⑪
LV              factorization
         1/ Eri I
                                    -   2                           o    u
A   =                                                                   G
E   ,
        A
         [] EstI=
EE          ,
                 A
                        =                                     E
E                           -   I
        =
                     F      -9
                                                y
    *x           =
                     1b                     =
                                                    (2)
I
        LUX             =
                                                    UX    =
                                                              2
                                                    -
        Le          =
                        b            save           for   1       and   then
        UX       =
                     1              for     X   .
                                                                              ②
    Le      =
                    (5)                       =   =
                                                      ()
    x   =   2
                    ,   y
                              =       0
                                          ,
                                              z   =
                                                      10       L(z)
    =
            (i)                                             :]            =
                                                                              1)
    I                                     (i).
    X   =
                    [
Does        LV      factorization                       always          work !
Example         :
 -
            /100 I
                    2   12
A   =                                     -
                    32/
Swap
-
            rows        :
                                          P() (2)       =
                            D     =
                                      [
 it :   31      ,
                    2
                    ,   ..,   nb          >       51,   2
                                                            ...,   my
It       is   invertible                       permutation        ③
     (123)
         23/
I    =
         (                                     =
                      /- I
                                   C   C
PA            =
Perform               LV           factorization for
this      metrix
PA        =       Lu
              =]                                  v
                                                      =
     AX           =
                      b        =>
                                               PAX    =
                                                             Pb
         Lux                   =
                                       PE
-
PA                permutes                     rows
 AP                       1)
                                               columns   .
[h/[56]                                    =
                                                [I
                                                    ④
(AT)ij   =
                Aji
1: :                     =
                             12
=A               .
(A   +   B)T    =
                         AT+ BT
 (AB)T       =       BTAT
   (B)
          Tij        =
                             B) ji
                =
                         z     Aj Bri
                         k
                                (T)kj      /BT)ik
             =
                              (BT)in
                                          (T)kj
                =
                         (BTAT)
                                     ij
(AT)     =
                (A-Yi
                                                                        ⑤
 AA"          =
                  I     =           (A)           =
                                                      I
                                         T
                        =
                                CA")             AT   =
                                                          I
                                ↑A-)
                                         +
                                             is   left        inves   of AT
 AA           =
                  I   =          (A A)T           =   I       o
                                A
                                    +
                                        A )T      =
                                                      I
                              =>
                                        At T      is
                                                          right   inverse
    or        (AT)        =
                              <A")
                                         T
                                             .
(Ax)T             =
                          XT AT
                            ↑
 AX           linear        combination of                 columns. ofK
 * TAT            linear combinations                          of
                  the       rows         of AT
                                             .
Dot      producti
    XTAy           =
                          (A)T]
 #T
  A       =
                          symmetric
A     myn
                  >   >     At          nxm
                                                                                        ⑥
           of IR
    -cubspaces
     V        subspace               of IR"          .
     u    ,
              veV             =      A   +   1EV
              GEV         ,
                              J     Scalar           =        JEV              .
     Us   ,
              Unc--   >       AktV                   C    .   -
                                                                  ,   2    Scalers
         K
     Ester
    Amxn
·
     CLA)       column               space               is   a       subspace
     of IRM
·    NCA)       =
                    SEIR"                :       Ax           =
                                                                      03   ,
     NCA) is              a       subspace of IR".
      *,, Xz          N(A)
              A(X,            12)
                                             #+
    =>
                          +
                                                                               &
                                     =                                     =
                                                                                   .
                                                 O
                                                 -
                                                                  G
     ↓ ENIA)                  a scalar       .
              ↑ (1)
                                  d                                                Es
                              =
                                                                      ⑦
        I e
                                    12
A   =
            I
            1       -
                        1       -
                                    12
        /2                                  J I ·
                        01              2               (   C    12
                            ,       2   C
->                                              -      O    I
                O           12          C              C    O    C
                                                       C    C   00
                0   -
                            1   -
                                    2   C
                                                            Ro
() (
            2z              0x +                z + zw= 0
    y   +           =
                    z(-2) w()               +
                                        1/
                                        special   solutions .
                                                    besis   for
                                    they    are
                                              a
                                        me
                                         hull space.
                                                                                                   ⑧
        Basis                       V       subspace
                    V
                    -
                     1   .   ....   Up        is   a     beas             if
                    Ev                      were    ex           <,      --
                                                                                  E    with
                                                         .
                                                                              ,
                                      k
                    =            Es
                                 j  =   1
                                                    ,
                                                         i   .   e
                                                                     .            , ....   Uk
                    Spen                .
                                        V
                        1.   -- >     As        are                            .
                                                             knearly independent
            The              special solutions of Ax                                       =*
            form              a       basis        for           NCA)
                                                                    .
)N(Rd)                       =
                                                                 not
        solution                 space             does                       change
        under                    now        reduction
                                                    .
        CCA)
                              - ((Ro)
                                                                 I
            -
        I
                                                                              11           2
                                                                                               I
                                                                               O
                    10              12
                                            I
                                                                         2        120
A   =
                    C    ↓       zu                R
                                                   j    =
                                                                         O        00       O
                    1         32                                          O       oo       G
                L   -
                         1   -
                                 12
 Ro :
In                                                                ⑤
1 2(g)-1:1 /:+                                        =
    Ro() 1:↑          =
    A
        (=2)                   v,       +
                                            24        1       g
                                                  -
                                                          =
                  =
                       24
                      +
                           -
A-1, o ↓
                                    2
        &,       &2   ,   As    &4
&,      82   ,    &3      =
                               &,       +
                                            242
                  &4
                          =     29 ,
A   =
        [a   ,
                 a) Id ? If
             C                      R
                                                                    ⑩
It     will turn out        that       in   the
CR     factorization            R       will be
 the     reduced echelon               form
The     number     of pirchs           =
                                            #     of
knearly      indep columns              that
     Spen   CCA)   .
 #     of   free       veviables       =
                                            # of
 special    solutions
                    .                                  #    of
                                                        columns
                                                              .
                                                                ↓
 #of Hirots            +    #   of special        sol   .
                                                            =
 dimCCA)           +       chimNCA)         =
                                                  .
                                                  n
     Fundamental        tim       of    him   .
                                                  algebre
     dimCCA)       =       renk     of A
 i          114
(1    ,    92 , 13 &4)
                  ,
I
     A,      diz   93    Alt
     an
     031
     C+
             d2z
            Az AAs
                   Ays   924
                         a+ 4
                                I