0% found this document useful (0 votes)
65 views24 pages

Trigonometry Formulae

Uploaded by

amitkumarji6969
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
65 views24 pages

Trigonometry Formulae

Uploaded by

amitkumarji6969
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 24

Right Angle Triangle

 One angle is 90°


Pythagorean Triplet:-
 A “ Pythagorean Triplet” is a set of positive integers a, b and c
that fits the rule
 Triplet is in the form of
 Some example of Basic Pythagorean triplet –
(3, 4, 5) (5, 12, 13) (7, 24, 25) (8, 15,17)
(9, 40, 41) (11, 60, 61) (12, 35, 37) (13, 84, 85)
(16, 63, 65) (20, 21, 29) (28, 45, 53) (33, 56, 65)
(36, 77, 85) (39, 80, 89) (48, 55, 73) (65, 72, 97)
(20, 99, 101)
Trigonometric functions-
Formula:-
Formula-
Formula
Formula
Trigonometry Table
Angles 0 30 45 60 90
Ratios
Sin  0 1 1 3 1
2 2 2

1
Cos  1 3 1 0
2
2 2

Tan  0 1 1 3 
3

Cosec   2 2 2 1
3

Sec  1 2 2 2 
3

Cot   3 1 1 0
3
Important Concept
Angles rule
Quadrant Formula
Concept
 If A + B = 90°
Then
Sin A = Cos B & SinA.SecB=1
Tan A = Cot B & TanA.TanB =1 & CotA.CotB=1
Sec A = Cosec B & CosA.CosecB=1
Range of Trigonometric ratio
Concept of degree
 ∏ radian = 180 degree
 1 degree = 60 minute angle
 1 minute angle = 60 second angle
 1 radian = 57 degree 16 minute 22 second
 To convert radian in to degree we multiply radian to 180.
 To convert degree in to radian we multiply degree to
∏/180.
 Length of arc = radius of circle * angle in radian
 Length of arc is directly proportional to radius of circle.
Concept based on sin and cos
 If
Then
If

If
Then
Concept based on sec, tan
cosec , cot
Concept
 If
 Then
 If
 Then
Important concept
for value putting
 When we put the value of angle then the result is not in the form of 0/0, 1/0
or undefined.
 We put the value of angle 0, 30, 45, 60, 90……..
Formula of Trigonometry
 Sin(A+B) = sinA cosB + cosA sinB
 Sin(A-B) = sinA cosB – cosA sinB
 Cos (A+B) = CosA cosB – sinA sinB
 Cos(A-B) = cosA cosB + sinAsinB
 2sinAcosB = sin(A+B) + sin (A-B)
 2cosAsinB = sin(A+B) – sin(A-B)
 2cosAcosB = cos(A+B) + cos(A-B)
 2sinAsinB = cos(A-B) –cos(A+B)
Formula
 sinC + sinD = 2sin C + D cos C − D
2 2
 sinC – sinD = 2cos C + D sin C − D
2 2
 cosC + cosD = 2cos C + D cos C − D
2 2
 cosC – cosD = 2sin C + D sin D − C
2 2

Important Formula
 Tan (A+B) = tan A + tan B
1 − tan A tan B
 Tan (A-B) = tan A − tan B
1 + tan A tan B
 Cot (A+B) = cot A cot B −1
cot B + cot A
 Cot (A-B) = cot A cot B + 1
cot B − cot A
Some Other value of
trigonometry ratio
3 +1
sin 75 = cos15 =
2 2
3 −1
sin 15 = cos 75 =
2 2
3 +1
cot 15 = tan 75 = = 2+ 3
3 −1

3 −1
cot 75 = tan 15 = = 2− 3
3 +1
Important Concept
tan A + tan B + tan C − tan A tan B tan C
 If A + B = 45or 225 tan( A + B + C ) =
1 − tan A tan B − tan B tan C − tan C tan A
then(1 + tan A)(1 + tan B ) = 2

 If A + B = 45or 225
then(1 − cot A)(1 − cot B ) = 2

 If A + B + C = 90
Then tan A tan B + tan B tan C + tan C tan A = 1
& cot A cot B cot C = cot A + cot B + cot C

 If A + B + C = 180
then tan A + tan B + tan C = tan A tan B tan C
& cot A cot B + cot B cot C + cot C cot A = 1

You might also like