Ad8603 8607 8609
Ad8603 8607 8609
04356-001
Low noise: 22 nV/√Hz +IN 3 4 –IN
Micropower: 50 μA maximum
Figure 1. 5-Lead TSOT (UJ Suffix)
Low distortion
No phase reversal
Unity gain stable OUT A 1 8 V+
–IN A 2 AD8607 7 OUT B
TOP VIEW
+IN A 3 6 –IN B
(Not to Scale)
04356-002
APPLICATIONS V– 4 5 +IN B
04356-003
V– 4 (Not to Scale) 5 +IN B
GENERAL DESCRIPTION
The AD8603/AD8607/AD8609 are single/dual/quad micro- Figure 3. 8-Lead SOIC (R Suffix)
These amplifiers use a patented trimming technique that achieves +IN A 3 AD8609 12 +IN D
TOP VIEW
V+ 4 11 V–
superior precision without laser trimming. The parts are fully (Not to Scale)
+IN B 5 10 +IN C
specified to operate from 1.8 V to 5.0 V single supply or from
–IN B 6 9 –IN C
±0.9 V to ±2.5 V dual supply. The combination of low offsets, low
04356-004
OUT B 7 8 OUT C
noise, very low input bias currents, and low power consumption
makes the AD8603/AD8607/AD8609 especially useful in portable Figure 4. 14-Lead TSSOP (RU Suffix)
and loop-powered instrumentation.
The ability to swing rail to rail at both the input and output OUT A 1 14 OUT D
enables designers to buffer CMOS ADCs, DACs, ASICs, and –IN A 2 13 –IN D
other wide output swing devices in low power, single-supply +IN A 3 AD8609 12 +IN D
AD8607 is available in 8-lead MSOP and 8-lead SOIC packages. OUT B 7 8 OUT C
The AD8609 is available in 14-lead TSSOP and 14-lead SOIC
packages. Figure 5. 14-Lead SOIC (R Suffix)
Rev. C
Information furnished by Analog Devices is believed to be accurate and reliable. However, no
responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other
rights of third parties that may result from its use. Specifications subject to change without notice. No One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.
license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Tel: 781.329.4700 www.analog.com
Trademarks and registered trademarks are the property of their respective owners. Fax: 781.461.3113 ©2003–2008 Analog Devices, Inc. All rights reserved.
AD8603/AD8607/AD8609
TABLE OF CONTENTS
Features .............................................................................................. 1 Applications..................................................................................... 12
Applications ....................................................................................... 1 No Phase Reversal ...................................................................... 12
General Description ......................................................................... 1 Input Overvoltage Protection ................................................... 12
Pin Configurations ........................................................................... 1 Driving Capacitive Loads .......................................................... 12
Revision History ............................................................................... 2 Proximity Sensors....................................................................... 13
Specifications..................................................................................... 3 Composite Amplifiers................................................................ 13
Electrical Characteristics ............................................................. 3 Battery-Powered Applications .................................................. 13
Absolute Maximum Ratings............................................................ 5 Photodiodes ................................................................................ 13
ESD Caution .................................................................................. 5 Outline Dimensions ....................................................................... 14
Typical Performance Characteristics ............................................. 6 Ordering Guide .......................................................................... 16
REVISION HISTORY
6/08—Rev. B to Rev. C
Changes to Table 1 ............................................................................ 3
Changes to Table 2 ............................................................................ 4
Changes to Figure 15 ........................................................................ 7
Changes to Figure 33 ...................................................................... 10
Changes to Figure 45 and Figure 47 ............................................. 13
Updated Outline Dimensions ....................................................... 14
Changes to Ordering Guide .......................................................... 16
6/05—Rev. A to Rev. B
Updated Figure 49 .......................................................................... 15
Changes to Ordering Guide .......................................................... 17
10/03—Rev. 0 to Rev. A
Added AD8607 and AD8609 Parts .................................. Universal
Changes to Specifications ................................................................ 3
Changes to Figure 35 ...................................................................... 10
Added Figure 41.............................................................................. 11
Rev. C | Page 2 of 16
AD8603/AD8607/AD8609
SPECIFICATIONS
ELECTRICAL CHARACTERISTICS
VS = 5 V, VCM = VS/2, TA = 25°C, unless otherwise noted.
