Lecture 5
Lecture 5
Introduction
                          d2 y     d y  d y 
                      m        − c        = F − mg sin θ
                          dt2      dt dt                                              dV
                                                                                           = qin − qout    Massbalance
                                                                                      dt
Two states y and d y/dt.                                                                      h
                                                                                        V=       A( h) dh     Geometry
                                                                                              0
                                                                                              
                                                                                      qout = a 2g h       Energybalance
                           dh      1                                             Momentum balance
                                =       ( qin − a 2g h)
                            dt    A( h)                                           (Newton’s Equation)
                                   
                           qout = a 2g h
                                                                                      d2θ
                                                                                  J       − mg l sin θ + mul cos θ = 0
                                                                                      dt2                                           θ
One function A(h) and one parameter a.                                                                                                  L
                 q2in                                                                                        
           h=                                                                     Normalize with ω 0 =           mg / J , introduce τ = ω 0 t and ū = u/g
                2g a 2
                                                          q                       then
Not influenced by A!                                       in
                                                                                                             d2θ
Run ICtools or SysQuake                                                                                           − sin θ + u cos θ = 0
                                                                                                             dτ 2
                                                                
                                                                c K. J. Åström September, 2000                                                               2
                        Pendulum on a Cart                                                        Standard Model
Equations of motion Momen-                            x                     A system with finite number of states can be described by
tum balances
                                                                                                       dx
  J pθ¨ + ml x cos θ − mg l sin θ = 0                     O                                               = f ( x, u)
                                                                                                       dt
  mlθ¨ cos θ − mlθ˙ 2 sin θ + M ẍ = F                                                                  y = g( x, u)
Introduce state variables x 1 = θ and x2 = θ˙ , then                                             Introduce state variables x 1 = θ and x2 = θ˙ , then
                     dx1                                                                                             dx1
                         = x2                                                                                            = x2
                     dt                                                                                              dt
                     dx2   mg           m                                                                            dx2   mg           m
                         =     sin x1 +    u cos x1                                                                      =     sin x1 +    u cos x1
                     dt     Jp          Jp                                                                           dt     Jp          Jp
Find the stationary solution!                                                                    Stationary solutions for u = 0 gives sin x 1 = 0 and x2 = 0.
                  The Audience is Thinking ...                                                   Two cases:
                                                                                                     θ = x1 = 0 and θ˙ = x2 = 0 (pendulum up)
                                                                                                     θ = x1 = π and θ˙ = x2 = 0 (pendulum down)
                                                                                                                                              dt
                                                                                                                                               y = g( x, u)
A Taylor series expansion                       5
around u = u 0 gives
                                                                                                         Find the equilibria u = u 0 , x = x0 y = y0 by solving
                                             y
                 
 y = g(u0 ) + g (u0 )(u − u0 ) + . . .          0
f ( x0 , u0 ) = 0
                                        dx                                                                        dδ x    dx
                                           = f ( x, u)                                                                 =      = f ( x0 + δ x, u0 + δ u)
                                        dt                                                                         dt     dt
                                         y = g( x, u)                                                                                              f                      f
                                                                                                                               f ( x0 , u0 ) +        ( x0 , u0 )δ x +        ( x0 , u0 )δ u
                                                                                                                                                   x                      u
Approximate around the equilibrium!                                                                                  y0 + δ y = g( x0 + δ x, u0 + δ u)
                                                                                                                                         g                      g
                     x = x0 + δ x,      u = u0 + δ u,             y = y0 + δ y                                                 y0 +         ( x0 , u0 )δ x +        ( x0 , u0 )δ u
                                                                                                                                         x                      u
Hence
                                                                                                                      dδ x   f                  f
   dx                                               f                     f                                              =    ( x0 , u0 )δ x +    ( x0 , u0 )δ u = Aδ x + B δ u
      = f ( x0 + δ x, u0 + δ u)  f ( x0 , u0 ) +       ( x0 , u0 )δ x +        ( x0 , u0 )δ u                         dt    x                  u
   dt                                               x                     u                                                g                  g
                                          g                     g                                                    δy=      ( x0 , u0 )δ x +    ( x0 , u0 )δ u = Cδ x + Dδ u
    y = g( x0 + δ x, u0 + δ u)  y0 +         ( x0 , u0 )δ x +       ( x0 , u0 )δ u                                          x                  u
                                          x                     u
                                                                                       
                                                                                       c K. J. Åström September, 2000                                                                           5
           Linearization of Dynamic Systems                                                              A Remark on Notations
For small deviations around an equilibrium the system                                                                           f
                                                                                                                         A=        ( x0 , u0 )
                                  dx                                                                                            x
                                     = f ( x, u)
                                  dt
                                                                                      Component-wise
                                   y = g( x, u)
                                                                                                              f 1 ( x1 , x2 , . . . , xn , u1 , u2 , . . .   , u p)
can be approximated by                                                                                  a11 =
                                                                                                                                      x1
                                                                                                              f 1 ( x1 , x2 , . . . , xn , u1 , u2 , . . .   , u p)
                             dδ x                                                                      a12 =
                                  = Aδ x + B δ u                                                                                      x2
                              dt
                                                                                                                                       ..
                              δ y = Cδ x + Dδ u                                                                                         .
                                                                                                              f n( x1 , x2 , . . . , xn , u1 , u2 , . . .    , u p)
                                                                                                       an1 =
                                                                                                                                       x1
                 f                                   f
              A=    ( x0 , u0 )                    B=    ( x0 , u0 )                                                                    ..
                 x                                   u                                                                                 .
                 g                                   g                                                      f n( x1 , x2 , . . . , xn , u1 , u2 , . . .    , u p)
              C=    ( x0 , u0 )                    D=    ( x0 , u0 )                                   ann =
                 x                                   u                                                                              xn
Physical interpretation!                                            
                                                                    c K. J. Åström September, 2000                                                                     6
                 The Inverted Pendulum ...                                                                Linear Dynamical Systems - The State Model
                                                     x2                                                                                     dx
                    f ( x, u) =       mg                                                                                                       = Ax + Bu
                                       J       sin x1 +   m
                                                          J   u cos x1                                                                      dt
                                                                                                                                             y = Cx + Du
       f                    0                      1           f                  0
                                                                                                         • Variables denote deviations from equilibrium
          =    mg                                         ,        =
       x           cos x1 −      m
                                      u sin x1      0           u            m
                                                                                    cos x1
                                                                                                         • Think scalar and interpret as vectors
                J                 J                                           J
                         Summary
• Obtaining dynamics from physics
• The concept of state
• The standard model for nonliner finite dimensional systems
                     dx
                        = f ( x, u),   y = g( x, u)
                     dt