin n −1 x cos x + (n − 1)[I n − 2 − I n ] E


L
I n = − sin n −1 x cos x + (n − 1)I n − 2 − (n − 1)I n
L
U
= − sin n −1 x cos x + (n − 1)I n − 2 − nI n + I n
B
Y
n−1
⇒ nIn = −sin xcosx + (n −1)In−2 + In − In

− sinn−1 xcosx ⎛ n −1 ⎞ B
⇒ In =
n
+⎜
⎝ n ⎠
A⎟ In−2 ....(1)

B
Put n = 4, 2,0 successively in (1), we get

sin 3 x cos x 3
I4 = − + I2
4 4

sin 3 x cos x 3 ⎡ sin x cos x 1 ⎤


=− + ⎢− + I0⎥
4 4⎣ 2 2 ⎦

− sin 3 x cos x 3 3
= − sin x cos x + I 0
4 8 8

sin3 xcosx 3 3
=− − sin xcosx + x + c [' I0 = x]
4 8 8
« MATHS 2B 14
AP-IPE 2024 SOLVED PAPER «

x +1
22. Evaluate ∫ x2 + 3x + 12 dx
d 2
Sol: Let x + 1=A (x +3x+12) + B .......(i)
dx

∴ x + 1 = A(2x + 3) + B ⇒ x + 1 = 2Ax + (3A + B)

Equating the coefficients of 'x', we get 2A=1 ⇒ A=1/2

3 1
Equating the constant terms, we get 3A+B=1 ⇒ B=1–3A=1– ⇒ B= −
2 2

−1
-Q
T
1 1 d 2 1
Putting A = , B = in (i), we get Nr. x + 1 = (x + 3x + 12) −
2 2 2 dx 2

E
L
L
d (x 2 + 3x + 12)
x +1 1 1 dx
∴I = ∫
2∫ ∫
dx = dx dx −
2 2 2
x + 3x + 12 x + 3x + 12 2 x + 3x + 12

U
1 1
= log x 2 + 3x + 12 − ∫
dx B
Y
2 2 2 2 2 2
⎛ 3 ⎞ ⎛ 39 ⎞ ⎛3⎞ ⎛3⎞
⎜x + ⎟ +⎜ ⎟ ' x 2 + 3x + 12 = x 2 + 3x + ⎜ ⎟ − ⎜ ⎟ + 12

B
⎝ 2⎠ ⎝ 2 ⎠ ⎝2⎠ ⎝2⎠

A
⎛ ⎛3⎞ ⎞ 9
2
⎛ 3⎞
2
9 + 48
= ⎜ x 2 + 3x + ⎜ ⎟ ⎟ − + 12 = ⎜ x + ⎟ −
⎜ ⎝ ⎠ ⎠⎟ ⎝ ⎠

B
2 4 2 4

⎛ ⎞
−1 ⎜ x + 2
3
1 1 2
= log x 2 + 3x + 12 − Tan ⎟+c ⎛ 3⎞ 39
2
2 2 39 ⎜ 39 ⎟ =⎜x + ⎟ +
⎝ 2 ⎠ ⎝ 2⎠ 4
dx 1 −1 x
' ∫ x 2 + a 2 = a Tan a
1 1 ⎛ 2x + 3 ⎞
= log x 2 + 3x + 12 − Tan −1 ⎜ ⎟+c
2 39 ⎝ 39 ⎠
« BABY BULLET-Q 15
AP-IPE 2024 SOLVED PAPER «


sinx + cosx
23. Evaluate ∫ 9 + 16sin2x
dx
0

Sol: Here, we take the substitution sinx–cosx=t. Then (cosx+sinx)dx=dt.

π π π 1 1
Now x = 0 ⇒ t = sin0–cos0 = 0–1= –1 and x = ⇒ t = sin − cos = − =0
4 4 4 2 2

Also,(sinx–cosx)2=t2 ⇒ sin2x+cos2x–2sinxcosx=t2 ⇒ 1–sin2x=t2 ⇒sin2x=1–t2

∴ 9+16sin2x=9+16(1–t2)=9+16–16t2=25–16t2
-Q
T
π /4
sin x + cos x
0 0
E
L
dt dt
∴I = ∫ 9 + 16sin 2x
dx = ∫ 25 − 16t 2 = ∫ 52 − (4t)2
L
0 −1 −1

U
B
0
1 1 ⎡ 5 + 4t ⎤
= . .log ⎢ ⎥
4 2(5) ⎣ 5 − 4t ⎦ −1

Y
=
1 ⎡ ⎡5 + 0⎤
⎢ log ⎢ − log ⎢ ⎥ B
⎡ 5 − 4 ⎤⎤ 1 ⎡
=
1⎤
log 1 − log ⎥

A

40 ⎣ ⎣ 5 − 0 ⎦ ⎥ ⎢
⎣ 5 + 4 ⎦ ⎦ 40 ⎣ 9⎦

=
1 ⎡ B1
0 − log 9 −1 ⎤ = [log 9 ] =
log 32 2 log 3 log 3
= =
40 ⎣ ⎦ 40 40 40 20
« MATHS 2B 16
AP-IPE 2024 SOLVED PAPER «

x
⎛ x⎞
Solve ⎛⎜ ⎞ x y
24. ⎟ dx + e ⎜ 1  ⎟ dy = 0
y
⎝1 + e ⎠ ⎝ y⎠

⎛ ⎞ ⎛ ⎞
Sol: Given that (1 + e x/y )dx + e x/y ⎜1 − x ⎟ dy = 0 ⇒ (1 + ex/y )dx = −e x/y ⎜1 − x ⎟ dy
⎝ y⎠ ⎝ y⎠

dy (1 + e x/ y ) dx ⎡ e x/ y (1 − (x / y)) ⎤
⇒ =− ⇒ = −⎢ ⎥ .....(1)
dx ⎛ x⎞ dy ⎢⎣ 1 + e x/ y ⎥⎦
e x/ y ⎜1 − ⎟
⎝ y ⎠

x dx dv
Put y = v ⇒ x = vy differentiating w.r.to y, we have dy = v + y. dy

-Q
⎛ dv ⎞ ⎡ e (1 − v) ⎤
∴ (1) ⇒ v + y ⎜ ⎟ = − ⎢
v

T
E
v
⎝ ⎠
dy ⎣⎢ 1 + e ⎦⎥

L
⎛ dv ⎞ ⎡ e v (1 − v) ⎤ ⎡ e v − v.e v + v + ve v ⎤
L
⎡ v + ev ⎤

U
⇒ y⎜ ⎟ = − ⎢ + v⎥ = − ⎢ ⎥ = −⎢ ⎥
v
⎝ dy ⎠ ⎣⎢ 1 + e ⎦⎥ ⎣⎢ 1 + ev ⎦⎥
v
⎣⎢ 1 + e ⎦⎥

⎛ 1 + ev ⎞
B
Y
⎛1⎞ 1 + ev 1
⇒⎜ ⎟ dv = − ⎜ ⎟ dy ⇒ ∫ dv = − ∫ dy
⎜ v + ev ⎟ ⎝y⎠ v+e v y

B
⎝ ⎠

A
B
⇒ log | v + e v |= − log | y | + log | c |⇒ log | v + e v | + log | y |= log | c |

⎡x ⎤
⇒ log | (v + e v )y |= log | c |⇒ ⎢ + e x/ y ⎥ y = c ⇒ x + ye x/ y = c
⎣y ⎦

You might also like