Table 1.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS VS = 3.3 V @ VCM = 0.5 V and 2.8 V 12 50 μV
−0.3 V < VCM < +5.2 V 40 300 μV
−40°C < TA < +125°C, −0.3 V < VCM < +5.2 V 700 μV
Offset Voltage Drift ∆VOS/∆T −40°C < TA < +125°C 1 4.5 μV/°C
Input Bias Current IB 0.2 1 pA
−40°C < TA < +85°C 50 pA
−40°C < TA < +125°C 500 pA
Input Offset Current IOS 0.1 0.5 pA
−40°C < TA < +85°C 50 pA
−40°C < TA < +125°C 250 pA
Input Voltage Range IVR −0.3 +5.2 V
Common-Mode Rejection Ratio CMRR 0 V < VCM < 5 V 85 100 dB
−40°C < TA < +125°C 80 dB
Large Signal Voltage Gain AVO RL = 10 kΩ, 0.5 V < VO < 4.5 V
AD8603 400 1000 V/mV
AD8607/AD8609 250 450 V/mV
Input Capacitance CDIFF 1.9 pF
CCM 2.5 pF
OUTPUT CHARACTERISTICS
Output Voltage High VOH IL = 1 mA 4.95 4.97 V
−40°C to +125°C 4.9 V
IL = 10 mA 4.65 4.97 V
−40°C to +125°C 4.50 V
Output Voltage Low VOL IL = 1 mA 16 30 mV
−40°C to +125°C 50 mV
IL = 10 mA 160 250 mV
−40°C to +125°C 330 mV
Short-Circuit Current ISC ±70 mA
Closed-Loop Output Impedance ZOUT f = 10 kHz, AV = 1 36 Ω
POWER SUPPLY
Power Supply Rejection Ratio PSRR 1.8 V < VS < 5 V 80 100 dB
Supply Current per Amplifier ISY VO = 0 V 40 50 μA
−40°C <TA < +125°C 60 μA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 10 kΩ 0.1 V/μs
Settling Time 0.1% tS G = ±1, 2 V step 23 μs
Gain Bandwidth Product GBP RL = 100 kΩ 400 kHz
RL = 10 kΩ 316 kHz
Phase Margin ØO RL = 10 kΩ, RL = 100 kΩ 70 Degrees
NOISE PERFORMANCE
Peak-to-Peak Noise en p-p 0.1 Hz to 10 Hz 2.3 3.5 μV
Voltage Noise Density en f = 1 kHz 25 nV/√Hz
f = 10 kHz 22 nV/√Hz
Current Noise Density in f = 1 kHz 0.05 pA/√Hz
Channel Separation CS f = 10 kHz −115 dB
f = 100 kHz −110 dB
Rev. C | Page 3 of 16
AD8603/AD8607/AD8609
VS = 1.8 V, VCM = VS/2, TA = 25°C, unless otherwise noted.
Table 2.
