Main
Main
2 CONTENTS
Contents
MAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
MSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
MSLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
RMSE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
RMSLE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
MAPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
sMAPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
wMAPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
MASE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
MSPE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
MDA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
MAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
MPD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
MGD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
R2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
D2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Confusion Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
FPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
FNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
FNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
TPR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
TNR . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
Balanced Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
    Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
CONTENTS                                                                          3
F1-score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
F-beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
F-beta . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
ROC AUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
PR AUC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Log Loss . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
Jaccard Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
P4-metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Cohen’s Kappa . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
Phi Coefficient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
MCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
Rand Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
CH Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Contingency Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
Completeness Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
Homogeneity Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
V Measure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
    Silhouette Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
    Consensus Score . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
    Ranking Sample Metric . . . . . . . . . . . . . . . . . . . . . . . . . . 69
                                                       MAE
                                            Mean Absolute Error
                                                                              forecast value
                                                   1∑
                                                    n
                                      M AE =                 |Yt − Ŷt |
                                                   n   t=1
                                                                      actual value
                        number of samples
                   The smaller the MAE, the closer the model’s predictions are to the actual
                   targets. Theoretically, MAE belongs in the 0 to +infinity range. One of the
                   aspects that makes MAE popular is that it is easy to understand and com-
                   pute.
                   When to use MAE?
                   Use MAE when you need an interpretable, robust metric that penalizes all
                   errors equally. Avoid using it when larger errors need more significant pe-
                   nalization.
Strength Weakness
                                                  MSE
                                          Mean Squared Error
                                                  MSLE
                                        Mean Squared Log Error
                                                  RMSE
                                        Root Mean Squared Error
                                                  RMSLE
                                       Root Mean Squared Log Error
                                                  MAPE
                                    Mean Absolute Percentage Error
                                                  sMAPE
                              Symmetric Mean Absolute Percentage Error
                                                  wMAPE
                               Weighted Mean Absolute Percentage Error
                                                  MASE
                                      Mean Absolute Scaled Error
                                                  MSPE
                                     Mean Squared Prediction Error
                                                  MDA
                                      Mean Directional Accuracy
                                                  MAD
                                       Mean Absolute Deviation
                                                  MPD
                                        Mean Poisson Deviance
                                                  MGD
                                        Mean Gamma Deviance
                                                     R2
                                                 R-squared
                                                                   Predicted value
                                     ∑n
                                      t=1 (Yt − Ŷt )
                                                      2
                             R = 1 − ∑n
                              2
                                      t=1 (Yt − Ȳ )
                                                     2
Strength Weakness
                                                  D2
                                          D2 Absolute Score
                                                           Confusion Matrix
                                                              Confusion Matrix
                                                          FPR
                                                 False Positive Rate
                       The False Positive Rate (FPR), also known as the false alarm ratio or fall-
                       out, measures how often negative instances are incorrectly classified as
                       positive in binary classification.
False positives
                                                     FP
                                       FPR =
                                                   FP + TN
                                       True negatives
                       FPR ranges from 0 (no false alarms) to 1 (all predicted positives are incor-
                       rect). FPR can also be interpreted as the probability that a negative in-
                       stance will be incorrectly identified as positive.
Strength Weakness
                                                           FNR
                                                  False Negative Rate
                       The False Negative Rate (FNR), also known as the miss rate, measures the
                       proportion of actual positive instances incorrectly classified as negative in
                       binary classification.
False negatives
                                                      FN
                                       F NR =
                                                    FN + TP
                                        True positives
                       FNR ranges from 0 (no false negatives) to 1 (all positive instances misclas-
                       sified). It represents the probability that a positive instance will be incor-
                       rectly identified as negative.
Strength Weakness
                                                      FNR
                                              False Negative Rate
                                                      TPR
                                    True Positive Rate (Recall/Sensitivity)
                                                      TNR
                                       True Negative Rate (Specificity)
                                                       Accuracy
                                                         Accuracy
                                                          Balanced Accuracy
                                                             Balanced Accuracy
                                                        Precision
                                                          Precision
                                                        F1-score
                                                         F1-score
                                                       F-beta
                                                        F-beta
                                                       F-beta
                                                        F-beta
                                                       ROC AUC
                             Area Under the Receiver Operating Characteristic Curve
                                                       PR AUC
                                      Area Under the Precision-Recall Curve
                                                        Log Loss
                                                         Log Loss
                                                         Jaccard Score
                                                            Jaccard Score
                                                        P4-metric
                                                         P4-metric
                                                         Cohen’s Kappa
                                                           Cohen’s Kappa
                                                            Phi Coefficient
                                                              Phi Coefficient
                                                      MCC
                                      Matthew’s Correlation Coefficient
                                                    Rand Score
                                                      Rand Score
                                                    CH Score
                                             Calinski Harabasz Score
                                                       Contingency Matrix
                                                          Contingency Matrix
                                                      Completeness Score
                                                         Completeness Score
                                                     Homogeneity Score
                                                        Homogeneity Score
                                                    V Measure
                                                     V Measure
                                                      Silhouette Score
                                                         Silhouette Score
                                                     Consensus Score
                                                       Consensus Score