0% found this document useful (0 votes)
259 views13 pages

CH 7 Class 12th Formulas

.ch-7-class-12th-formulas
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
259 views13 pages

CH 7 Class 12th Formulas

.ch-7-class-12th-formulas
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 13

Chapter 7 Class 12

Integration Formula Sheet


+ 𝐶, 𝑛 ≠ −1. 𝑃𝑎𝑟𝑡𝑖𝑐𝑢𝑙𝑎𝑟𝑙𝑦 , ∫ 𝑑𝑥 = 𝑥 +
Basic Formulae

1. ∫ 𝑥𝑛 𝑑𝑥 = 𝑐

2. ∫ -----𝑑𝑥 = sin x + C

3. ∫ 𝑠𝑖𝑛 𝑥 𝑑𝑥 = ---- + C

4. ∫ ---- 𝑥 𝑑𝑥 = tan x + c

5. ∫ 𝑐𝑜𝑠𝑒𝑐2 𝑥 𝑑𝑥 = - - - - + c

6. ∫ ------ 𝑑𝑥 = sec x + c

7. ∫ 𝑐𝑜𝑠𝑒𝑐 𝑥 𝑐𝑜𝑡 𝑥 𝑑𝑥 =- - - - + c

𝑑𝑥
8. ∫ 1−
= ---- + c Questions in
𝑥2
Ex 7.2 and Ex 7.3
𝑑𝑥
9. ∫ = – cos-1 x + c

𝑑𝑥
10. ∫ = ---- + c
1 +
𝑥2
𝑑𝑥
11. ∫
= – cot-1 x +
c
-------

12. ∫ 𝑒 𝑥 𝑑𝑥 = --- + c

13. ∫ 𝑎𝑥𝑑𝑥 = +c

𝑑𝑥
14. ∫ = ----- + c
𝑥 𝑥2 −

𝑑𝑥
15. ∫ = ------ + c
𝑥 𝑥2 −

16. ∫ 𝑑𝑥 = log 𝑥 + c

17. ∫ --- 𝑑𝑥 = log sec x + c

18. ∫ 𝑐𝑜𝑡 𝑥 𝑑𝑥 = log ------ + c

19. ∫----- 𝑑𝑥 = log sec x + tan 𝑥+ c

20. ∫ 𝑐𝑜𝑠𝑒𝑐 𝑥 𝑑𝑥 = log -------------------+ c


Integrals of some special functions

𝑑𝑥
∫ +𝑐
1

𝑥2 − 𝑎2 log
1.
2𝑎
=

𝑑𝑥
∫ +𝑐
1

--------- log 𝑎+
2.
= 2𝑎 𝑥
𝑎−

𝑑𝑥 1 −1 𝑥
∫ ta +𝑐
n
3.
𝑥2 + 𝑎2 --
= -- Questions in
Ex 7.4
𝑑𝑥
∫ = log -- + --------- + C
𝑥2 −
4.

𝑑𝑥
5. ∫ --------
= sin-1 + 𝑐
𝑥

𝑎
𝑑𝑥

𝑥2 +
6. = log ----- +C
Integrals by partial fractions

,𝑎 ≠
𝑝𝑥 + �
𝑞 (𝑥 − 𝑏)= ------

𝑥−
1. � + ------

𝑎 b

𝑥−
�𝑎
= �
𝑥−� 2
2.
+ 𝑎

𝑝𝑥2 + 𝑞𝑥 𝐴 𝐵 𝐶 Questions in
𝑥 −+𝑎𝑟𝑥 𝑥−
3. = 𝑥 − 𝑎+ 𝑥 − + 𝑥 −
−𝑏 𝑐 𝑏 𝑐
Ex 7.5
𝑝𝑥2 + 𝑞𝑥 �
+𝑟 𝑥−
�𝑎 2 𝑥
� �
𝑥−𝑎
4. = � + + �
𝑥−𝑎 2 𝑥 −𝑏
𝑝𝑥2 + 𝑞𝑥 + 𝑟 � -------
𝑥− 𝑎 𝑥2 + 𝑏𝑥 𝑥 − 𝑎 𝑥2 + 𝑏𝑥
5. = +
+𝑐

Where 𝑥 2 + bx + c can not be factorised further.


Integration by parts

1. ∫ 𝒙 � 𝒙 𝒅𝒙 = ∫ 𝒅𝒙 − 𝒅𝒙
𝒇 � 𝒇 𝒙𝒈 𝒙∫ �𝒙 ∫ 𝒈 𝒙
� 𝒅𝒙

To decide first function. We use


I → Inverse (Example 𝑠𝑖𝑛−1 𝑥)
L → Log (Example log 𝑥)
A → Algebra (Example x2, x3)
Questions in
Ex 7.6
T → Trignometry (Example sin2 x)
E → Exponential (Example ex)

2. ∫𝑒𝑥 𝑓𝑥 + 𝑓′(𝑥) dx = ∫𝑒𝑥 f(x) dx + C


Other Special Integrals

𝒙𝟐 −
1. ∫ 𝒂𝟐 𝒅𝒙 =
\

𝒙𝟐 +
2. ∫ 𝒅𝒙 =

𝒂𝟐 −
3. ∫ 𝒙𝟐 𝒅𝒙 =

Questions in
Ex 7.7
Area as a sum

∫ 𝑥 𝑑
𝑓 𝑥 1
𝑙𝑖𝑚 𝑎 + 𝑎+ + 𝑓𝑎 + …+
= 𝑏− (𝑓 𝑓 ℎ 2ℎ
𝑎 𝑛→∞ 𝑛

Questions in
Ex 7.8
Properties of definite integration

�𝑥 𝑑𝑥 = �𝑡 𝑑𝑡 =
𝑏

∫𝑎 � ∫
𝑏
P0 :

��

�𝑥 𝑑𝑥 = − � 𝑑𝑥 . In
𝑏
� 𝑑𝑥 = 0
∫𝑎 � ∫
𝑎
� particular, ∫
𝑎
P1 :

�𝑥 𝑑𝑥 = � 𝑑𝑥 + � 𝑑𝑥
𝑏

∫𝑎 � ∫
𝑐
� ∫
𝑏
P2 :

�𝑥 𝑑𝑥 =
𝑏
𝑓 𝑎 + 𝑏 − 𝑥 𝑑𝑥.
∫𝑎 � ∫
𝑏
P3 :

�𝑥 𝑑𝑥 = 𝑓 𝑎 − 𝑥 𝑑𝑥
𝑎

∫0 � ∫
𝑎
P4 :

P5 : ∫0 �𝑥 𝑑𝑥 = 𝑓 𝑥 𝑑𝑥 + 𝑓 2𝑎 − 𝑥 𝑑𝑥
2𝑎

𝑎 𝑎
� ∫ ∫

P : ∫2𝑎
𝑓 2
= { 𝑎
∫0 𝑓 𝑥 𝑑𝑥 , 𝑖𝑓 𝑓 2𝑎 − 𝑥 = 𝑓(𝑥)
𝑥
0
0, 𝑖𝑓 2𝑎 − = −𝑓(𝑥)
6

𝑓 𝑥

0
P : ∫𝑎 𝑥 −𝑥
� 𝑥 = { ∫ 𝑎 𝑑𝑥 , = 𝑓(𝑥)
� 2
𝑖𝑓 𝑓
𝑓
−𝑎
0, 𝑖𝑓 = −𝑓(𝑥)
6


𝑥 �
𝑥

𝑥 𝑥

� �
� �


� Questions in
0 Ex 7.11

−𝑥

You might also like