Parameter Symbol Conditions Min Typ Max Unit
INPUT CHARACTERISTICS
Offset Voltage VOS VS = 3.3 V @ VCM = 0.5 V and 2.8 V 12 50 μV
−0.3 V < VCM < +1.8 V 40 300 μV
−40°C < TA < +85°C, −0.3 V < VCM < +1.8 V 500 μV
−40°C < TA < +125°C, −0.3 V < VCM < +1.7 V 700 μV
Offset Voltage Drift ∆VOS/∆T −40°C < TA < +125°C 1 4.5 μV/°C
Input Bias Current IB 0.2 1 pA
−40°C < TA < +85°C 50 pA
−40°C < TA < +125°C 500 pA
Input Offset Current IOS 0.1 0.5 pA
−40°C < TA < +85°C 50 pA
−40°C < TA < +125°C 250 pA
Input Voltage Range IVR −0.3 +1.8 V
Common-Mode Rejection Ratio CMRR 0 V < VCM < 1.8 V 80 98 dB
−40°C < TA < +85°C 70 dB
Large Signal Voltage Gain AVO RL = 10 kΩ, 0.5 V < VO < 4.5 V
AD8603 150 3000 V/mV
AD8607/AD8609 100 2000 V/mV
Input Capacitance CDIFF 2.1 pF
CCM 3.8 pF
OUTPUT CHARACTERISTICS
Output Voltage High VOH IL = 1 mA 1.65 1.72 V
−40°C to +125°C 1.6 V
Output Voltage Low VOL IL = 1 mA 38 60 mV
−40°C to +125°C 80 mV
Short-Circuit Current ISC ±10 mA
Closed-Loop Output Impedance ZOUT f = 10 kHz, AV = 1 36 Ω
POWER SUPPLY
Power Supply Rejection Ratio PSRR 1.8 V < VS < 5 V 80 100 dB
Supply Current per Amplifier ISY VO = 0 V 40 50 μA
−40°C < TA < +85°C 60 μA
DYNAMIC PERFORMANCE
Slew Rate SR RL = 10 kΩ 0.1 V/μs
Settling Time 0.1% tS G = ±1, 1 V step 9.2 μs
Gain Bandwidth Product GBP RL = 100 kΩ 385 kHz
RL = 10 kΩ 316 kHz
Phase Margin ØO RL = 10 kΩ, RL = 100 kΩ 70 Degrees
NOISE PERFORMANCE
Peak-to-Peak Noise en p-p 0.1 Hz to 10 Hz 2.3 3.5 μV
Voltage Noise Density en f = 1 kHz 25 nV/√Hz
f = 10 kHz 22 nV/√Hz
Current Noise Density in f = 1 kHz 0.05 pA/√Hz
Channel Separation CS f = 10 kHz −115 dB
f = 100 kHz −110 dB
Rev. C | Page 4 of 16
AD8603/AD8607/AD8609
Rev. C | Page 5 of 16
AD8603/AD8607/AD8609
1800
100
1600
50
1400
VOS (µV)
0
1200
–50
1000
–100
800
–150
600
400 –200
200 –250
0 –300
04356-009
04356-006
–270 –210 –150 –90 –30 0 30 90 150 210 270 0 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0 3.3
VOS (µV) VCM (V)
(V)
Figure 6. Input Offset Voltage Distribution Figure 9. Input Offset Voltage vs. Common-Mode Voltage
30 400
VS = ±2.5V
TA = –40°C TO +125°C
350
VCM = 0V
25 VS = ±2.5V
300
INPUT BIAS CURRENT (pA)
NUMBERS OF AMPLIFIERS
20
250
15 200
150
10
100
5
50
0 0
04356-007
04356-010
0 0.4 0.8 1.2 1.6 2.0 2.4 2.8 3.2 3.6 4.0 4.4 4.8 5.2 0 25 50 75 100 125
TCVOS (µV/°C) TEMPERATURE (°C)
Figure 7. Input Offset Voltage Drift Distribution Figure 10. Input Bias Current vs. Temperature
300 1000
VS = 5V VS = 5V
250
TA = 25°C TA = 25°C
OUTPUT VOLTAGE TO SUPPLY RAIL (mV)
200
100
150
100
50 10
VOS (µV)
0
SOURCE SINK
–50
1
–100
–150
0.1
–200
–250
–300 0.01
04356-008
04356-011
0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 0.001 0.01 0.1 1 10
VCM (V) LOAD CURRENT (mA)
Figure 8. Input Offset Voltage vs. Common-Mode Voltage Figure 11. Output Voltage to Supply Rail vs. Load Current
Rev. C | Page 6 of 16
AD8603/AD8607/AD8609
350 1750
VS = 5V VS = ±2.5V, ±0.9V
TA = 25°C 1575
300
1400
OUTPUT VOLTAGE SWING (mV)
100 525
350
50
VDD – VOH @ 1mA LOAD 175
VOL @ 1mA LOAD
0 0
04356-012
04356-015
–40 –25 –10 5 20 35 50 65 80 95 110 125 100 1k 10k 100k
TEMPERATURE (°C) FREQUENCY (Hz)
Figure 12. Output Voltage Swing vs. Temperature Figure 15. Output Impedance vs. Frequency
40 90 80
OPEN-LOOP GAIN (dB)
PHASE (Degree)
20 45 60
CMRR (dB)
0 0 40
–20 –45 20
–40 –90 0
–60 –135 –20
04356-016
1k 10k 100k 1M 10M 100 1k 10k 100k
FREQUENCY (Hz) FREQUENCY (Hz)
Figure 13. Open-Loop Gain and Phase vs. Frequency Figure 16. CMRR vs. Frequency
5.0 140
VS = 5V VS = ±2.5V
4.5 120
VIN = 4.9V p-p
TA = 25°C
4.0
OUTPUT VOLTAGE SWING (V p-p)
AV = 1 100
3.5 80
3.0 60
PSRR (dB)
2.5 40
2.0 20
1.5 0
1.0 –20
0.5 –40
0 –60
04356-014
04356-017
Figure 14. Closed-Loop Output Voltage Swing vs. Frequency Figure 17. PSRR vs. Frequency
Rev. C | Page 7 of 16
AD8603/AD8607/AD8609
60
VS = 5V VS = 5V, 1.8V
50
SMALL SIGNAL OVERSHOOT (%)
OS–
30
20
OS+
10
04356-021
04356-018
10 100 1000
LOAD CAPACITANCE (pF) TIME (1s/DIV)
Figure 18. Small Signal Overshoot vs. Load Capacitance Figure 21. 0.1 Hz to 10 Hz Input Voltage Noise
60
VS = ±2.5V VS = 5V
55 RL = 10kΩ
50 CL = 200pF
AV = 1
45
VOLTAGE (50mV/DIV)
SUPPLY CURRENT (µA)
40
35
30
25
20
15
10
04356-022
0
04356-019
Figure 19. Supply Current vs. Temperature Figure 22. Small Signal Transient
100
TA = 25°C VS = 5V
90 RL = 10kΩ
CL = 200pF
80 AV = 1
70
SUPPLY CURRENT (µA)
VOLTAGE (1V/DIV)
60
50
40
30
20
10
0
04356-023
04356-020
0 1 2 3 4 5
SUPPLY VOLTAGE (V) TIME (20µs/DIV)
Figure 20. Supply Current vs. Supply Voltage Figure 23. Large Signal Transient
Rev. C | Page 8 of 16
AD8603/AD8607/AD8609
176
VS = ±2.5V VS = ±2.5V
RL = 10kΩ 154
VOUT (V)
AV = 100
0V 110
0V 88
VIN (mV)
66
44
–50mV
22
04356-024
0
04356-027
0 1 2 3 4 5 6 7 8 9 10
TIME (4μs/DIV))
(40µs/DIV) FREQUENCY (kHz)
Figure 24. Negative Overload Recovery Figure 27. Voltage Noise Density vs. Frequency
800
VS = ±2.5V 750 VS = 1.8V
RL = 10kΩ TA = 25°C
700
AV = 100 +2.5V VCM = 0V TO 1.8V
650
VOUT (V)
VIN = 50mV
600
NUMBER OF AMPLIFIERS
550
0V 500
450
0V 400
350
300
VIN (mV)
250
200
150
–50mV
100
50
0
04356-025
04356-028
–300 –240 –180 –120 –60 0 60 120 180 240 300
TIME (4µs/DIV) VOS (µV)
168 300
VS = ±2.5V 250 VS = 1.8V
144 TA = 25°C
200
VOLTAGE NOISE DENSITY (nV/√Hz)
150
120
100
96 50
VOS (µV)
0
72 –50
–100
48
–150
–200
24
–250
0 –300
04356-029
04356-026
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 0 0.3 0.6 0.9 1.2 1.5 1.8
FREQUENCY (kHz) V
VCM
CM(V)
(V)
Figure 26. Voltage Noise Density vs. Frequency Figure 29. Input Offset Voltage vs. Common-Mode Voltage
Rev. C | Page 9 of 16
AD8603/AD8607/AD8609
1000 100 225
VS = 1.8V VS = ±0.9V
TA = 25°C 80 RL = 100kΩ 180
OUTPUT VOLTAGE TO SUPPLY RAIL (mV)
CL = 20pF
100 60 Φ = 70° 135
40 90
PHASE (Degrees)
10 20 45
SOURCE
SINK 0 0
1 –20 –45
–40 –90
–80 –180
04356-033
04356-030
0.001 0.01 0.1 1 10 1k 10k 100k 1M 10M
LOAD CURRENT (mA) FREQUENCY (Hz)
Figure 30. Output Voltage to Supply Rail vs. Load Current Figure 33. Open-Loop Gain and Phase vs. Frequency
100 140
VS = 1.8V
90 120
VS = 1.8V
80 100
OUTPUT VOLTAGE SWING (mV)
70 80
VDD – VOH @ 1mA LOAD
60 60
CMRR (dB)
50 40
VOL @ 1mA LOAD
40 20
30 0
20 –20
10 –40
0 –60
04356-034
04356-031
Figure 31. Output Voltage Swing vs. Temperature Figure 34. CMRR vs. Frequency
60 1.8
VS = 1.8V
TA = 25°C VS = 1.8V
50 1.5
OUTPUT VOLTAGE SWING (V p-p)
TA = 25°C
AV = 1
40 1.2
30 0.9
20 0.6
OS–
10 0.3
OS+
0 0
04356-035
04356-032
Figure 32. Small Signal Overshoot vs. Load Capacitance Figure 35. Closed-Loop Output Voltage Swing vs. Frequency
Rev. C | Page 10 of 16
AD8603/AD8607/AD8609
176
VS = 1.8V VS = ±0.9V
RL = 10kΩ
154
CL = 200pF
110
88
66
44
22
04356-036
0
04356-039
0 1 2 3 4 5 6 7 8 9 10
TIME (4µs/DIV) FREQUENCY (kHz)
Figure 36. Small Signal Transient Figure 39. Voltage Noise Density vs. Frequency
0
VS = ±2.5V, ±0.9V
VS = 1.8V
RL = 10kΩ –20
CL = 200pF
AV = 1
–60
–80
–100
–120
–140
04356-037
04356-040
100 1k 10k 100k 1M
TIME (20µs/DIV) FREQUENCY (Hz)
Figure 37. Large Signal Transient Figure 40. Channel Separation vs. Frequency
168
VS = ±0.9V
140
VOLTAGE NOISE DENSITY (nV/√Hz)
112
84
56
28
0
04356-038
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
FREQUENCY (kHz)
Rev. C | Page 11 of 16
AD8603/AD8607/AD8609
APPLICATIONS
NO PHASE REVERSAL The use of the snubber circuit is usually recommended for unity
gain configurations. Higher gain configurations help improve
The AD8603/AD8607/AD8609 do not exhibit phase inversion the stability of the circuit. Figure 44 shows the same output
even when the input voltage exceeds the maximum input response with the snubber in place.
common-mode voltage. Phase reversal can cause permanent
damage to the amplifier, resulting in system lockups. The
VS = ±0.9V
AD8603/AD8607/AD8609 can handle voltages of up to 1 V VIN = 100mV
CL = 2nF
over the supply. RL = 10kΩ
VS = ±2.5V
VIN VIN = 6V p-p
AV = 1
RL = 10kΩ
VOLTAGE (1V/DIV)
VOUT
04356-042
Figure 42. Output Response to a 2 nF Capacitive Load, Without Snubber
VEE
04356-041
V–
TIME (4µs/DIV) V+ RS
150Ω
Figure 41. No Phase Response + CL
200mV CS
04356-043
– VCC
47pF
INPUT OVERVOLTAGE PROTECTION
If a voltage 1 V higher than the supplies is applied at either Figure 43. Snubber Network
input, the use of a limiting series resistor is recommended. If
both inputs are used, each one should be protected with a VSY = ±0.9V
series resistor. VIN = 100mV
CL = 2nF
RL = 10kΩ
To ensure good protection, the current should be limited to a RS = 150Ω
maximum of 5 mA. The value of the limiting resistor can be CS = 470pF
One technique is the snubber network, which consists of a Table 5. Optimum Values for the Snubber Network
series RC and a resistive load (see Figure 43). With the snubber CL (pF) RS (Ω) CS (pF)
in place, the AD8603/AD8607/AD8609 are capable of driving 100 to ~500 500 680
capacitive loads of 2 nF with no ringing and less than 3% 1500 100 330
overshoot. 1600 to ~2000 400 100
Rev. C | Page 12 of 16
AD8603/AD8607/AD8609
PROXIMITY SENSORS BATTERY-POWERED APPLICATIONS
Proximity sensors can be capacitive or inductive and are used in The AD8603/AD8607/AD8609 are ideal for battery-powered
a variety of applications. One of the most common applications applications. The parts are tested at 5 V, 3.3 V, 2.7 V, and 1.8 V
is liquid level sensing in tanks. This is particularly popular in and are suitable for various applications whether in single or
pharmaceutical environments where a tank must know when to dual supply.
stop filling or mixing a given liquid. In aerospace applications, In addition to their low offset voltage and low input bias, the
these sensors detect the level of oxygen used to propel engines. AD8603/AD8607/AD8609 have a very low supply current of
Whether in a combustible environment or not, capacitive 40 μA, making the parts an excellent choice for portable electronics.
sensors generally use low voltage. The precision and low voltage The TSOT package allows the AD8603 to be used on smaller
of the AD8603/AD8607/AD8609 make the parts an excellent board spaces.
choice for such applications.
PHOTODIODES
COMPOSITE AMPLIFIERS
Photodiodes have a wide range of applications from barcode
A composite amplifier can provide a very high gain in applications scanners to precision light meters and CAT scanners. The very
where high closed-loop dc gains are needed. The high gain low noise and low input bias current of the AD8603/AD8607/
achieved by the composite amplifier comes at the expense of a AD8609 make the parts very attractive amplifiers for I-V
loss in phase margin. Placing a small capacitor, CF, in the feedback conversion applications.
in parallel with R2 (see Figure 45) improves the phase margin.
Picking CF = 50 pF yields a phase margin of about 45° for the Figure 47 shows a simple photodiode circuit. The feedback
values shown in Figure 45. capacitor helps the circuit maintain stability. The signal band-
CF
width can be increased at the expense of an increase in the total
noise; a low-pass filter can be implemented by a simple RC network
R1 R2
at the output to reduce the noise. The signal bandwidth can be
1kΩ VEE 99kΩ
calculated by ½πR2C2, and the closed-loop bandwidth is the
VCC
intersection point of the open-loop gain and the noise gain.
V– AD8603 U5
V+ V+ AD8541
The circuit shown in Figure 47 has a closed-loop bandwidth of
V– 58 kHz and a signal bandwidth of 16 Hz. Increasing C2 to 50 pF
VIN VCC yields a closed-loop bandwidth of 65 kHz, but only 3.2 Hz of
VEE
04356-045
R1 V– VCC
1kΩ R3
AD8603 V+ R4
VIN 1kΩ
V– 100Ω
V+ C2 AD8541
VEE C3
VCC
04356-046
Rev. C | Page 13 of 16
AD8603/AD8607/AD8609
OUTLINE DIMENSIONS
2.90 BSC
5 4
1 2 3
PIN 1
0.95 BSC
*0.90 1.90
BSC
0.87
0.84
3.20
3.00
2.80
8 5 5.15
3.20
4.90
3.00
4.65
2.80 1
4
PIN 1
0.65 BSC
0.95
0.85 1.10 MAX
0.75
0.80
0.15 0.38 8° 0.60
0.23
0.00 0.22 0° 0.40
0.08
COPLANARITY SEATING
0.10 PLANE
Rev. C | Page 14 of 16
AD8603/AD8607/AD8609
5.00 (0.1968)
4.80 (0.1890)
8 5
4.00 (0.1574) 6.20 (0.2441)
3.80 (0.1497) 1 5.80 (0.2284)
4
012407-A
(IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR
REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.
8.75 (0.3445)
8.55 (0.3366)
14 8
4.00 (0.1575) 6.20 (0.2441)
1
3.80 (0.1496) 7 5.80 (0.2283)
5.10
5.00
4.90
14 8
4.50
4.40 6.40
BSC
4.30
1 7
PIN 1
1.05 0.65
1.00 BSC
0.20
0.80 1.20
MAX 0.09 0.75
8° 0.60
0.15 0.30 0° 0.45
0.05 SEATING
0.19 PLANE COPLANARITY
0.10
COMPLIANT TO JEDEC STANDARDS MO-153-AB-1
Rev. C | Page 15 of 16
AD8603/AD8607/AD8609
ORDERING GUIDE
Model Temperature Range Package Description Package Option Branding
AD8603AUJ-R2 −40°C to +125°C 5-Lead TSOT UJ-5 BFA
AD8603AUJ-REEL −40°C to +125°C 5-Lead TSOT UJ-5 BFA
AD8603AUJ-REEL7 −40°C to +125°C 5-Lead TSOT UJ-5 BFA
AD8603AUJZ-R2 1 −40°C to +125°C 5-Lead TSOT UJ-5 A0X
AD8603AUJZ-REEL1 −40°C to +125°C 5-Lead TSOT UJ-5 A0X
AD8603AUJZ-REEL71 −40°C to +125°C 5-Lead TSOT UJ-5 A0X
AD8607ARM-R2 −40°C to +125°C 8-Lead MSOP RM-8 A00
AD8607ARM-REEL −40°C to +125°C 8-Lead MSOP RM-8 A00
AD8607ARMZ-R21 −40°C to +125°C 8-Lead MSOP RM-8 A0G
AD8607ARMZ-REEL1 −40°C to +125°C 8-Lead MSOP RM-8 A0G
AD8607AR −40°C to +125°C 8-Lead SOIC_N R-8
AD8607AR-REEL −40°C to +125°C 8-Lead SOIC_N R-8
AD8607AR-REEL7 −40°C to +125°C 8-Lead SOIC_N R-8
AD8607ARZ1 −40°C to +125°C 8-Lead SOIC_N R-8
AD8607ARZ-REEL1 −40°C to +125°C 8-Lead SOIC_N R-8
AD8607ARZ-REEL71 −40°C to +125°C 8-Lead SOIC_N R-8
AD8609AR −40°C to +125°C 14-Lead SOIC_N R-14
AD8609AR-REEL −40°C to +125°C 14-Lead SOIC_N R-14
AD8609AR-REEL7 −40°C to +125°C 14-Lead SOIC_N R-14
AD8609ARZ1 −40°C to +125°C 14-Lead SOIC_N R-14
AD8609ARZ-REEL1 −40°C to +125°C 14-Lead SOIC_N R-14
AD8609ARZ-REEL71 −40°C to +125°C 14-Lead SOIC_N R-14
AD8609ARU −40°C to +125°C 14-Lead TSSOP RU-14
AD8609ARU-REEL −40°C to +125°C 14-Lead TSSOP RU-14
AD8609ARUZ1 −40°C to +125°C 14-Lead TSSOP RU-14
AD8609ARUZ-REEL1 −40°C to +125°C 14-Lead TSSOP RU-14
1
Z = RoHS Compliant Part.
Rev. C | Page 16 of 16